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Abstract

We present an off-line methodology for the identification of
series.

Given a learning set, an evaluation of the capacity of several
alternatives to carry out correct identification is presented. For
this, the series are transformed into symbol chains by means
of several discretization methods. This transformation is done
over typified and differenced series, translating the quantitative
data to a qualitative description of the series evolution.

Afterwards, a distance based on a kernel between literals
is used to calculate the similarity between series, and a k-
neighbours algorithm is used to identify the class it belongs
to.

In the interval distance defined the similarity between symbols
depends on the size and position of the intervals assigned to
each symbol.

The methodology has been tested with a television shares
dataset presenting a high success identification ratio and it only
need a neighbour to find the correct class. These characteristics
are low influenced by size of the learning set.

Introduction
The study of the temporal evolution of systems is an incip-
ient research area. It is necessary the development of new
methodologies to analyze and to process the time series ob-
tained from the evolution of these systems.

The time series, produced by a variety of applications, are
usually stored in databases. It is necessary to develop new
algorithms and techniques for its study.

A time series is a sequence of real values, each one repre-
senting the value of a magnitude at a point of time. A pos-
sible field of application is the comparison of time series in
numeric databases. We are interested in databases obtained
from the evolution of dynamic systems. A methodology to
simulate semiqualitative dynamic systems it was proposed in
[Ortegaet al. (1999)].

When we are working with time-series databases, one of
the biggest problems is to calculate the similarity between
two given time series. The interest of a similarity measure
is multiple. In this paper, this interest is focused on find-
ing the different behaviour patterns of the system stored ina
database, looking for a particular pattern, reducing the num-
ber of relevance series before applying analysis algorithms,
etc, as was presented in [Cuberoset al. (2002)].

Many approaches have been proposed, since
[Agrawalet al. (1993)], to solve the problem of an effi-
cient comparison. In this paper, we propose to carry out
this comparison from a qualitative perspective, taking into

account the variations of the time series values. The idea of
our proposal is to abstract the numerical values of the time
series and to concentrate the comparison on the shape of the
time series.

This work is related to previous works in similarity
of temporal series, a general review was presented in
[Cuberoset al. (2002)], and with the works in discretization
of continuous attributes.

Discretization is a process of transforming a contin-
uous attribute values into a finite number of intervals
and associating with each interval a discrete value. In
[Macskassyet al. (2003)] was shown than even on purely
numerical-valued data the results of text classification onthe
derived text-like representation outperforms the more naive
numbers-as-tokens representation and, more importantly,is
competitive with mature numerical classification methods
such asC4.5, Ripper andSV M .

In this work some previous works are extended to define a
methodology for the identification, after a learning process,
of temporal series.

The rest of this paper is structured as follows: first an
overview of the methodology is presented, followed by a deep
review of every step involved. Next a presentation of the dis-
tance based on a kernel over literals is included, and finallya
practical implementation is described. Lastly, the conclusions
and ideas for future works are enumerated.

Proposed Methodology
The off-line system that implements the present methodology
will be able to identify, after the study of a learning set, the
new series of a working set as belonging to certain classes.

An overall diagram is presented in figure 1, some opera-
tions and processes being omitted for clarity.

Let B be a labelled database of temporal series. In the
database, series fromℓ different classes are included. The
series can be obtained by means of: recording the values of a
magnitude (physical, biological, economical, statistical, etc)
in a real system, or from a model simulation.

Each series belongs to the class represented by its label.
The labels are assigned taking into account the origin of the
series or by a previos expert labelling process.

A normalization process over the original set of series is
applied. This process allows the comparison of series with
different scales. From the possible normalization methodsthe
methodology implements a typification. After that, a new set
of series, the difference series, are obtained from the typified
series.



The typified (and differenced) set of series is splitted into
a learning subset and a test subset. The elements compound-
ing both subsets are selected randomly. This splitting process
takes into account the classes stratification in the database.

The next step translates the series into symbol chains. This
task will be performed by applying discretization methods.
As there is no universal optimal method we try several meth-
ods. Then we select the local optimal for the actual dataset.

The equal amplitude intervals, equal frequency intervals,
CUM , CAIM andDAC methods will be used. The first
two are usually unsupervised discretization methods. The
future objective of defining the methodology from an unsu-
pervised perspective is the reason for the selection of these
methods.

Especially, theCAIM method has been selected because
its good results and is contrasted with other methods.
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Figure 1: Proposed Methodology

The system evaluates the number of success identifications
of the test subset using the k-neighbour algorithm for each
discretization method. The similarity of two series is com-
puted by an interval distance [Gonzálezet al. (2004)].

As the original database splitting process was implemented
as a random selection, all the processes described must be re-
peated several times. So the system eliminates the possibility
of pathological combinations.

Finally, the system selects the discretization methods that
computes the average better success identification ratio. This
method will be used for the identification of the new series
presented to the system.

In the next sections all this steps will be deeply described.

Typification
Before any other process was done with the series, a typifi-
cation task is accomplished. The typification step producesa
new set of series.

Let X = {x0, ..., xn} be a time series, and letXT =
{x̃0, ..., x̃n} be the typified temporal series obtained fromX.

The series obtained with a typification process are charac-
terized by:

• The series are unit less.

• The average is0.

• The standard deviation is1.

• They are invariant against scale and offset shifting, when
the offset is positive, following the similarity definition
presented in [Goldin and Kanellakis (1995)].

The typification is very robust to outliers in the series val-
ues produced by noise, the opposite of what happens in the
normalization ised in [Cuberoset al. (2003)].

Let XD = 〈d0, ..., df−1〉 be the series of differences ob-
tained fromXT as follows:

di = x̃i − x̃i−1 (1)

The difference series only show the evolution of the time
series, so we focus on the overall shape and not on particular
values.

This difference series will be used in the labelling step to
produce the string of characters corresponding toX.

Figure 2 shows an example of a partial typified curve with
their derivative values and the assigned label to each transi-
tion between adjacent values. The example uses a symmetri-
cal discretization with5 ranges whose boundaries are shown
as horizontal lines.
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Figure 2: Sample of translation. The original time series, the
values of differences (in bars) and the assigned label

Splitting Database
Now, with the set of typified series, two subsets will be cre-
ated; a learning subset and a test subset. The election of the
components of each set will be randomly done.

The number of series representing each different class can
be variable, so the selection of elements of both subsets must
take into account the stratification of classes in the database.

In this work the splitting process will follow an usual70−
30 ratio for the learning and test subsets.

The splitting process is aleatory, and all the following pro-
cesses are based on its output, so the final result can be af-
fected by a pathological draw. As a preventive measure all the



processes will be repeated several times. The number of iter-
ations is a function of the data nature, but without any other
study we have selected a value of200 iterations. It is impor-
tant to remember that the methodology is defined as off-line.

With the two subsets defined, the learning task can begin.

Discretization methods application
In this step several related tasks are accomplished:

• The discretization methods are applied over the learning
subset producing a set of landmarks.

• The landmarks are used as the limits of intervals and a
qualitative symbol is assigned to each.

• Finally the series are translated into symbol chains.

There is no universal method that computes an optimal dis-
cretization of a continuous attribute. Our approach will eval-
uate several methods simultaneously.

We can find a variety of discretization methods in the lit-
erature; from the unsupervised algorithms (that discretize at-
tributes without taking into account respective class labels) as
equal interval width, equal frequency interval, k-means clus-
tering or Unsupervised MCC, to supervised algorithms like
ChiMerge, CADD, 1RD, D− 2 or maximum entropy. An
extensive list can be found in [Kurgan and Cios (2004)] and
[Doughertyet al. (1995)].

The methods we will evaluate in this work are:

• Equal Width Intervals or EWI.This is the simplest
discretization method. The range of values for a contin-
uous variable is divided intok equal size intervals. The ex-
perience shows that the division of a group of values into
ranges, or intervals, with the same amplitude is the least
noise sensitivity division, but it is the most losing informa-
tion method as was shown in [Cuberoset al. (2003b)]

• Equal Frequency Intervals or EFI. This method finds
a set of intervals that present an approximate equal number
of values. So every symbol has the same representation
power in the set of series. The ends of the intervals are
selected as the corresponding percentiles.

• CAIM . CAIM (class-attribute interdependence maxi-
mization) is a supervised discretization method and it ob-
tained good results, in terms of number of intervals, when
compared with other five state-of-the-art algorithms, in
[Kurgan and Cios (2004)]. The comparison included equal
width and equal frequency.

• DAC method. The Discretization based on the Associ-
ation Coefficient, orDAC, is a supervised discretization
method defined analogously toCAIM . The method is
based onχ2 Test, so it has a statistical foundation. This
method was defined in [Gonzálezet al. (2004b)].

• CUM method. This method was devel-
oped in [Cochran (1977)] and implemented in
[Gonźalez and Gaviĺan (2000)]. This method makes
a clustering of the initial values minimizing the average
of the deviations, with the constraint that all the class
marks be equally representative. This process is de-
fined based on the statistical sampling techniques and a

complete study can be found in [Cochran (1977)] and
[Gonźalez and Gaviĺan (2000)].

In the Equal Width, Equal Frequency andCUM , the user
must specify the number of intervals to be computed. As there
is no rule for an optimal value all those methods will be calcu-
lated from 2 to 9 intervals. We are interested in a low number
of discretization intervals.

All the applications of the methods, a total of26, are ap-
plied to the learning subset and sets of interval boundariesare
obtained. A symbol, actually a single character, in alphabeti-
cal order is assigned to each interval. Each symbols is under-
stood as a qualitative label denoting the series evolution.

This relation between intervals and characters is the key to
transform the differences series generated in the typification
process into strings of characters.

In previous works we defined the similarity as the number
of ordered symbols in two series. Now we will use a new
distance, a kernel over symbols from a discretization process.

This novel distance will be presented in the next section.

Interval Kernel
This section follows the work in [Gonzálezet al. (2004)]. In
essence, the goal in the construction of kernel functions isto
guarantee the existence of an applicationφ defined from the
working set,X (which not necessarily is provided from a pre-
vious mathematical structure) to a vectorial space equipped
with a dot product named feature space,F .

From this functionφ, in general non linear, the kernel func-
tion is defined, denotedk(·, ·), over pairs of elements of the
working set as the dot product of their transformations into
the feature space1,

k(·, ·) = 〈φ(·), φ(·)〉F

The kernel functionk(·, ·), calledMercel Kernel, let us es-
tablish similarities between the original elements from their
transformed ones, so a distnace between the points of origin
can occasionally be defined.φ application, therefore, mus be
able to highlight the essential characteristics of the initial set
elements, so they must be considered when elaborating a sim-
ilarity and distance measure. Therefore, the image space ofφ
application is known as feature space or space of characteris-
tics.

Following the interval research approach, it will be denoted
byI the family of all the open intervals(a, b) contained in the
real line.2 of finite dimension,,

I = {(a, b) ⊂ IR : a < b, a 6= −∞, b 6= +∞}

It better denotes the intervals in the formI = (c − r, c + r)
wherec is the center andr the radius. Thus a functionφ is
defined:

φ : I → IR2

φ(I) = A

(

c

r

)

=

(

a11 a12

a21 a22

)(

c

r

)

1〈·, ·〉 is denoted a dot product.
2In default, we are working with open intervals, but it is posible

to translate the study to closed intervals naturally.



thus, the kernel is:

k(I1, I2) =
(

c1 r1

)

S

(

c2

r2

)

and, a distance among intervals is:

d2
1(I1, I2) =

(

∆c ∆r
)

S

(

∆c

∆r

)

whereI1 = (c1 − r1, c1 + r1), I2 = (c2 − r2, c2 + r2), ∆c =
c2 − c1 and∆r = r2 − r1. Too, A must be a non singular
matrix, soφ be an inyective application, andS = AtA a
symmetrical and positive defined matrix.

This way, the weight to give to the position of the intervals,
c, ant to the size,r, can be controlled.

Thus, the conversion of a continuous attribute in labels
from the construction of different class intervals allows us to
use as the distance between labels the distance between inter-
vals, as shown in the example section. In the subsequent, we
will consider that symbols are letters.

Kernel over letters from disretization process
Let be an alphabet ofℓ letters which we denote:

A = {A1, A2, · · · , Aℓ}

and letP be a set of the all possible words with this alphabet.
LetsP1 andP2 be two words onP that we denote:

P1 = P11P12 · · ·P1n P2 = P21P22 · · ·P2m

with n ≥ m, P1i, P2j ∈ A . A kernel is defined:

Kλ(P1, P2) = max

{

m
∑

i=1

λd2(P1i+k,P2i), k = 0, · · · , n − m

}

where0 < λ < 1 andd(·, ·) is a distance among two letters.

Note 1 If the words are the same sizen, then:

Kλ(P1, P2) =

n
∑

i=1

λd2(P1i,P2i)

Note 2 This kernel is a radial basis function (R.B.F.) since it
is defined like a function of a distance,f(d(P1, P2)).

Property 1: If 0 < λ1 < λ2 < 1 thenKλ1
(P1, P2) ≤

Kλ2
(P1, P2) for all P1, P2 ∈ P.

Property 2: Kλ(P1, P2) ≤ m for all P1, P2 ∈ P and
0 < λ < 1. This threshold is hold3.

Property 3: Let ber = maxij d(Ai, Aj) with Ai, Aj ∈ A.
Thenmλr2

≤ Kλ(P1, P2) for all P1, P2 ∈ P and 0 <
λ < 1. This threshold is reached4.

3If P2 = P11P12 · · ·P1m thenKλ(P1, P2) = m.
4Let beA = Ai andB = Aj such thatd(A, B) = r2 then if

P1 = AA · · ·A andP2 = BB · · ·B with size ofP1, n, and size
of P2, m. Then is true thatKλ(P1, P2) = mλr2

.

Thereby, for all0 < λ < 1:

mλr2

≤ Kλ(P1, P2) ≤ m, ∀P1, P2 ∈ P

Property 4 Let A be an alphabet and P =
{P1P2 · · ·Pn, Pi ∈ A} (the set of all words that have
same sizen). Then

Kλ(P1, P2) =

n
∑

i=1

λd2(P1i,P2i)

is a Mercer Kernel.

It is very important to know that in this language obtained
from the labelling process, each word has a meaning since
it represents a whole interval of values. For this reason, we
should ask ourselves which are the characteristics we want
to take into account in each word of the language to be able
to interpret meaning from them. This kernel considers the
following ones:

• The order of the letters in each words.

• The size of the words.

• Comparison letter by letter.

Theλ parameter models the importance given to matching
symbols versus the comparison of different symbols. For co-
incident symbols the value is always1. All our tests show
that, for identification purposes, the value ofλ has low or
none influence.

Evaluation and Identification
In this section the quality of every proposed method is eval-
uated. We define the quality of a discretization method as
its ability identifying correctly the class to which new series
from the work set belongs.

The test will try to identify every verification series by the
nearest neighbour algorithm. The label of the learning series
more similar to the new series is checked against the label in
this series, testing if the system chooses the right label.
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Figure 3: Identification Average (%) in Test Subset vs. Num-
ber of Draws



For the previous test we take all the series and every dis-
cretization method is applied. The application of the methods
will consist in the translation of the series in chains of sym-
bols and the calculation of the similarity between every pair
by means of the interval distance.

Once all the results are obtained for each method in every
try, changing the learning and test subsets, the best method
for the actual dataset is elected.

After the election of one of the discretization methods, this
is applied to all the series in the learning set obtaining the
final set of interval boundaries.

Finally, after calculating the set of intervals produced by
the best discretization method, the system that implements
this methodology notifies the user the end of the learning.
Now the user can present a set of new unlabelled series, the
work set, and obtains an answer from the system. The answer
is the class corresponding to each series using the series of
the learning set as class representant.

Test
We will work with a set of television shares from the seven
main television stations in Andalusia. The data has been pro-
vided by Canal Sur Television, a company of Grupo Radio
Televisíon de Andalućıa, and generated by [Sofres].

The series represent the average share for15 minute
blocks, so the series are96 elements length.

We have selected the first32 Wednesdays of year2003 as
the input set of the series. Other20 Wednesdays are used
as work set. The series are labelled with the name of the
corresponding television station.

Neigbours

Method Labels Avg. StDev. Avg. StDev. Avg. StDev.

CAIM 7 90,6 4,3 89,4 4,6 89,1 4,7

DAC 3 91,7 2,7 89,4 2,8 89,8 2,8

2 90,8 2,9 88,4 2,9 89,1 3,0

3 85,9 4,0 85,1 4,2 86,2 3,9

4 76,0 6,0 71,3 5,3 71,0 5,6

5 73,2 5,4 71,0 5,4 72,3 5,5

CUM 6 82,5 4,2 80,9 4,0 80,8 5,0

7 83,2 3,6 80,0 3,7 80,1 4,3

8 85,3 3,3 82,8 3,0 82,1 3,4

9 86,5 3,2 84,9 2,6 84,7 3,1

2 91,2 2,9 90,9 2,7 90,8 2,9

3 95,5 2,1 95,4 2,0 95,2 2,0

4 88,9 3,1 87,6 3,2 87,4 3,4

5 85,2 3,9 85,2 4,1 85,4 3,9

EFI 6 80,3 4,1 77,7 4,7 76,4 4,9

7 74,7 4,8 71,8 5,3 71,1 5,4

8 75,8 4,3 71,2 4,9 70,7 5,0

9 74,7 5,3 70,4 5,3 69,1 6,2

2 71,0 11,5 65,3 13,2 66,6 13,0

3 46,0 8,1 36,4 8,3 35,1 8,9

4 71,9 12,0 67,4 14,2 68,9 14,4

5 74,9 10,7 71,0 13,0 72,0 11,9

EWI 6 72,4 11,0 68,4 13,7 70,4 13,6

7 85,8 7,8 84,8 8,2 86,0 8,3

8 75,3 9,3 73,4 10,4 74,3 11,0

9 88,1 4,9 87,5 5,8 88,1 5,3

DTW - 80,3 3,7 78,1 4,4 76,5 4,3

531

Figure 4: Identification Average (%) and Standard Deviation
in Test Subset (200 Draws) vs. Number of neighbours

From the224 series in the learning set (32∗7), the learning
and test subsets are completed with154 and70 series respec-
tively.

The application of the presented methodology achieves a
95% correct identification rate from the work set series,133
over140. The best discretization method for this data set is
Equal Frequency Interval with 3 labels.

That level of right identification is very high but it is pos-
sible to ask about the influence of the different parameters
presented.

The first open question in the proposed methodology is the
number of iterations of the draw-learn-test cycle. Obviously,
this value depends on the data nature.

In figure 3 we present the relation between the number of
iterations and the average of correct identification in the test
subset. Except for theEWI with 9 labels, the values are very
stable with more than20 iterations. Even consideringEWI
there is no important variation after60 draws.

In the future perhaps a detailed study of the identifications
can be used as a stop criteria for the selection of the best dis-
cretization method.

CAIM DAC CUM02 EFI03 EWI09

1 90,6 91,7 90,8 95,5 88,1

3 89,4 89,4 88,4 95,4 87,5

5 89,1 89,8 89,1 95,2 88,1

7 89,6 90,5 90,0 95,5 89,3

9 89,4 90,7 89,9 95,2 89,9

11 89,5 90,3 89,4 94,6 90,1

13 89,6 90,2 89,2 94,2 90,4

15 89,5 89,7 88,6 94,1 90,7

17 89,1 89,0 87,8 94,0 90,6

19 89,0 88,0 87,0 93,8 90,7
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Figure 5: Identification Average (%) in Test Subset vs. Num-
ber of neighbours

But if the average of correct identifications it is important,
also the variance in the percentage of identifications can be
considered to evaluate the best method. Figure 4 shows the
average percentage and variance for all methods in200 draws
for 1,3 and5 neighbours.

In this figure the identifications withDynamic Time Warp-
ing, DTW , are shown.DTW [Sakoe and Chiba (1978)] is a
well known method in time series community.

Another question is if a different number of neighbours in
thek-neighbours algorithm has influence in the results. Al-
though the value ofk in thek-neighbours algorithm has little
impact in the execution time, figure 5 shows that are not ob-
tain better results with higher values ofk. The figure repre-
sents the average identification for all the discretizationmeth-
ods with the odd values ofk from 1 to 19.

As was said in the kernel definition the value of theλ pa-
rameters has no effect in identification task. The figure 6
shows how only theCAIM method is affected by the value
of lambda.

Finally we want to analyze the influence of the input set of
series on the total series can be also raised. We have carried



0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

CAIM 0,89 0,88 0,88 0,87 0,86 0,85 0,84 0,83 0,81

DAC 0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,89 0,88

CUM02 0,88 0,88 0,88 0,88 0,88 0,88 0,87 0,87 0,88

EFI03 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,91

EWI09 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,88 0,85

Lambda

Figure 6: Percentage of correct identifications in Work Set
for each method vs. value of lambda

Learn. Work Value Perc.

112 252 225 0,893

140 224 201 0,897

168 196 178 0,908

224 140 133 0,950

252 112 109 0,973

Set size Success Iden.

Figure 7: Number of series in Learning-Work Sets vs. Iden-
tification Success in Work Set (absolute and percentage) with
EWI03

out all the combinations of 4 day groups (as the minimal unit),
and found that in the worst case the result are similar.

In figure 7, the success identifications of the work series
contrasted to the relation of the sizes of the input and work
sets. Following the common sense, the percentage of correct
identifications is affected by the relative size of learningset.

Conclusions and Future Work

An off-line methodology has been presented which allows the
identification of the class of temporal series from a set given
for its learning.

A comparison is made from the series evolutions and not
from the concrete values. An abstraction of the information
is carried out. A supervised discretization on these evolutions
is carried out, which leads to an improvement of the results.

A new distance based on an interval kernel has been de-
fined.

In the future, our works will focus on the extension of the
methodology to series with multiple attributes. At the same
time, we will use new data sets to extend its validation.

The presented definition could be improved in its execution
time in future works.

Finally, we must mention that this kernel has certain impli-
cations in the type of considered similarity that will be stud-
ied in future investigations. The low influence of the lambda
parameter in identification tasks must be argued too.
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