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Abstract

Building qualitative models is a crucial task forodel-
based diagnosis. This paper discusses the tedwmitu
automatically transform a quantitative model in CAD
environment into a qualitative model, under theesathat
the real numbered landmarks are known and unkn'@¥itin.
known landmarks, the abstraction is through
discretization process where the simulation data
discretized according to the given landmarks. affdmarks
are unknown, the landmark generation process, which
inspired by the discriminability analysis for mple
behaviour modes, is applicable. For dynamic systetre
pseudo-variables are introduced to describe theardim
behaviour. The techniques developed are demoedtbata
simplified automotive subsystem.
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Introduction

The automobile industry has foreseen the growingahel
of diagnostic analysis for automobiles. Engineeed an
integrated design environment that enables thenvotthe
diagnostic analysis at the design stage, so tlet tdan
understand and evaluate the effects of each cluoicthe
diagnostic properties of the system being designed.
European FP5 Project IDD (Integrated Design Protass
On-board Diagnosis) aims to formalize and standarthe
diagnostic design process and to develop new tqubai
and tools to support this purpose. After a modesiea
diagnosis approach is determined, the problem editorg
the appropriate qualitative model becomes the atissue.

Our starting point is the numeric simulation moghich
is built to examine a system’s behaviour by design
engineers in a CAD environment. Matlab/Simulinkhe
target CAD platform due to its wide adoption in the
automotive industry. Models in Matlab/Simulink are
illustrated graphically as a set of subsystemskdand a
number of interconnected input and output linksveein
the blocks. Empirical data, library functions, asliwas
formulas can be used in the blocks. Normally npliei
equations are available for the general systemrusidely.
Our task is to develop automatic approaches toatighe
qualitative model for diagnostic purposes.

The qualitative model used in this paper is intdin
domain tuples, i.e. the domain of a variable hadiphe
landmarks. This paper presents the techniquesoafem
abstraction with or without landmarks for both istaind
dynamic systems. Section 2 reviews the relevahinigaes
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for model abstraction and diagnosis. Section 3udises
the approaches for model abstraction with known
landmarks for both static and dynamic system. iSect
represents the approach for the landmark deterimimat
based on diagnosability analysis. Section 5 detrates
how the approaches developed can be used in a mbdel
subsystem in automotive. Section 6 is discussiod an
conclusion.

State of the Art in Qualitative Mode
Abstraction and Diagnosis

State-based vs. Simulation-based Diagnosis

Diagnosing dynamic system requires checking the
consistency of observations over time with the bihas
modeled by the dynamic model of the device. A

straightforward solution is to simulate incremelytahe
model as observations change, in order to prediet t
immediate successor states. This is the simukiésed
approach used in (Dvorak and Kuipers 1992). (Deess
1996) avoids simulation and generates diagnostic
candidates based on checking consistency of theelmod
with observed states only. (Malik and Struss 1998)es a
necessary and sufficient condition for the equivede of
state-based and simulation-based diagnosis withivirg

a proof. (Struss 1997) further presents that éf slgystem
dynamic can be modeled as state constraints plis ClI
constraints, which are general rules about coritinui
integration and derivatives, then diagnosis based o
checking the state consistency yields results aedgm to
diagnosis based on simulation. Of course, the-dtased
approach is much less costly than the simulaticetta
approach. If a system has other temporal conssraivan
the CID constraints (called trans-constraints),
conclusion is no longer held. These trans-congBaire
typically constraints introducing discontinuitiesen time.
(Panati and Dupre 2000) and (Dupre and Panati 1998)
report a violating case where abrupt faults aresictamned.
Abrupt faults, where a system parameter changasptjpr

are the cases of discontinuity. By adding constsai
related to injecting a fault, the simulation mayuadly be
useful to restrict the set of possible diagnoseéghere are
many methods on how to model the constraints rltde
injecting a fault (Dupre and Panati 1998), (Mosi@nnand
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Biswas, 1997).
paper.

The state-based diagnosis engine is used in @jeqty
though the state-based way could result in moredidates
as stated above. This paper concerns buildingpbitative
model efficiently and automatically from the sintida
environment for the state-based diagnosis engine.
Diagnosis equivalence in (Struss, 1997) has a pdition
that there are sufficient observables. More spzdiy,
since the state-based approach does not use titgomel
between x and dx/dt, both x and dx/dt should be
observables in order to have enough redundancy for
diagnostic analysis. Sometimes not both of x axdtdre
modeled in the simulation model or not both can be
measured as physical variables. In section 3.8udqis
variables are introduced to describe the dynamimbieur
and also provide redundancy for diagnostic analfis
dynamic system.

Abrupt faults are not consideredhiis

Abstraction of Qualitative model

Qualitative models have already been successfsiy un
the framework of model-based diagnosis. When
abstracting a qualitative model for a system, thecial
requirement is to transform the model to the righel of
abstraction after composing it. In (Struss 200
problem is stated as to find the necessary andcwurff
distinctions in the domains of the system variabie
achieve a particulagoal in a certaincontextand under
given conditions The right level of abstraction is task-
dependent; depending on the requirements of thes,tdse
distinctions can be different. (Sachenbacher atrds$
2001) introduces AQUA, a framework for automated
qualitative abstraction. In AQUA, thgoal of using a
model is characterized by a settafget partitionsof the
domains of selected variables (e.g. output vargplthe
context is given by the structure of the model eystand
the conditionsare represented by a set of initial variables
and their possible distinctions (e.g. possible plz@®ns).
AQUA needs a fine-grained qualitative relation & t
starting point. The partitions of domain can beegi by
(finite) sets of landmarks that define qualitativedues as
intervals between adjacent landmarks. AQUA then
eliminates landmarks that do not contribute tosimttion
between target partitions. The abstract model wWi#n
contain a subset of the landmarks of the originadieh but
maintain the predictive power with respect to dasie
values of the target variables. One difficultytlit method

is that the starting “fine” domain model is diffitto obtain.
We do not know how fine the starting model shoudd $0
that the abstract process can remove some landittaget
the optimized qualitative model. Second there ape
criteria to determine the target distinctions. riiS$ 2002)
extends AQUA by giving an approach to automatically
determine the landmarks for the variables. It is@ursive
subdivision process. The criterion to divide thoemain is
that if a qualitative value of some variable occursnany
tuples, it is identified as a candidate for refimemnand
split into two or more intervals by introducing atitchal
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landmarks. This criterion does not show how the ne
partitions effect on the target distincts, thusitfectiveness
is questionable.

Qualitative simulation is a widely used tool. The
fundamental difference is QSIM starts from QDE
(Qualitative Differential Equation) and the simidat is on
gualitative level, while the starting point in thgaper is the
numerical simulation model, and the simulation is
numerically. Many QSIM techniques, such as value
generation, constraint filtering, can't be usedeherA
summary of QSIM techniques and their extensionshmzan
found in (Kuipers 2001).

In FDI community, there is also some work on hinidd
gualitative system models. One example is (Lunzelet
1999), in which the state variables are partitioakxhg the
time based the state transforms. The result isliberete
trajectory of states. In this paper, pseudo-véegbwhich
are the derivatives of flow or effort variables.(séction
3.3), are introduced to describe system dynamiche T
pseudo-variables are equivalents to the state hlasa
While Lunze uses the state transform equations to
determine the state variables in the next time, step
approach does not have transform equations.
discretization is on the values of input and outata after
the time information is removed. Thus the two aaghes
are different from each other and both are suitédyi¢heir
diagnosis principles.

There are some other commonly used ways to obtain
qualitative model, e.g. the qualitative derivatiomdel
(Malik and Struss 1996), and Bond-graph analysis
(Mosterman and Biswas 1997). They either have no
automatic methods available or not start with satiah
model. So they are not reviewed here. The tediasiq
listed here are far from complete. A review onliatve
model construction can be found in (Schit and Bneste
1996).

The

Features of a Simulation Model and Its Gap to
Qualitative M odel

There is a big gap between the simulation modetfwvts a
description of the system behaviours and the quisié
model which is used for diagnosis. The qualitativedel
for diagnosis needs two kinds of information: 1) th
structural model which is the physical structureaystem,
i.e. how the physical components are connectedth@)
behaviour model which is a description of the irputput
relation for every physical component. In a graphCAD
environment, like Matlab/Simulink, the physical qooa
nents are represented by blocks. A block can Isane
blocks for describing internal structure or funoganside
the components. The links between the blocks hee t
physical connections, where the connected blocke ha
shared variables. The structural model is obtaibgd
extracting the connections and block informaticordrthe
CAD environment. This can be done by calling CAD
functions to collect this kind of information. Thigficulty

is in abstracting the behaviour model. The retstiof a



component are implied by the blocks. The standéwdkls
are normally mathematical operators and can beesgpd
as formulas between inputs and outputs. Many atber
called “customized” blocks contain C-code, looktaples
and Matlab scripts, which have no explicit equation

These blocks can be cascaded or sub-composed g¢ogeth

for one physical component. This gives the design
engineers the maximum flexibility for building mdse
They can either encode their empirical data int ldok-

up tables, or embed logic clauses in the scripecod call
professional libraries from C-code. But on theeothide,
this causes a great gap between a simulation naydela
model-based diagnosis engine that
relational expression. Moreover, simulation is exed
only in one direction, i.e. we are unable to coraptite
inputs from the outputsThough the gap exists, one benefit
of the CAD environment is its effective computation
capacity to simulate the system behaviour in btaticsand
dynamic processes.
design our solution.

Abstracting Qualitative M odels from
Simulation Models using Finite Domains

Finite Relation Qualitative M odel

A Finite Relation Qualitative Model uses a set eflr
numbers as landmarks for each variable. The aquiskt
values are the intervals between adjacent landmafkee
gualitative relation is the mapping between thelitatave
values. More landmarks produce a finer qualitathodel.
Definition1: Aninterval is a pair of numeric landmarks:
I:=[Im,, Imy], where Im, < Im,,
Definition2: Two intervals are equal if and only if the
two landmarks are equal:
For intervalsl;:=[Im,, Imy], andl:=[Im., Imy], I, equalsl,
iff Im,= Imy andime= Img.
Definition3: A tupleis a collection of ordered intervals:
T:={1y, ..., W ={[ Img, Imy],...,[Imy, Imy]}
If vectorsLMy:= [Im,..., Im] andLM=[Imy,..., Imj], the
tuple T can be represented iy[LM,, LM,]. An n-
dimension tuple can represent an n-dimension rgldan
Defintiond: A qualitative model g is a mapping
between two sets of intervals: _
g: ¥ - ¥. The source set;= {[Im", Im;;;"} is the set of
qualitative inputs to the model, the target 6t {[Im°",
Im.1°"} is the set of qualitative outputs from the madel
The mapping is a multiple valued relation, i.e.
O [m"™, Imiy "] 0%, g [Im", Im, "] - 45 0 %, $is
empty or has one or more elements. If we can eraime
the mapping pairs, q can be presented in set td4pps:
{{[ Imiln, |mi+1ln]’ [ |rnjOUt, Imj+10ul]},.“{[ Impln, Imp+lm][ IquUt,
Img.. ™1} 1
When the input is multi-demensional, a qualitativedel
g is a mapping between two sets of tuptgs¥, - ¥. The
source se®, = {Tj} is the set of input tuples and the target
set ¥4= {S} is the set of output tuples of the model. If we
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requires explicit

can enumerate the mapping pair of tuplgs,can be
represented by
{{ T11 Sl}i{ T21 Sz},...,{ TI"I1 Sm}} (2)

Definition5: If a system described by=f(x) is a static
quantitative model, landmarks, X,...,% andys, ¥a,..., ¥n
are selected fox andy and in an ordered sequence. A
qualitative abstraction q(f) is a mapping from se¥; =
{[ ﬁl,XJ,[XZ,Xﬂ,---,[xn.l,xn]} to set %5 ={[y1,Yal.[V2,Y3l,- - [Yn1,
Yol
AR x0 %, [X2, %], X1 %]} =L YnYal [Y2, Y3l [Yn-a. Yl 1
such thaE[XHXH'l]! q(f) [Xi,Xi+]_] —’[ij)/j+1]y iff D(1 XiSXSXHly
Y SYS Vit

Qualitative abstractiom(f) results a qualitative model.
y=f(x)’s domain and range, i.€l[x, %.1] O Domain(x)
and0;[y;, ¥+1] O Range(y) Definition 5 can be extended
for multiple in-out systems.

Definition6: Y=f(X) is a static quantitative model,

We can depend on this when wewhereX=[x, X,....%] andY=[yy, Yo, ..., ¥l- [Xis1, %25+ %n]

are landmarks fox. [yi1, ¥2,..., Ym are landmarks foy,.
A qualitative abstraction of model Y=f(X) is a mapping
from set¥= {Mi[Xp, X p+1]} t0 s€t = {M[y;q, Yig+al}:

q(f): ¥ - ¥, such that
O MilXp, Xpeal, A): MilXips X pea] = MYja0 Ygeals iff OX,
X[“_li[xi,m )ﬁ,p+1]a Y[”_lj[yj,m YJ,q+l]-

M odel Abstraction for Static Simulation M odel
with Known Landmarks

Discretization Algorithm is designed to deal with the
simplest case, in which the simulation model igistand
the landmarks for the variables are known. Theenaome
from that the algorithm discretizes the simulatiata into
intervals of landmarks.

Algorithm 1 is the discretization algorithm withnhet
simulation model = f(X), wheref can be implicit, and the
landmarks forX andY as inputs. Suppose has a set of
landmarks & Im' , x_Imy, ..., x_Im}, the adjacent
landmarks makes a set of the intervals {fin',x_Imp],...,
[x_Imn{, x_Imy]}. The simulation inputs fox, are from
one of these intervals. Thus, the input points Xoare
generated from a multi-dimensional rectangle, wligcbne
element in the set of the combination of the irdésyv
M x_Imy' x_Imy], ..., [X_Imy.1, x_Imy,1}, as in Line 2.

SupposeX_Im,, x_Imy.1'] is the interval for, k random
values are generated in this interval. Fonatimensional
rectangle, totallyk" testing points generated (Line 3). The
purpose of generating the random values is to ptbbe
extrema when functiofis not monotonic. This is just an
approximate approach to deal with non-monotonid. (re
discussion below). Line 4 calls Simulink simulatio
function to get the values of the outputs for eatlthe k"
testing points. Line5-6 gets the minimum and maxmu
output values. Line7-8 gets the landmarks thakecdkie
range of output values. The qualitative relat®miline 9.

Algorithm 1: Discretization
Inputs:
- numeric modeY = f(X) in Matlab/simulink format



-{x_Imy', x_Imy', ..., x_Imy} is the set of landmaks fos,
{y_Im’,y_Im/, ..., y_Im/ } is the set of landmarks fof

- a nature numbdr
Outputs:

- a vectoq storing the mapping pair (as format in (2))

1 create a vectorto store the mapping pair _
2:  for each element if{[ x_Imy', x_Imy7, ..., [X_Imn4,
x_Imn} _ _

3: generatk random values for eacl [Imy, x_Im,.],

lets say &_Imy, xx',..., X%, X_Im,.1'}, the input points are
M{x_Imy, X', ..., X%, X_Impq'}

4:  call Simulink function to simulaf@T,{x_Im,’,

XXy ey X4 X_IMpit'}) S _ _

5: Ymin = Min@(N{x_Imy, xx¢',..., X%, X_Imy.1'}))

6: Ymax = Max(M{x_Imy, xx',..., XX/, Xx_Imp.1'})

7 y_low = max({y_Im/ | y_Im/ < ymin})

8: y_high = min({y_Im/ | y_Im/ > yay}) _

9: store R [x_Imy, X_Imy.4'], [y_low, y_higH]>in g
10: end for

11:  reporg

Algorithm 1 is similar to the method in (Struss02).
The similarities are both methods use real numlsers
landmarks and discretize the continuous model widse
landmarks. The differences are: first, (Struss 2200
considers the precision of the model, i.e. the Imasdel is
given by the envelope of(X). This is perhaps for
considering noise in the signals or the computagioor in
simulation. We consider it is not necessary to #ud
envelope. If concerning the noise, it is betteeliminate
the noise from the signals than adding the tolexatcthe
modeling stage. If concerning about the computagioor,
it is rather small that ignoring it won't affect eh
approximation of the qualitative model. Adding elope
could degrade the qualitative model because
distinctions between right and faulty behaviour imigpe
removed. Secondly, (Struss 2002) limits the atborito
monotonic functions or monotonic sections of a fiorc
With the monotonic constraint, the tuples are adweiteed
by the bounding landmarks (e.g. the corners of the
rectangle). If users do not know the shape offiinetion,
users can choose wrong landmarks that the relation
determined by the bounding landmarks can miss the
extreme points, thus abstracted qualitative behan®not
“sound”. To get the monotone pieces from the @iwcr
simulation data is not a trivial problem. The way
compute the derivative numerically from the diseret
simulation data in order to determine the monotasdn
(Struss, 2002) is not feasible because the venil dma
numerous turbulences on the data, which is the foasbe
simulate data, could lead to wrong results. Outhoutd
using random points to probe the extrema between th
landmarks is a practical solution for the non-monat
function. If the random points are in a large ampun
practically this method can get satisfactory resfdt non-
monotonic systems.  But this problem is still open.
(Brooks, 1984) gives a mathematical foundation for
detecting monotonic pieces from discrete data (lsitiaun

the
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data). We believe this could be a solution, thowghdid
not test this technique yet.

Model Abstraction for Dynamic M odel

As discussed in Section 2.1, there are two viewhaw to
diagnose dynamic systems. State-based diagnosisets
in our project. In state-based diagnosis, thetiogia
between the time steps are not considered, i.et tshot
computed from x, or when dx/dt and x are both knotive
relation between them is ignored. One straightfmdwway
to model the dynamic for state-based diagnosis mdadel
the derivatives of the variables. But in manyatins, the
derivative of a variable is not a variable in thedation
model, or physically is not a measurable variableor
example, Figure 1 is the model for a RC circuitoltages,
ul, u2, and u3, are the observable variables, whieent i
is non-observable. ul and u3 are constant. Theatiges
of the voltages or the currents, which are necgskar
modeling the dynamic behaviour, are missing in the
simulation model.

ul R u2

o—/ u3
C

§ lT i S

(a) RC Circuit (b) RC Circuit imolck diagram
Fig. 1 Example: RC Circuit and Simulation Model

Our solution is to introduce theseudo variables, which
are the derivatives ogffort or flow variables, in the
qualitative model. A systematic framework existy f
building consistent and well constrained models of
dynamic physical systems from multiple domains .(e.g
electrical, mechanical, hydraulic), which is based the
continuity of powerand conservation of energpetween
system components (Karnopp and Rosenberg 1975) The
effort variables are to represent generalized voltage,
pressure, temperature, etc., and floev variables are to
represent generalized current, volume flow, entrtipy,
etc. Depending on the dynamic is caused by capacit
inertia element, the derivatives effort or flow variables
are chosen as the pseudo variables. As showgurefi2,
(a) is the original model, in which E is th#ort vector, and
F is theflow vector. For the system has capacity dynamic,
dE/dt is added as pseudo variables, or for inetizamic,
dF/dt is added as pseudo variable. Fig 2(b) ias® avith
capacity dynamic, in which dE1/dt to dE3/dt are extl@s
pseudo variables. The pseudo variables are aopahe
qualitative relations as the other variables.

E1 E2 E3 Ef

ul u2

E2, dE2/dt E3 dE3/dt
Comp1 Comp2 | Comp1 Comp2
F1 F2 F3 F1 F2 E3

(a) original model (b) model wjgkeudo variables

Fig. 2 Dynamic System

For the RC example, the derivative of u2 (du2 gurfe



3(a)) is added as the pseudo variable. The qtiadita
model of the capacitor is:

Q(f): {u2, u3, du2->{i} (3)
The qualitative model for the resistor is

Q(f): {ul, u2, du2->{i} 4

At themodeling timethe pseudo variables are computed
numerically from their correspondent variables gsihe
simulation data. Then time index is eliminatednirthe
data to obtain value relations between all the aideis
including the pseudo variables.

AN

(a) Qualitative model (b) relatiarfd-du2 and i-u2
Fig. 3 Example: RC Circuit Qualitative Model

u2, du2 u3

—c—

ul

Eliminating the time index from the data is a tivi
problem, especially when there is the aide of thrilstion
tool. Figure 3(b) is the relations betweeand du2 and
between andu2. Algorithm 1 then can be used to obtain
the qualitative model.

At the diagnosing timgwe assume the observables are
measured along time. If an observable’s derivaisvel

more specifically, get_param() and get_link() afe t
functions used for this purpose. The function riiaiges
remain unchanged when software version evolves.

Landmark Determination and qualitative
model Abstraction

In the discretization algorithm, landmark selecti@s
crucial. Only if landmarks have necessary andigafit
distinctions, the expected diagnosis results caoltained.
Design engineers can contribute their knowledge in
selecting good landmarks. But it is not a reliabiy to
get landmarks. In this section automatic landmark
generation is discussed and the model abstradijomnitam

is modified.

Discriminability vs. Domain Partition

Our method is inspired by the discriminability ahétiion in
[Struss et al. 02], where the relation of two beétamodes
falls into three categories: non-discriminable (ND)
deterministically discriminable (DD), and possibly
discriminable (PD). In this section we will dissuthe
relation of domain partition and discriminability.The
criterion for selecting landmarks is to keep theassary
and sufficient distinctions between the right ahd fault
mode, i.e. the deterministic discriminability. Ithe

pseudo variable, the derivative values are computed fo|lowing context, the two behavior modes are oightr

numerically from the observations and supplemetuetie
diagnosis engine as observations. For the RC dgarifip
du2is considered as an observable, one can see dahere

mode and one faulty mode.
The notations are the same as in [Struss et al.\Qg] is
the set of observable variables; Vo-cause is #ieo$

enough redundant relations to diagnose the dynamic «caysal” variables in Mg and VipecausdS the set of the rest

behavior.

One last point is that if more knowledge is ustu
gualitative model can be simplified. For examplethe
dynamic element and the static element can beifabeht
the pseudo variables can be added only to the dgnam
element, not to the static element. For the RE€udirthe
capacitor is a pure dynamic element and the rasista
pure static element, the qualitative model canilmpl#ied
to:

Q(fo): {du >{i} (5)

Q(fy): {ul, uz >{i} (6)

If we use the knowledge that the current of a tesis
proportional to the difference of the voltages t# tivo
terminals, i.e. equation (ul-u2)/R =i, the qual& model
can be:

Q(fo): {du >{i} (7)

Q(fy): {ul- u3 >{i} (8)

M odel Structure Extraction

Model structure extraction is to get the physical
connections between components. It is just a igokn
problem. In Matlab/Simulink, the details of modelg. the
blocks and the links between blocks are descrilved i
script file. Matlab/Simulink parses the scriptdnhation
and loads the system into its workspace. We cdn ca
Matlab/Simulink functions to get the structuraldmhation,
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variables in Vs that are not “causal”. For the model
abstraction problem, we are only interested by [R@Dps.
Define SIT.cause iS the scope of Meause fOr DD, then
([Struss et al. 02]):

SITo—cause: PROJ—causéopcr) \ PROg—causé PRO'Abs
( MODELjoger N OPG ) N PROJps (MODELmege2 N
OPG)) (9

where PROJ is projection operation, OPC is djmera
conditions.

In the problem of qualitative model abstractidre tight
and fault mode have the same input values, i.eVthguse
are the same. Thus the discriminability is deteedi by
the discrepancy of the output, i.e. the projectonVopsicause

Proposition 1. Assume V..ausevariables take value from
tuple [X1, X2], MODELnoger and MODElgge2 is DD in
[X1, X2], iff
PRO%bs\causéMODELmodeanPCr )nPROAbs\causéMODEL
modezﬂOPQ ) =0 (10)

Proof: efficiency assume (10) is satisfied, we need to
prove [X1, X2]D SlITycause (10) means that Model and
Mode2 are disjoint when projected ONop¥Mause UNder
condition V,_cause—[X1, X2]. So their_projections on g
are also disjoint under condition, Vst~ [X1, X2]. We get:
PROJp{MODEL0de VOPG )NPROJ,{MODEL,04e1O
PG)=@  Thus under condition Mausd1[X1, X2], (10)
is simplified to



PRO‘A-caus£OPQ) \ PROg-cause(Q) = PROJ—causéopq ):
[X1, X2].

This proved [X1, X2]J SIT,.cause

Necessary assume [X1, X2 SITy.cause, We need to
prove that (10) is satisfied.

Notice that \.ause vVariable take value from [X1, X2]
means PRQ1.us£OPG) = [X1, X2], thus from (9):
PRO‘A-causéopq ) \ PROJ-causépROAbs(MODELmodel n
OPG)NPROJ,{MODEL04eOPGC)) = PROJ cause( OPC)

That means the second term of the left side iS®@we
have:

PRO‘A-cause(PRo‘lbs (MODELmodel n OPQ ) ﬂPRO‘le
(MODEI—modeZm OPQ )) =0

That means the term in bracket is &, so we have
PRO‘le (MODELmodel N OPQ ) ﬂPRO‘le (MODELmodeZ
NOPG)=0@

Since \,.causetakes the same value for model and mode2,
we hav
PRO‘lbs\cause (MODELmodel N OPQ )
(MODEL noge2N OPG) =@ [

Proposition 1 shows that if the two modes takestae
value for \,_cqusvariables, the diagnosability is determined
by the projections on MscauseVariables. For model
abstraction problem, the two modes work under Hraes
operation conditions, and more important, work urtthe
same inputs. Take the observables in inputs agu¥
other observables as Mcause the diagnosability is
determined by the observables ighMause

Intuitionally, if the domain partition is too cca, the

Oupa0 Oupa-0

n PRO@bs\cause

Oup.0

The [X1 X2] belongs to DD range. In (11) the [Y2]¥s
is the observables in [Y1 Y2]. This is the cas€igure4(a).
If [Y1Y2lopsN[YL Y2'] gps# D (12)
The [X1 X2] belongs to non-DD range. This is tlse in
Figure4(b).
The limit between DD and non-DD is as Figure 2(c):
[Y1 Y2]obsN [Y1' Y27 0bs= Y L'obs =Y 20ps OF (13)

[YL Y2] b [Y1' Y27 obs= Y2'0ps =Y Lops (14)
Figure 4(c) is the coarsest partition fogyy/that still
keeps DD. It is easy to prove if the partitiorc@arser, the

modes are non-DD

Corollary: The boundary of the coarsest partition is the
surface where the two modes joint.

For monotonic functions, the coarsest landmar&asy
to compute:
Proposition 2: Assume MODElk,ge1 and MODELqoge2
have quantitative modet& andf2. f1andf2 are monotonic.
{Xy, X..., X,...} are the input points. The coarsest
partition for V, causeSatisfies
f1(X1) = f2(X,)

f1(X2) = f2(X,)

f1(X) = f2(Xis1)

When V,.ase get the coarsest partitionX{ X,,...,
Xi,---}obs Vobscause get the coarsest partitionf1{X,),
f1(Xy), ..., f1(X), ...}obs

Proposition 2 provides a way to generate new lamiisn
It is possible to numerically compute.Xfrom X;. For
non-monotonic functions, proposition 2 does notdholn

the next section, a non-optimal but satisfactory
solution of landmark generation is presented.

M odel Abstraction with Landmark
Generation

The method presented in this section is relied on

Pheo
(a)DD with good margin

(b) ND
Figure 4: the limitation of partition for discrimability

output ranges of the two modes will be overlappkdthis
case, such that the two modes are undiscriminatfle (
figure 4). In other word, if the discrepancy betwethe
two modes is larger, the domain partition can barser.
Assume the two behavior modes have numeric models:
Y=f1(X) and Y=2(X). MODELpoge1and MODELyogerare
the qualitative models, so MODEL.=q(fl) and
MODEL o4e=q(f2). If CIX1 X2], q(f1): [X1 X2] -[Y1
Y2], q(f2):[X1 X2] - [Y1' Y2'].

From proposition1, if
[Y1Y2]opsN [Y1' Y27 cps= @, (11)

! This can be easily prove by assume PROJobs\cause
(MODELmodeln OPCi) N PROJobs\cause (MODELmMode2
OPCi)# @. Since Vo-cause take the same value for modél a
mode2, we have PROJobs (MODELmodeDPCi )NPROJobs
(MODELmode2n OPCi )£ @, conflict
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)(BD with no margin

one fact that if the domain partition is finer, the
discriminability can be improved.X = f(t) is a
dynamic system. The simulation time is from 0 to
T.. The algorithm 2 starts from the coarsest
landmark [LOG, LOGC,], in which LOG and LOGis the
lower bound and upper bound ofy,%use From the
simulation data, the discriminability on [LQCLOGC)] is
examined (based on Proposition 1). If [LQCOC] is not

a DD range, that might mean that this partitioto coarse.
[LOC;, LOGC;] is split from the medium point, i.e.
(LOC#+LOGC,)/2 is added as a new landmark. [LOC
(LOC#+LOGC,)/2] and (LOC,+LOC,)/2, LOC,] are two
intervals to be checked. The split process wilhtowe
until a DD scope is found, or the split makes thiernvals
smaller than a pre-defined minimum length D. Alton 2
records the generated landmarks, the qualitatilaioas,

hpo

2 without loss of generality, assume 1 and 2 iswoionic as
figure 2(c), and f1(X1) = f2(X2). If V.causehas a larger partition
[X3, X2], where X3<X1, we get f1(X3)<f1(X1) = f2(X¥2and
f2(X3) < f2(X1)<f1(X1). Thus [f1(X3), f1(X2)]N [f2(X3),
f2(X2)] = [f1(x3),f1(x1)] # D.



as well as the discriminability property on eachpun
partitions.
Algorithm2: qualitative model abstractiof = f(t)
Input:
D: Minimum landmark interval
Tc: duration of simulation time
f, f: Quantitative models for two modes,
Vo-cause:{ Xi | )QDX}, V obsicause { Xj | &DX}, V obsicausd]
0-caus
[LOC,, LOG]: the start landmark for Mause i-€. LOG=f,.
caus€0), LOG= fo.causTC)
Output:
DD: Vector for input scope that system are DD
ND: Vector for input scope that system are non-[BD (or
ND)
g: Vector for storing qualitative model
loop: the Boolean variable controls loop, initiakizas true
Internal Variables:
p: stack to store input tuples
Store [LOG, LOG)] inp
Whilep is not empty
pop a tuple [LOCLOG,,] fromp
find;tand ., correspondent to LQQ OG;,
LONCZ min{fobs\causet)l tc <t<ti+1}
LONG; = max{fobsicaustt)|  <t<ti1}
LONG: min{ f obs\causet)l tc <t<ti+1}
LONG1'= max{f opsicausfl ti <t<t.i}
if LONG, LONC;,1]n [LONC;, LONC;,y] = O,
(that means [LOCLOC.,4] is in DD scope)
10: store [LOCLOG;] in vector DD
12: store {[ mirf(t)] t <t<t..}, max{f(t)] t <t <
ti.}]} in vector q

13: remove [LQQLOC,,] from p

14: else

15: mid = (LOELOC;,1)/2

16: if | LOE mid|<=D or |LOG,;-mid| <=D

17: store {[mirf{t)| t<t<t.}, max{f(t)| t< t <
t.1}]} in vector g

18: store [LQQ.OC.4] in vector ND

19: remove [LQCOC,;] fromp

20: else

21: push [LQQmid] and [mid, LOG,] into g
22: end-if

23: end-if

24: end-while

25: report DD,NDq

The key issue for algorithm 2 is the splitting gedure
that refines the qualitative relation until to thlevel the
fault is discriminable.

Resume the RC example in section 3.3. The voltdge

u2, andu3 are measurable observables. du2, the derivative

of u2, is the pseudo variable and is also a supgéany
observable. The fault considered is the resistaricthe
resistor doubled, which causes the transient psoslesver.
ul and u3 are constantul = 100v, u3 = 0v) in this
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example. u2 is chosen as Mause @and du2 as Vjpsicause
Figure 5 is the relation af2 anddu2 under the right (solid
line) and faulty modes (doted line). Using aldamit?2, the
split process is like figure 5.
Some comments on algorithm 2:

1. the partitions obtained from algorithm 2 are tiee
coarsest but the satisfactory one for diagnosipqse. It is
the

1000

Q00+

800+

7o

600+

5007

du2

400+

300F

200

100F

o
=2 ol

=
=

(R=1000hm, C=0.001F for the right mode,
and R=2000hm C=0.001F for the faulty mode)
Fig. 5 Landmark Determination and Qualitative MoAbktraction

trade-off of optimization and computation cost.

2. the success of algorithm 2 depends on thets®ienf
the variables to be split. Normally the most ifitial
variables are chosen as these variables The split of the
base variables can cause the largest change ooutpat
variables. It needs special techniques to determihich
variables are the most influential variables. Tdaisal
ordering algorithm [lwasaki and Simon, 1994] canulsed
for this purpose. The base variables used in heciReuit
and in the demonstration case in this paper aecteel by
experience.

3. For the monotonic functions, the refinementdafhain
partition always refines the distinctions ofpMcause FOr the
non-monotonic functions, it is not true due to tbeal
extrema. But it is sure that the partition refirgindoesn’t
remove the distinctions of Ms\cause

4. This algorithm considers only partitions on thamus
variables. For discrete variables, normally weardghem
as different operation mode. For example: the $witan
be on and off. They are considered as two operatiodes.
Thus this algorithm is suitable for most of thetsys

5. For continuous variable, the valid value isfmed by

working environment. For example, for a normal AC

system, we consider the outside temperature is #p@nto
40.

Demonstration



A simple Air Conditioning system has 3 components,
Blower, Distribution and Cabin (figure 6). Figué¢a) is
the model in Matlab/Simulink, while figure 6(b)iis block
schema with the input and output variables for daobk.

pi is pressure, fis airflow rate, E is the electricity power

pestl
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(a) Relation op1-p2

0 0 1000 1500 200 200 00 B0 A0 400 000
o

(b) Relation of p1-dp2

Blower

Distribution

Cabin

.
(a) Matlan/SimulinkModel

PO, fO‘E‘ | p1,f1‘ p2, f2
‘Blower‘ ‘Distribution}—‘ Cabin

(b) Model in block diagram
Figure 6: AC system with 3 components

| i 12

p3, 13

driving the blower. The flow rate and pressurédashe
system increase when the blower begins to work,thegd
reach a stable point when E is unchanged. If dignc
volume increases, the transient procedure is sldinmn
normal case but the same stable point can be réadhés
difficult to manually determine the landmarks fdnet
variables. The algorithm 2 can deal it with. Sogep we
can measure any pressure if necessary because ligorma
pressure is easier to measure than flow rate. Sivee
already know pO and p3 are equal to outside aisgore,
they have no influence on diagnosability. ConsMgr{p1,
p2, dp2}, where dp2 is the derivative of p2. Théations
of p1-p2 and pl-dp2 are drawn from simulation degadn
Figure 7, where the solid curve is for the rightdacand
the doted line is for the faulty mode. One cantbe¢ the
relations of pl-p2 at the two modes are too clase t
distinguish the two modes, but the relations ofdp2-have
good distance to each other. And if p1 is the hasible
to be split, the two modes can be distinguished dhbose
Vo-cause: {pl} and Vobs\cause: {pzv dp2} The landmarks
for p1 and dp2 are listed in table 1. Figure 8wahthe
partitions on p1-dp2. Figure 8(a) is the resulédimes of
split. Except the most right and left interval pf, the
other intervals are Deterministic Diagnosable ragioThe
landmarks of other variables are computed accolyling

which are not showed p1 dp2

in this paper. Figuref 5597617 03072
8(b) shows  the| 307.2409 4.4389
partition result when| 446.2227 11.2196
E changes. The two 127 "cces | 207210
solid curves are for E ' :

> - 2326.6505 99.5160
= 500 and E = 300 3491.1238 147.2230
respectively. The| 4019.3584 160.8867
area between the twqg 4350.6848 156.5737
curves are the right 3283-‘31‘1"23 (1)308-0294
behaviour when 300 ) '

<= E <=500. The
faulty mode is the

Table 1 Landmarks for p1 and ¢
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(solid line is right mode, doted line is faulty n&)d
Fig. 7 Model of Air Conditioning System
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(a) E = 500 (b) 300<= E <= 500

Fig. 8 partition on the relation p1-dp2

area between the two dotted curves. The partitiome
result after 6 split. One can see that after p0833he
refinement of landmarks does not help to incredse t
diagnosability. For the algorithm 2, the split tones and
generates some landmarks that do not help to gissh
the fault.

Discussion and conclusion

This paper bridges the gap between the numericlaiion
model and the qualitative model for diagnosis pagso
The problem can be classified into four classeknbwn
landmark, static system; 2) known landmark, dynamic
system; 3) unknown landmark, static system; 4) omkn
landmark, dynamic system. The first class can beeddy
algorithm 1. The performance of algorithm 1 iscdssed
in section 3.2. The second class can be transtbiméhe
first class if the time information is eliminatetbin the
simulation data. Similarly, the fourth class cae b
transformed to the third class in this way. Fag third
class, this paper reveals the relation of discratility and
model partition. The approximation of the qualitat
model should keep the distinctions between thet régid
faulty behaviours. Beginning with the coarsest dim
partition, algorithm 2 is a refining process, getielg new
landmarks until the target modes can be distinguisit the
new, finer partitions.

Algorithm 2 can be used as a generalized appré@ch
both static and dynamic systems and both monotanit
non-monotonic cases. Algorithm 2 is limited in tways.
First only single fault is considered. This neddgher



work, but the principles developed here can be .used
Secondly, the approach is system-context depenaleht
diagnosis task dependent. That means the abstracte
gualitative model depends on the current systenctstre
and the considered fault. If the component mosletused

in another system context or to diagnose othertfaule
can not guarantee the fault is detectable. Thisais
compromise of data explosion because theoretically
universal qualitative model contains an unlimitedoant

of information, which is unable to be described finjte
domains. After this project, we believe no uniatrs
gualitative model exists. The only feasible wayoget a
gualitative model under certain conditions. Basedtlas,
our algorithm has many advantages: first it is a-step
method. By running one process, all component sode
are obtained. Practically it is not a big dealrto it on
each system even if the component model is noaldes
Second the considered fault is guaranteed to beciet
using the resulted model. Third it avoids possddeflicts
when the shared variables among components ane the i
same scope if the component models are collectedbgn
one. From our experience, this approach is veagtjmal

in dealing with complex real-world industrial apgaltions.
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