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Abstract 
Building qualitative models is a crucial task for model-
based diagnosis.  This paper discusses the techniques to 
automatically transform a quantitative model in CAD 
environment into a qualitative model, under the cases that 
the real numbered landmarks are known and unknown. With 
known landmarks, the abstraction is through the 
discretization process where the simulation data is 
discretized according to the given landmarks.  If landmarks 
are unknown, the landmark generation process, which is 
inspired by the discriminability analysis for multiple 
behaviour modes, is applicable.  For dynamic systems, the 
pseudo-variables are introduced to describe the dynamic 
behaviour.  The techniques developed are demonstrated by a 
simplified automotive subsystem. 

Introduction 

The automobile industry has foreseen the growing demand 
of diagnostic analysis for automobiles.  Engineers need an 
integrated design environment that enables them to do the 
diagnostic analysis at the design stage, so that they can 
understand and evaluate the effects of each choice on the 
diagnostic properties of the system being designed.  
European FP5 Project IDD (Integrated Design Process for 
On-board Diagnosis) aims to formalize and standardize the 
diagnostic design process and to develop new techniques 
and tools to support this purpose.  After a model-based 
diagnosis approach is determined, the problem of creating 
the appropriate qualitative model becomes the crucial issue. 
 Our starting point is the numeric simulation model which 
is built to examine a system’s behaviour by design 
engineers in a CAD environment.  Matlab/Simulink is the 
target CAD platform due to its wide adoption in the 
automotive industry.  Models in Matlab/Simulink are 
illustrated graphically as a set of subsystems/blocks and a 
number of interconnected input and output links between 
the blocks. Empirical data, library functions, as well as 
formulas can be used in the blocks.  Normally no explicit 
equations are available for the general system under study.  
Our task is to develop automatic approaches to abstract the 
qualitative model for diagnostic purposes. 
 The qualitative model used in this paper is in finite 
domain tuples, i.e. the domain of a variable has multiple 
landmarks.  This paper presents the techniques of model 
abstraction with or without landmarks for both static and 
dynamic systems. Section 2 reviews the relevant techniques 

for model abstraction and diagnosis. Section 3 discusses 
the approaches for model abstraction with known 
landmarks for both static and dynamic system.  Section 4 
represents the approach for the landmark determination 
based on diagnosability analysis.  Section 5 demonstrates 
how the approaches developed can be used in a model of a 
subsystem in automotive. Section 6 is discussion and 
conclusion. 

State of the Art in Qualitative Model 
Abstraction and Diagnosis 

State-based vs. Simulation-based Diagnosis 
Diagnosing dynamic system requires checking the 
consistency of observations over time with the behaviours 
modeled by the dynamic model of the device.  A 
straightforward solution is to simulate incrementally the 
model as observations change, in order to predict the 
immediate successor states.  This is the simulation-based 
approach used in (Dvorak and Kuipers 1992).  (Dressler 
1996) avoids simulation and generates diagnostic 
candidates based on checking consistency of the model 
with observed states only.  (Malik and Struss 1996) states a 
necessary and sufficient condition for the equivalence of 
state-based and simulation-based diagnosis without giving 
a proof.  (Struss 1997) further presents that if the system 
dynamic can be modeled as state constraints plus CID 
constraints, which are general rules about continuity, 
integration and derivatives, then diagnosis based on 
checking the state consistency yields results equivalent to 
diagnosis based on simulation.  Of course, the state-based 
approach is much less costly than the simulation-based 
approach. If a system has other temporal constraints than 
the CID constraints (called trans-constraints), the 
conclusion is no longer held.  These trans-constraints are 
typically constraints introducing discontinuities over time.  
(Panati and Dupre 2000) and (Dupre and Panati 1998) 
report a violating case where abrupt faults are considered.  
Abrupt faults, where a system parameter changes abruptly, 
are the cases of discontinuity.  By adding constraints 
related to injecting a fault, the simulation may actually be 
useful to restrict the set of possible diagnoses.   There are 
many methods on how to model the constraints related to 
injecting a fault (Dupre and Panati 1998), (Mosterman and 

Editors
QR2003

17th International Workshop on Qualitative Reasoning
Hosted by University of Brasília Brasília, Brazil

20-22 August, 2003

Editors Paulo Salles & Bert Bredeweg



 

Biswas, 1997).  Abrupt faults are not considered in this 
paper. 
 The state-based diagnosis engine is used in our project, 
though the state-based way could result in more candidates 
as stated above.  This paper concerns building a qualitative 
model efficiently and automatically from the simulation 
environment for the state-based diagnosis engine.  
Diagnosis equivalence in (Struss, 1997) has a precondition 
that there are sufficient observables.  More specifically, 
since the state-based approach does not use the relation 
between x and dx/dt, both x and dx/dt should be 
observables in order to have enough redundancy for 
diagnostic analysis.  Sometimes not both of x and dx/dt are 
modeled in the simulation model or not both can be 
measured as physical variables.  In section 3.3, pseudo 
variables are introduced to describe the dynamic behaviour 
and also provide redundancy for diagnostic analysis for 
dynamic system. 

Abstraction of Qualitative model 
Qualitative models have already been successfully used in 
the framework of model-based diagnosis.  When 
abstracting a qualitative model for a system, the crucial 
requirement is to transform the model to the right level of 
abstraction after composing it.  In (Struss 2002), the 
problem is stated as to find the necessary and sufficient 
distinctions in the domains of the system variable to 
achieve a particular goal in a certain context and under 
given conditions.  The right level of abstraction is task-
dependent; depending on the requirements of the tasks, the 
distinctions can be different.  (Sachenbacher and Struss 
2001) introduces AQUA, a framework for automated 
qualitative abstraction.  In AQUA, the goal of using a 
model is characterized by a set of target partitions of the 
domains of selected variables (e.g. output variables), the 
context is given by the structure of the model system, and 
the conditions are represented by a set of initial variables 
and their possible distinctions (e.g. possible observations).  
AQUA needs a fine-grained qualitative relation as the 
starting point.  The partitions of domain can be given by 
(finite) sets of landmarks that define qualitative values as 
intervals between adjacent landmarks.  AQUA then 
eliminates landmarks that do not contribute to a distinction 
between target partitions. The abstract model will then 
contain a subset of the landmarks of the original model but 
maintain the predictive power with respect to qualitative 
values of the target variables.  One difficulty of this method 
is that the starting “fine” domain model is difficult to obtain.  
We do not know how fine the starting model should be, so 
that the abstract process can remove some landmarks to get 
the optimized qualitative model.  Second there are no 
criteria to determine the target distinctions.  (Struss 2002) 
extends AQUA by giving an approach to automatically 
determine the landmarks for the variables.  It is a recursive 
subdivision process.  The criterion to divide the domain is 
that if a qualitative value of some variable occurs in many 
tuples, it is identified as a candidate for refinement and 
split into two or more intervals by introducing additional 

landmarks.  This criterion does not show how the new 
partitions effect on the target distincts, thus its effectiveness 
is questionable. 
 Qualitative simulation is a widely used tool.  The 
fundamental difference is QSIM starts from QDE 
(Qualitative Differential Equation) and the simulation is on 
qualitative level, while the starting point in this paper is the 
numerical simulation model, and the simulation is 
numerically.  Many QSIM techniques, such as value 
generation, constraint filtering, can’t be used here.  A 
summary of QSIM techniques and their extensions can be 
found in (Kuipers 2001).   
 In FDI community, there is also some work on building 
qualitative system models. One example is (Lunze et al. 
1999), in which the state variables are partitioned along the 
time based the state transforms.  The result is the discrete 
trajectory of states.  In this paper, pseudo-variables, which 
are the derivatives of flow or effort variables (cf. section 
3.3), are introduced to describe system dynamic.  The 
pseudo-variables are equivalents to the state variables.  
While Lunze uses the state transform equations to 
determine the state variables in the next time step, our 
approach does not have transform equations.  The 
discretization is on the values of input and output data after 
the time information is removed.  Thus the two approaches 
are different from each other and both are suitable for their 
diagnosis principles.   
 There are some other commonly used ways to obtain 
qualitative model, e.g. the qualitative derivation model 
(Malik and Struss 1996), and Bond-graph analysis 
(Mosterman and Biswas 1997).  They either have no 
automatic methods available or not start with simulation 
model.  So they are not reviewed here.  The techniques 
listed here are far from complete.  A review on qualitative 
model construction can be found in (Schit and Bredeweg 
1996). 

Features of a Simulation Model and Its Gap to 
Qualitative Model 
There is a big gap between the simulation model which is a 
description of the system behaviours and the qualitative 
model which is used for diagnosis.  The qualitative model 
for diagnosis needs two kinds of information: 1) the 
structural model which is the physical structure of a system, 
i.e. how the physical components are connected; 2) the 
behaviour model which is a description of the input-output 
relation for every physical component.  In a graphical CAD 
environment, like Matlab/Simulink, the physical compo-
nents are represented by blocks.  A block can have sub-
blocks for describing internal structure or functions inside 
the components.  The links between the blocks are the 
physical connections, where the connected blocks have 
shared variables.  The structural model is obtained by 
extracting the connections and block information from the 
CAD environment.  This can be done by calling CAD 
functions to collect this kind of information.  The difficulty 
is in abstracting the behaviour model.  The relations of a 



 

component are implied by the blocks. The standard blocks 
are normally mathematical operators and can be expressed 
as formulas between inputs and outputs.  Many other so 
called “customized” blocks contain C-code, look-up tables 
and Matlab scripts, which have no explicit equations.  
These blocks can be cascaded or sub-composed together 
for one physical component.  This gives the design 
engineers the maximum flexibility for building models.  
They can either encode their empirical data into the look-
up tables, or embed logic clauses in the script code, or call 
professional libraries from C-code.  But on the other side, 
this causes a great gap between a simulation model and a 
model-based diagnosis engine that requires explicit 
relational expression.  Moreover, simulation is executed 
only in one direction, i.e. we are unable to compute the 
inputs from the outputs.  Though the gap exists, one benefit 
of the CAD environment is its effective computation 
capacity to simulate the system behaviour in both static and 
dynamic processes.  We can depend on this when we 
design our solution. 

Abstracting Qualitative Models from 
Simulation Models using Finite Domains 

Finite Relation Qualitative Model 
A Finite Relation Qualitative Model uses a set of real 
numbers as landmarks for each variable.  The qualitative 
values are the intervals between adjacent landmarks.  The 
qualitative relation is the mapping between the qualitative 
values.   More landmarks produce a finer qualitative model. 
 Definition1: An interval is a pair of numeric landmarks: 
I1:=[lma, lmb], where  lma ≤ lmb. 
 Definition2: Two intervals are equal if and only if the 
two landmarks are equal: 
For intervals I1:=[lma, lmb], and I2:=[lmc, lmd], I1 equals I2 
iff lma= lmb and lmc= lmd. 
 Definition3: A tuple is a collection of ordered intervals:  

T:={ I1, …, In} = {[ lma, lmb],…, [lmp, lmq]} 
If vectors LM1:= [lma,…, lmp] and LM2=[lmb,…, lmq], the 
tuple T can be represented by T:=[LM1, LM2]. An n-
dimension tuple can represent an n-dimension rectangle. 
 Defintion4: A qualitative model q is a mapping 
between two sets of intervals:  
q: Ψ1→Ψ2. The source set Ψ1= {[ lmi

in, lmi+1
in]} is the set of 

qualitative inputs to the model, the target set Ψ2= {[ lmk
out, 

lmk+1
out]} is the set of qualitative outputs from the model.  

 The mapping is a multiple valued relation, i.e. 
∀ [lmi

in, lmi+1
in] ∈Ψ1 , q:[lmi

in, lmi+1
in]→ Ψ2’ ⊂ Ψ2 , Ψ2 is 

empty or has one or more elements.  If we can enumerate 
the mapping pairs, q can be presented in set of tuples, as:  
{{[ lmi

in, lmi+1
in], [ lmj

out, lmj+1
out]},…{[ lmp

in, lmp+1
in][  lmq

out, 
lmq+1

out]}}                                                  (1) 
 When the input is multi-demensional, a qualitative model 
q is a mapping between two sets of tuples: q: ΨΨΨΨ1→ΨΨΨΨ2.  The 
source set ΨΨΨΨ1 = { Ti}  is the set of input tuples and the target 
set ΨΨΨΨ2 = { Sj}  is the set of output tuples of the model.  If we 

can enumerate the mapping pair of tuples, q can be 
represented by 
 {{ T1, S1},{ T2, S2},…,{ Tn, Sm}}                           (2) 
 Definition5: If a system described by y=f(x) is a static 
quantitative model, landmarks x1, x2,…,xn and y1, y2,…, ym  
are selected for x and y and in an ordered sequence. A 
qualitative abstraction q(f) is a mapping from set Ψ1 = 
{[ x1,x2],[x2,x3],...,[xn-1,xn]} to set Ψ2 ={[ y1,y2],[y2,y3],...,[yn-1, 
yn]}: 
q(f):{[ x1,x2],[x2,x3],...,[xn-1,xn]} →{[ y1,y2],[y2,y3],...,[yn-1,yn] }, 
such that:∀[xi,xi+1], q(f): [xi,xi+1]→[yj,yj+1], iff ∃x, xi≤x≤xi+1, 
yj ≤y≤ yj+1. 
 Qualitative abstraction q(f) results a qualitative model.  
Landmarks x1,x2,...,xn and y1,y2,...,ym are selected to cover 
y=f(x)’s domain and range, i.e. ∪i[xi, xi+1] ⊇ Domain(x), 
and ∪j [yj, yj+1] ⊇ Range(y). Definition 5 can be extended 
for multiple in-out systems.  
 Definition6: Y=f(X) is a static quantitative model, 
where X= [x1, x2,…,xn] and Y=[y1, y2,…, ym]. [xi,1, xi,2,…,xi,n] 
are landmarks for xi.  [yi,1, yj,2,…, yj,m] are landmarks for yj. 
A qualitative abstraction of model Y=f(X) is a mapping 
from set Ψ1= {Πi[xi,p, xi,p+1]} to set Ψ2= {Πj[yj,q, yj,q+1]}: 

q(f): Ψ1→Ψ2, such that 
∀ Πi[xi,p, xi,p+1],   q(f): Πi[xi,p, xi,p+1]→Πj[yj,q, yj,q+1], iff ∃X, 
X∈Πi[xi,p, xi,p+1], Y∈Πj[yj,q, yj,q+1]. 

Model Abstraction for Static Simulation Model 
with Known Landmarks 
Discretization Algorithm is designed to deal with the 
simplest case, in which the simulation model is static and 
the landmarks for the variables are known.  The name come 
from that the algorithm discretizes the simulation data into 
intervals of landmarks.  
 Algorithm 1 is the discretization algorithm with the 
simulation model Y = f(X), where f can be implicit, and the 
landmarks for X and Y as inputs.  Suppose xi has a set of 
landmarks {x_lm1

i
 , x_lm2

i, …, x_lmm
i},  the adjacent 

landmarks makes a set of the intervals {[x_lm1
i,x_lm2

i],…, 
[x_lmm-1

i, x_lmm
i]}.  The simulation inputs for xi are from 

one of these intervals.  Thus, the input points for X are 
generated from a multi-dimensional rectangle, which is one 
element in the set of the combination of the intervals: 
Πi{[ x_lm1

i,x_lm2
i], …, [x_lmm-1

i, x_lmm
i]} , as in Line 2. 

 Suppose [x_lmp
i, x_lmp+1

i] is the interval for xi, k random 
values are generated in this interval.  For an n-dimensional 
rectangle, totally kn testing points generated (Line 3).  The 
purpose of generating the random values is to probe the 
extrema when function f is not monotonic.  This is just an 
approximate approach to deal with non-monotonic (ref. 
discussion below).  Line 4 calls Simulink simulation 
function to get the values of the outputs for each of the kn 
testing points. Line5-6 gets the minimum and maximum 
output values.  Line7-8 gets the landmarks that cover the 
range of output values.  The qualitative relation is in line 9. 

Algorithm 1: Discretization 
Inputs: 
    - numeric model Y = f(X) in Matlab/simulink format 



 

Comp1 Comp2 

E1 E2 E3 

F1 F2 F3 

Comp1 Comp2 

E1 E2, dE2/dt 

F1 F2 F3 

E3  dE3/dt 

    -{x_lm1
i, x_lm2

i, …, x_lmm
i} is the set of landmaks for xi, 

{ y_lm1
j, y_lm2

j, …, y_lmq
j } is the set of landmarks for yj 

    - a nature number k 
Outputs:       
    - a vector q storing the mapping pair (as format in (2)) 
1:      create a vector q to store the mapping pair  
2:     for each element in Πi{[ x_lm1

i, x_lm2
i], …, [x_lmm-1

i, 
x_lmm

i]} 
3:       generate k random values for each [x_lmp

i, x_lmp+1
i], 

lets say {x_lmp
i, xx1

i,…, xxk
i, x_lmp+1

i}, the input points are 
Π{ x_lmp

i, xx1
i,…, xxk

i, x_lmp+1
i} 

4:      call Simulink function to simulate f(Πi{ x_lmp
i, 

xx1
i, …, xxk

i, x_lmp+1
i}) 

5:          Ymin = min(f(Π{ x_lmp
i, xx1

i,…, xxk
i, x_lmp+1

i})) 
6:          Ymax = max(f(Π{ x_lmp

i, xx1
i,…, xxk

i, x_lmp+1
i})) 

7:          y_lowj = max({y_lmu
j | y_lmu

j � ymin
j})  

8:          y_highj = min({y_lmv
j | y_lmv

j ≥ ymax
j}) 

9:          store <Π [x_lmm
i, x_lmm+1

i], [y_lowj, y_highj]> in q 
10:     end for 
11:     report q 

 Algorithm 1 is similar to the method in (Struss 2002).  
The similarities are both methods use real numbers as 
landmarks and discretize the continuous model with these 
landmarks.  The differences are: first, (Struss 2002) 
considers the precision of the model, i.e. the base model is 
given by the envelope of f(X).  This is perhaps for 
considering noise in the signals or the computation error in 
simulation.  We consider it is not necessary to add this 
envelope.  If concerning the noise, it is better to eliminate 
the noise from the signals than adding the tolerance at the 
modeling stage.  If concerning about the computation error, 
it is rather small that ignoring it won’t affect the 
approximation of the qualitative model.  Adding envelope 
could degrade the qualitative model because the 
distinctions between right and faulty behaviour might be 
removed.  Secondly, (Struss 2002) limits the algorithm to 
monotonic functions or monotonic sections of a function.  
With the monotonic constraint, the tuples are determined 
by the bounding landmarks (e.g. the corners of the 
rectangle).  If users do not know the shape of the function, 
users can choose wrong landmarks that the relation 
determined by the bounding landmarks can miss the 
extreme points, thus abstracted qualitative behaviour is not 
“sound”.  To get the monotone pieces from the discrete 
simulation data is not a trivial problem.  The way to 
compute the derivative numerically from the discrete 
simulation data in order to determine the monotone as in 
(Struss, 2002) is not feasible because the very small but 
numerous turbulences on the data, which is the case for the 
simulate data, could lead to wrong results.  Our method 
using random points to probe the extrema between the 
landmarks is a practical solution for the non-monotonic 
function. If the random points are in a large amount, 
practically this method can get satisfactory results for non-
monotonic systems.  But this problem is still open.  
(Brooks, 1984) gives a mathematical foundation for 
detecting monotonic pieces from discrete data (simulation 

data).  We believe this could be a solution, though we did 
not test this technique yet. 

Model Abstraction for Dynamic Model 
As discussed in Section 2.1, there are two views on how to 
diagnose dynamic systems.  State-based diagnosis is used 
in our project.  In state-based diagnosis, the relations 
between the time steps are not considered, i.e. dx/dt is not 
computed from x, or when dx/dt and x are both known, the 
relation between them is ignored.  One straightforward way 
to model the dynamic for state-based diagnosis is to model 
the derivatives of the variables.  But in many situations, the 
derivative of a variable is not a variable in the simulation 
model, or physically is not a measurable variable.  For 
example, Figure 1 is the model for a RC circuit.   Voltages, 
u1, u2, and u3, are the observable variables, while current i 
is non-observable.  u1 and u3 are constant.  The derivatives 
of the voltages or the currents, which are necessary for 
modeling the dynamic behaviour, are missing in the 
simulation model.  

         

Our solution is to introduce the pseudo variables, which 
are the derivatives of effort or flow variables, in the 
qualitative model.  A systematic framework exists for 
building consistent and well constrained models of 
dynamic physical systems from multiple domains (e.g. 
electrical, mechanical, hydraulic), which is based on the 
continuity of power and conservation of energy between 
system components (Karnopp and Rosenberg 1975) The 
effort variables are to represent generalized voltage, 
pressure, temperature, etc., and the flow variables are to 
represent generalized current, volume flow, entropy flow, 
etc.  Depending on the dynamic is caused by capacity or 
inertia element, the derivatives of effort or flow variables 
are chosen as the pseudo variables.  As shown in figure 2, 
(a) is the original model, in which E is the effort vector, and 
F is the flow vector.  For the system has capacity dynamic, 
dE/dt is added as pseudo variables, or for inertia dynamic, 
dF/dt is added as pseudo variable.  Fig 2(b) is a case with 
capacity dynamic, in which dE1/dt to dE3/dt are added as 
pseudo variables.  The pseudo variables are a part of the 
qualitative relations as the other variables. 
 

 

For the RC example, the derivative of u2 (du2 in figure  
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(a) RC Circuit                  (b) RC Circuit in block diagram 
Fig. 1 Example: RC Circuit and Simulation Model 

(a) original model                   (b) model with pseudo variables 
Fig. 2 Dynamic System 
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3(a)) is added as the pseudo variable.  The qualitative 
model of the capacitor is:                   
   Q(fc): {u2, u3, du2}�{ i}                                (3) 
The qualitative model for the resistor is  
    Q(fr): {u1, u2, du2}�{ i}                               (4) 
 At the modeling time, the pseudo variables are computed 
numerically from their correspondent variables using the 
simulation data.  Then time index is eliminated from the 
data to obtain value relations between all the variables 
including the pseudo variables.  
      
 

 
 

 
 

Eliminating the time index from the data is a trivial 
problem, especially when there is the aide of the simulation 
tool.  Figure 3(b) is the relations between i and du2 and 
between i and u2.  Algorithm 1 then can be used to obtain 
the qualitative model.  
 At the diagnosing time, we assume the observables are 
measured along time.  If an observable’s derivative is a 
pseudo variable, the derivative values are computed 
numerically from the observations and supplemented to the 
diagnosis engine as observations.  For the RC example, if 
du2 is considered as an observable, one can see there are 
enough redundant relations to diagnose the dynamic 
behavior.    
 One last point is that if more knowledge is used, the 
qualitative model can be simplified.  For example, if the 
dynamic element and the static element can be identified, 
the pseudo variables can be added only to the dynamic 
element, not to the static element.  For the RC circuit, the 
capacitor is a pure dynamic element and the resistor is a 
pure static element, the qualitative model can be simplified 
to:  
 Q(fc): {du2}�{ i}                                (5) 
 Q(fr): {u1, u2}�{ i}                            (6)  
If we use the knowledge that the current of a resistor is 
proportional to the difference of the voltages on its two 
terminals, i.e. equation (u1-u2)/R = i, the qualitative model 
can be:  
 Q(fc): {du2}�{ i}                                 (7) 
 Q(fr): {u1- u2}�{ i}                             (8) 

Model Structure Extraction 
Model structure extraction is to get the physical 
connections between components.  It is just a technique 
problem.  In Matlab/Simulink, the details of model, e.g. the 
blocks and the links between blocks are described in a 
script file.  Matlab/Simulink parses the script information 
and loads the system into its workspace.  We can call 
Matlab/Simulink functions to get the structural information, 

more specifically, get_param() and get_link() are the 
functions used for this purpose.  The function interfaces 
remain unchanged when software version evolves.   

Landmark Determination and qualitative 
model Abstraction 

In the discretization algorithm, landmark selection is 
crucial.  Only if landmarks have necessary and sufficient 
distinctions, the expected diagnosis results can be obtained.  
Design engineers can contribute their knowledge in 
selecting good landmarks.  But it is not a reliable way to 
get landmarks. In this section automatic landmark 
generation is discussed and the model abstraction algorithm 
is modified. 

Discriminability vs. Domain Partition 
Our method is inspired by the discriminability definition in 
[Struss et al. 02], where the relation of two behavior modes 
falls into three categories: non-discriminable (ND), 
deterministically discriminable (DD), and possibly 
discriminable (PD).  In this section we will discuss the 
relation of domain partition and discriminability.  The 
criterion for selecting landmarks is to keep the necessary 
and sufficient distinctions between the right and the fault 
mode, i.e. the deterministic discriminability.  In the 
following context, the two behavior modes are one right 
mode and one faulty mode.   
The notations are the same as in [Struss et al. 02]: Vobs is 
the set of observable variables;  Vo-cause is the set of 
“causal” variables in Vobs; and Vobs\cause is the set of the rest 
variables in Vobs that are not “causal”.  For the model 
abstraction problem, we are only interested by DD scope.  
Define SITo-cause is the scope of Vo-cause for DD, then 
([Struss et al. 02]): 
  SITo-cause = PROJo-cause(OPCi ) \ PROJo-cause( PROJobs 
( MODELmode1 � OPCi ) � PROJobs (MODELmode2 � 
OPCi ) )       (9) 
   where PROJ is projection operation, OPC is operation 
conditions. 
 In the problem of qualitative model abstraction, the right 
and fault mode have the same input values, i.e. the Vo-cause 
are the same.  Thus the discriminability is determined by 
the discrepancy of the output, i.e. the projection on Vobs\cause:  
 Proposition 1: Assume Vo-cause variables take value from 
tuple [X1, X2], MODELmode1 and MODELmode2 is DD in 
[X1, X2], iff    
PROJobs\cause(MODELmode1�OPCi )�PROJobs\cause(MODEL
mode2�OPCi ) = Ø       (10) 
 Proof: efficiency: assume (10) is satisfied, we need to 
prove [X1, X2]⊂ SITo-cause. (10) means that Mode1 and 
Mode2 are disjoint when projected on Vobs\cause under 
condition Vo-cause∈ [X1, X2].  So their projections on Vobs 
are also disjoint under condition Vo-cause∈ [X1, X2]. We get: 
PROJobs(MODELmode1�OPCi )�PROJobs(MODELmode2�O
PCi ) = Ø       Thus under condition Vo-cause∈ [X1, X2], (10) 
is simplified to   

(a) Qualitative model                (b) relations of i-du2 and i-u2 
Fig. 3 Example: RC Circuit Qualitative Model  



 

PROJo-cause(OPCi ) \ PROJo-cause (Ø) = PROJo-cause(OPCi )= 
[X1, X2].  
 This proved [X1, X2]⊂ SITo-cause. 
 Necessary: assume [X1, X2]⊂ SITo-cause , we need to 
prove that (10) is satisfied. 
 Notice that Vo-cause variable take value from [X1, X2] 
means PROJo-cause(OPCi ) = [X1, X2], thus from (9): 
PROJo-cause(OPCi ) \ PROJo-cause(PROJobs(MODELmode1 � 
OPCi)�PROJobs(MODELmode2�OPCi)) = PROJo-cause (OPCi)  
 That means the second term of the left side is Ø. So we 
have: 
PROJo-cause (PROJobs (MODELmode1 � OPCi ) �PROJobs 
(MODELmode2 � OPCi )) = Ø  
 That means the term in bracket is Ø, so we have 
PROJobs (MODELmode1 � OPCi ) �PROJobs (MODELmode2 
� OPCi ) = Ø  
 Since Vo-cause takes the same value for mode1 and mode2, 
we have1 
PROJobs\cause (MODELmode1 � OPCi )  � PROJobs\cause 
(MODELmode2 � OPCi ) = Ø  �      
 Proposition 1 shows that if the two modes take the same 
value for Vo-cause variables, the diagnosability is determined 
by the projections on Vobs\cause variables.  For model 
abstraction problem, the two modes work under the same 
operation conditions, and more important, work under the 
same inputs.  Take the observables in inputs as Vo-cause, 
other observables as Vobs\cause, the diagnosability is 
determined by the observables in Vobs\cause.   
 Intuitionally, if the domain partition is too coarse, the 

output ranges of the two modes will be overlapped.  In this 
case, such that the two modes are undiscriminable (cf. 
figure 4).  In other word, if the discrepancy between the 
two modes is larger, the domain partition can be coarser.  
Assume the two behavior modes have numeric models: 
Y=f1(X) and Y=f2(X).  MODELmode1 and MODELmode2 are 
the qualitative models, so MODELmode1=q(f1) and 
MODELmode2=q(f2).  If ∃[X1 X2], q(f1): [X1 X2]→[Y1 
Y2], q(f2):[X1 X2]→[Y1’ Y2’].   
 From proposition1, if  
[Y1 Y2]obs � [Y1’ Y2’] obs = Ø,   (11) 

                                                 
1 This can be easily prove by assume PROJobs\cause 
(MODELmode1 � OPCi )  � PROJobs\cause (MODELmode2 � 
OPCi ) � Ø.  Since Vo-cause take the same value for mode1 and 
mode2, we have PROJobs (MODELmode1 � OPCi ) �PROJobs 
(MODELmode2 � OPCi ) � Ø , conflict. 

The [X1 X2] belongs to DD range.  In (11) the [Y1 Y2]obs 
is the observables in [Y1 Y2]. This is the case in Figure4(a).   
 If    [Y1 Y2]obs � [Y1’ Y2’] obs � Ø                     (12) 
The [X1 X2] belongs to non-DD range.  This is the case in 
Figure4(b). 
 The limit between DD and non-DD is as Figure 2(c): 
[Y1 Y2]obs � [Y1’ Y2’] obs = Y1’obs =Y2obs, or         (13) 
[Y1 Y2] obs� [Y1’ Y2’] obs = Y2’obs =Y1obs              (14) 
 Figure 4(c) is the coarsest partition for Vobs that still 
keeps DD.  It is easy to prove if the partition is coarser, the 
modes are non-DD2.   

Corollary:  The boundary of the coarsest partition is the 
surface where the two modes joint. 
 For monotonic functions, the coarsest landmark is easy 
to compute:  
Proposition 2: Assume MODELmode1 and MODELmode2 

have quantitative models f1 and f2. f1 and f2 are monotonic. 
{ X1, X2,…, Xi,…} are the input points.  The coarsest 
partition for Vo-cause satisfies  
f1(X1) =  f2(X2) 

f1(X2) =  f2(X3) 
… 

f1(Xi) =  f2(Xi+1) 
 When Vo-cause  get the coarsest partition {X1, X2,…, 
Xi,…} obs, Vobs\cause  get the coarsest partition {f1(X1), 
f1(X2), …, f1(Xi), …}obs. 
 Proposition 2 provides a way to generate new landmarks.  
It is possible to numerically compute Xi+1 from Xi.  For 
non-monotonic functions, proposition 2 does not hold.  In 

the next section, a non-optimal but satisfactory 
solution of landmark generation is presented.  

Model Abstraction with Landmark 
Generation 
The method presented in this section is relied on 
one fact that if the domain partition is finer, the 
discriminability can be improved.  X = f(t) is a 
dynamic system.  The simulation time is from 0 to 
Tc. The algorithm 2 starts from the coarsest 

landmark [LOC1, LOC2], in which LOC1 and LOC2is the 
lower bound and upper bound of Xo-cause.  From the 
simulation data, the discriminability on [LOC1, LOC2] is 
examined (based on Proposition 1).  If [LOC1, LOC2] is not 
a DD range, that might mean that this partition is too coarse.  
[LOC1, LOC2] is split from the medium point, i.e. 
(LOC1+LOC2)/2 is added as a new landmark.  [LOC1, 
(LOC1+LOC2)/2] and (LOC1+LOC2)/2, LOC2] are two 
intervals to be checked.  The split process will continue 
until a DD scope is found, or the split makes the intervals 
smaller than a pre-defined minimum length D.  Algorithm 2 
records the generated landmarks, the qualitative relations, 

                                                 
2 Without loss of generality, assume f1 and f2 is monotonic as 
figure 2(c), and f1(X1) = f2(X2). If Vo-cause has a larger partition 
[X3, X2], where X3<X1, we get f1(X3)<f1(X1) = f2(X2) and 
f2(X3) < f2(X1)<f1(X1).  Thus [f1(X3), f1(X2)] � [f2(X3), 
f2(X2)] = [f1(x3),f1(x1)] � Ø. 

 
(a)DD with good margin        (b) ND             (C) DD with no margin 

Figure 4: the limitation of partition for discriminability 



 

as well as the discriminability property on each input 
partitions. 
Algorithm2: qualitative model abstraction X = f(t) 
Input:   
D: Minimum landmark interval 
Tc: duration of simulation time  
f,  f’: Quantitative models for two modes,  
Vo-cause ={ x i | xi∈X}, V obs\cause = { x j | xj∈X},  V obs\cause ∪ 
Vo-cause ⊆ X 
[LOC1, LOC2]: the start landmark for Vo-cause, i.e. LOC1=fo-

cause(0), LOC2= fo-cause(Tc) 
Output: 
DD: Vector for input scope that system are DD 
ND: Vector for input scope that system are non-DD (PD or 
ND) 
q: Vector for storing qualitative model 
loop: the Boolean variable controls loop, initialized as true  
Internal Variables: 
p: stack to store input tuples 
1:     Store [LOC1, LOC2] in p 
2:     While p is not empty 
3:     pop a tuple [LOCi, LOCi+1] from p 
4:              find ti and ti+1 correspondent to  LOCi, LOCi+1  
5:             LONCi = min{fobs\cause(t)| ti <t<ti+1} 
6:             LONCi+1 = max{fobs\cause(t)| ti <t<ti+1} 
7:             LONCi’= min{ f’ obs\cause(t)| ti <t<ti+1} 
8:            LONCi+1’= max{f’ obs\cause(t ti <t<ti+1} 
9:             if [LONCi, LONCi+1]∩ [LONCi’, LONCi+1’] = ∅,   
(that means [LOCi, LOCi+1]  is in DD scope) 
10:                store [LOCi, LOCi+1] in vector DD 
12:           store {[ min{f(t)| ti <t<ti+1}, max{f(t)| ti < t < 
ti+1}]} in vector q 
13:                remove [LOCi, LOCi+1] from p 
14:            else  
15:                mid = (LOCi+LOCi+1)/2 
16:                if | LOCi- mid|<=D or |LOCi+1 -mid| <=D 
17:                store {[min{f(t)| ti<t<ti+1}, max{f(t)| ti< t < 
ti+1}]}  in vector q 
18:                       store [LOCi, LOCi+1]  in vector ND 
19:                           remove [LOCi, LOCi+1]  from p  
20:               else 
21:                   push [LOCi, mid]  and [mid, LOCi+1]  into q 
22:           end-if 
23:           end-if 
24:  end-while 
25:   report DD,ND, q 
 The key issue for algorithm 2 is the splitting procedure 
that refines the qualitative relation until to the level the 
fault is discriminable.     
 Resume the RC example in section 3.3.  The voltage u1, 
u2, and u3 are measurable observables. du2, the derivative 
of u2, is the pseudo variable and is also a supplementary 
observable.  The fault considered is the resistance of the 
resistor doubled, which causes the transient process slower.   
u1 and u3 are constant (u1 = 100v, u3 = 0v) in this 

example.  u2 is chosen as Vo-cause, and du2 as Vobs\cause.  
Figure 5 is the relation of u2 and du2 under the right (solid 
line) and faulty modes (doted line).  Using algorithm 2, the 
split process is like figure 5.  
Some comments on algorithm 2: 
 1. the partitions obtained from algorithm 2 are not the 
coarsest but the satisfactory one for diagnosis purpose.  It is 
the 

trade-off of optimization and computation cost.   
 2. the success of algorithm 2 depends on the selection of 
the variables to be split.  Normally the most influential 
variables are chosen as the base variables.  The split of the 
base variables can cause the largest change on the output 
variables.  It needs special techniques to determine which 
variables are the most influential variables.  The causal 
ordering algorithm [Iwasaki and Simon, 1994] can be used 
for this purpose.  The base variables used in the RC circuit 
and in the demonstration case in this paper are selected by 
experience.     
 3. For the monotonic functions, the refinement of domain 
partition always refines the distinctions of Vobs\cause.  For the 
non-monotonic functions, it is not true due to the local 
extrema.  But it is sure that the partition refinement doesn’t 
remove the distinctions of Vobs\cause. 
 4. This algorithm considers only partitions on continuous 
variables.  For discrete variables, normally we regard them 
as different operation mode. For example: the switch can 
be on and off.  They are considered as two operation modes.  
Thus this algorithm is suitable for most of the system.   
 5. For continuous variable, the valid value is bounded by 
working environment. For example, for a normal AC 
system, we consider the outside temperature is from –20 to 
40. 

Demonstration 

(R=100ohm, C=0.001F for the right mode, 
and R=200ohm C=0.001F for the faulty mode) 

Fig. 5 Landmark Determination and Qualitative Model Abstraction 



 

Table 1 Landmarks for p1 and dp2 

 
(a) Matlan/SimulinkModel 

 
Blower Distribution

p0, f0,E p1, f1
Cabin

p2, f2 p3, f3

 
(b) Model in block diagram 

Figure 6: AC system with 3 components 

A simple Air Conditioning system has 3 components, 
Blower, Distribution and Cabin (figure 6).  Figure 6(a) is 
the model in Matlab/Simulink, while figure 6(b) is in block 
schema with the input and output variables for each block.  
pi is pressure, fi is airflow rate, E is the electricity power 

driving the blower.  The flow rate and pressure inside the 
system increase when the blower begins to work, and they 
reach a stable point when E is unchanged.  If the cabin 
volume increases, the transient procedure is slower than 
normal case but the same stable point can be reached.  It is 
difficult to manually determine the landmarks for the 
variables. The algorithm 2 can deal it with.   Suppose we 
can measure any pressure if necessary because normally 
pressure is easier to measure than flow rate. Since we 
already know p0 and p3 are equal to outside air pressure, 
they have no influence on diagnosability.  Consider Vo={p1, 
p2, dp2}, where dp2 is the derivative of p2.  The relations 
of p1-p2 and p1-dp2 are drawn from simulation data as in 
Figure 7, where the solid curve is for the right mode and 
the doted line is for the faulty mode.  One can see that the 
relations of p1-p2 at the two modes are too close to 
distinguish the two modes, but the relations of p1-dp2 have 
good distance to each other.  And if p1 is the base variable 
to be split, the two modes can be distinguished.  We choose 
Vo-cause = {p1} and Vobs\cause = {p2, dp2}.  The landmarks 
for p1 and dp2 are listed in table 1.  Figure 8 shows the 
partitions on p1-dp2.  Figure 8(a) is the result of 6 times of 
split.  Except the most right and left interval of p1, the 
other intervals are Deterministic Diagnosable region.   The 
landmarks of other variables are computed accordingly, 
which are not showed 
in this paper.  Figure 
8(b) shows the 
partition result when 
E changes.  The two 
solid curves are for E 
= 500 and E = 300 
respectively.  The 
area between the two 
curves are the right 
behaviour when 300 
<= E <=500.  The 
faulty mode is the 

      

     

 area between the two dotted curves.  The partitions are 
result after 6 split.  One can see that after p1>3500, the 
refinement of landmarks does not help to increase the 
diagnosability.  For the algorithm 2, the split continues and 
generates some landmarks that do not help to distinguish 
the fault.   

Discussion and conclusion 

 
This paper bridges the gap between the numeric simulation 
model and the qualitative model for diagnosis purposes.  
The problem can be classified into four classes: 1) known 
landmark, static system; 2) known landmark, dynamic 
system; 3) unknown landmark, static system; 4) unknown 
landmark, dynamic system. The first class can be solved by 
algorithm 1.  The performance of algorithm 1 is discussed 
in section 3.2.  The second class can be transformed to the 
first class if the time information is eliminated from the 
simulation data.  Similarly, the fourth class can be 
transformed to the third class in this way.  For the third 
class, this paper reveals the relation of discriminability and 
model partition.  The approximation of the qualitative 
model should keep the distinctions between the right and 
faulty behaviours.  Beginning with the coarsest domain 
partition, algorithm 2 is a refining process, generating new 
landmarks until the target modes can be distinguished at the 
new, finer partitions.   
 Algorithm 2 can be used as a generalized approach for 
both static and dynamic systems and both monotonic and 
non-monotonic cases.  Algorithm 2 is limited in two ways.  
First only single fault is considered.  This needs further 

p1 dp2 

209.7617 
307.2409 
446.2227 
697.8665 
1246.9854  
2326.6505 
3491.1238 
4019.3584 
4350.6848  
4498.3403 
4690.4157 

0.3072  
4.4389 
11.2196 
22.7634 
49.7219 
99.5160 
147.2230 
160.8867  
156.5737 
138.0294 
0.0 

(a) Relation of p1-p2                (b) Relation of p1-dp2 
(solid line is right mode, doted line is faulty mode) 

Fig. 7 Model of Air Conditioning System 

         (a) E = 500                                  (b) 300<= E <= 500 
Fig. 8 partition on the relation p1-dp2  



 

work, but the principles developed here can be used.  
Secondly, the approach is system-context dependent and 
diagnosis task dependent.  That means the abstracted 
qualitative model depends on the current system structure 
and the considered fault.  If the component model is reused 
in another system context or to diagnose other faults, we 
can not guarantee the fault is detectable.  This is a 
compromise of data explosion because theoretically a 
universal qualitative model contains an unlimited amount 
of information, which is unable to be described by finite 
domains.  After this project, we believe no universal 
qualitative model exists.  The only feasible way is to get a 
qualitative model under certain conditions. Based on this, 
our algorithm has many advantages: first it is a one-step 
method.  By running one process, all component models 
are obtained.  Practically it is not a big deal to run it on 
each system even if the component model is not reusable.  
Second the considered fault is guaranteed to be detected 
using the resulted model.  Third it avoids possible conflicts 
when the shared variables among components are no in the 
same scope if the component models are collected one by 
one.  From our experience, this approach is very practical 
in dealing with complex real-world industrial applications.   
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