
Abstract 
This paper lies within the domain of supervised 
discretization methods. The methodology aims at 
identifying relevant interactions between input and 
output variables. A new supervised discretization 
algorithm that takes into account the qualitative or-
dinal structure of the output variable is proposed. 
Most existing supervised discretization methods 
are designed for pattern recognition problems and 
do not take into account this ordinal structure. 
A qualitative distance is constructed over the dis-
crete structure of absolute orders of magnitude 
spaces. The algorithm presented implements a 
maximization process of this distance. A simple 
example allows interpretation of the process of 
choosing landmarks. 

1 Introduction 
Qualitative Reasoning applications aim at defining suitable 
models to automate common-sense and expert reasoning, 
working without numerical values. On the other hand, the 
design of algorithms able to automatically gather the rele-
vant information from a set of patterns is one of the primary 
aims of Artificial Intelligence (AI).  
When defining a model able to express simultaneously the 
qualitative relations between variables and the expert 
knowledge of a specific domain, an algorithm to find a set 
of landmarks capturing the essential distinctions is neces-
sary. A suitable discretization process can carry out this 
objective over features of the patterns. A key point is to en-
sure that the discretization obtained generates a qualitative 
model containing only the essential changes in the applica-
tion domain.  
In this paper, a new supervised discretization algorithm is 
proposed that takes into account the qualitative ordinal 
structure of the output variable, to automate relevant land-
mark generation for each feature. Moreover, this algorithm 
allows the homogenizing of scales by associating qualitative 
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labels to each pattern that reflect its values in terms of their 
significance in the domain considered. The methodology is 
based on a distance defined over an order of magnitude 
structure. 
The next section begins with a brief overview of some clas-
sical discretization methods, and introduces the motivation 
of the present methodology. A distance in the orders of 
magnitude model is then defined in section 3. This distance, 
needed to build the supervised discretization algorithm, is 
described in detail in section 4. An application of the 
method is given in section 5. The last section summarizes 
the conclusions and outlines future work.  

2 Discretization Framework 
Discretization is the process of partitioning continuous vari-
ables. There are many advantages in using discrete as op-
posed to continuous values. In general, discretization makes 
learning faster, and the results obtained are more compact 
and easier to understand [Liu et al, 2002]. Moreover, there 
are some classification-learning algorithms that are only 
able to deal with discrete values.  
The existing discretization methods in the literature can be 
divided into two groups: supervised and unsupervised. 
The most commonly used discretization methods, based on 
equal-width or equal-frequency, are considered to be unsu-
pervised methods, because they do not use class informa-
tion. On the other hand, when class information is available 
and used, supervised discretization methods provide better 
results by taking into account this information to find mean-
ingful intervals in the range of continuous input variables. 
These supervised methods improve the performance of the 
learning process [Dougherty, 1995] and, at the same time, 
enhance understanding of the results.  
Usually, in a supervised discretization process, after sorting 
data in ascending or descending order with respect to the 
variable to be discretized, landmarks must be chosen among 
the whole dataset. In general, the algorithm for choosing 
landmarks can be either top-down, which starts with an 
empty list of landmarks and splits intervals, or bottom-up, 
which starts with the complete list of all the values as land-
marks and merges intervals. In both cases there is a stopping 
criterion, which specifies when to stop the discretization 
process. 
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Some representative supervised discretization methods are 
described below. First, those based on the entropy measure, 
among others MDLP [Fayyad and Irani, 1993] and D2 [Cat-
lett, 1991]. These define a function measuring the entropy of 
each possible discretization to be optimized. There are also 
some decision tree induction algorithms that use entropy 
measurement, such as ID3 [Quinlan, 1986] and C4.5 [Quin-
lan, 1993], to implement the discretization process. 
Other methods are based on statistical techniques such as χ2 
test or classical clustering techniques, for instance Chi-
Merge [Kerber, 1992], Chi2 and ConMerge [Wang and Liu, 
1998]. 
Finally, there are some methods based on a strength associa-
tion measurement between the class and a feature, for ex-
ample Zeta [Ho and Scott, 1997], CADD [Ching et al 1995], 
CAIR [Wong and Liu 1975], and CAIM [Kurgan and Cios 
2004].  
Most of these methods are based on the optimization of a 
coefficient, which depends solely on the contingency table 
between the discretized variable (D) obtained in the discre-
tization process and the output variable (O). See Table 1, in 
which qir represents the number of elements in the interval 
(dr–1,dr] classified in class Ci. 

 
Interval Class 
[d0,d1]    …   (dr–1,dr]   …   (dn-1, dn] 

total 
classes 

C1 
... 
Ci 
... 
CC 
 

q11           ...      q1r         ...       q1n 
...            ...       ...         ...       ... 
qi1              ...      qir         ...       qin 
...          ...       ...         ...       ... 
qC1       ...      qCr         ...       qCn 
  

M1+ 
... 
Mi+ 
... 
MC+ 
 

total 
intervals 

M+1 ...      M+r       ...       M+n 
 

M 

Table 1. Contingency table. 

These methods do not consider the eventual order in the set 
{C1,...CC} of the possible output values. However, the 
method proposed and presented in this paper, which could 
be classified as belonging to this last group of discretization 
methods, takes this order into account, and is based on the 
concept of distance between the ordered output labels intro-
duced in the next section. The algorithm is suitable when the 
output is described in terms of a qualitative ordered variable 
and is neither top-down nor bottom-up: it allows all the 
landmarks to be found simultaneously. 

3 Building a distance in the absolute orders of 
magnitude space OM(n) 

Absolute orders of magnitude models [Travé, 2003] work 
with a finite set of ordered symbols, or qualitative ordered 
labels. These models provide a mathematical structure that 
unifies sign algebra and interval algebra through a contin-
uum of qualitative structures. In this section, the absolute 
orders of magnitude model is briefly described [Agell, 
1998], and a methodology to build distances between labels 
is considered. 

The absolute orders of magnitude model of granularity n, 
OM(n), is defined from a symmetric partition of the real line 
in 2n+1 classes: 
 

a1-a1-an-2-an-1 an-2 an-1... ...
Nn PnPn-1Nn-1 P1N1N2 P2 ...... 0  

Fig.1. Partition of the real line 

 
where Ni=[-ai,-ai-1), 0={0} and Pi=(ai-1,ai]. 
In the absolute orders of magnitude model of granularity n, 
OM(n), the basic elements, using the notation introduced in 
[Agell, 1998], are represented by the ordered labels of the 
set S1: 
 

S1={Nn, Nn-1, ..., N1, 0, P1, ..., Pn-1, Pn}. 
 

The quantity space S= OM(n), is the set of labels in the 
form [X,Y] for all X,Y∈S1, with X≤Y, i.e. x≤y for all x∈X, 
y∈Y. The interval [X,Y] stands for: 
 

[ ]
X L Y

X,Y = L
≤ ≤
U , 

 
which is the union of all labels in S1 between X and Y. Ob-
viously S1 ⊂ S. 
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Figure 1. The quantity space 

The relation ≤P, to be more precise than (given that X,Y∈S, 
X is more precise than Y (X≤PY) if X⊆Y) is an order relation 
in S, due to inclusion properties.  
For all X∈S-{0}, the basis of X is the set: 
 

{ }{ }XB:0SBB p1X ≤−∈= , 
 

and, given a basic element U∈S1, the U-expansion of X is: 
 

{ }:U P PX Min Y S X Y and U Y= ∈ ≤ ≤  , 
 



the minimum label that is less precise than X and U, i.e., the 
smallest interval with respect to the inclusion containing X 
and U.  
In order to define a distance in an OM(n) structure, the 
strategy proposed in this paper is split into two steps: 
 

• First a location function is considered, to associate 
a k-dimensional real vector to each label 

• Then a metric defined in a Euclidean space Rk is 
used. 

 
This location function and the metric must be chosen to cap-
ture the intrinsic values and significance of labels in the 
qualitative space, depending on the scenario defined by the 
application domain. 
As an example of this methodology, the location function 
defined in [Rovira et al, 2004] is first considered. By this 
function, each element X in S is codified by a pair (l1(X), 
l2(X)) of integers: l1(X) is the number of basic elements in 
S1-{0} that are “between” the basis of X and Nn, and l2(X) is 
the number of basic elements in S1-{0} that are “between” 
the basis of X and Pn. 
These numbers permit us to “locate” each element in S, 
where all different levels of precision are considered. 
As an example to illustrate this process, let us consider the 
absolute orders of magnitude model with granularity 3, 
OM(3): 
 

S1={N3, N2, N1, 0, P1, P2, P3},  
 
and 
 
S=S1∪{[N3,N2],[N2,N1],[N1,P1],[P1,P2],[P2,P3],[N3,N1], 
[N2,P1],[N1,P2],[P1,P3],[N3,P1],[N2,P2],[N1,P3],[N3,P2], 
[N2,P3],?}. 
 
The location of the label X=[N1,P2] is the pair (-2,1), be-
cause we are left with two basic elements to the left of X  
and only one to its right: 
 
 

P 3 N 3 P 1 N 1 N 2 P 2 0 
[N1,P2]B -2 +1 

 
 

The formal definition of the location function is 
2:l S Z→  such that:  

 
1 2( ) ( ( ), ( ))

( ( ) ( ), ( ) ( ))
N Pn nX X X X

l X l X l X
Card B Card B Card B Card B

= =
− + −

 

 
This is a way of codifying labels by points in a Euclidian 

plane, in such a manner that the Euclidean distance between 
them will allow the definition of a distance between labels. 
Let us define: 

 

2 2
1 1 2 2

: [0, )

   ( , ) ( ( ) ( )) ( ( ) ( ))

D S S

X Y l X l Y l X l Y

× → +∞

→ − + −
 

 
This function D inherits all properties of the distance in R2, 
and therefore satisfies the three axioms of a distance. 
The distance D between two labels measures the similarity 
between them, in the sense that the more similar labels are, 
the smaller the distance between their codifications, and so 
the smaller their distance ( , )D X Y . 

4 The new supervised discretization algorithm 
In this section, a new supervised discretization algorithm is 
presented. This algorithm is suitable specifically when the 
output is described in terms of qualitative orders of magni-
tude or in any interval-based domain. It is based on the con-
cept of distance between qualitative labels. This method is 
neither top-down nor bottom-up, and it allows all the land-
marks to be found simultaneously. This fact improves the 
algorithmic efficiency.  
Let us consider M input features F1,…,FM, and a training set 
{X1,…, XN} of N patterns. Each pattern Xi is characterized by 
a set of values of the M input features together with the out-
put: Xi = (xi1,…,xiM, yi). Each xij is the value of Fj for the 
pattern Xi, and the output yi is a value of a variable described 
in a qualitative orders of magnitude space OM(n).  
The following discretization algorithm will be applied to 
each of the input variables separately. The case in which the 
landmarks of the various input variables are not independ-
ent, which leads to dependent discretizations, is not dealt 
with in this paper.  
Let F = Fj be one of the M continuous input features 
F1,…,FM to be discretized. A discretization D of this vari-
able F consists of a set of disjoint intervals: 
 

D={[d0, d1], (d1,d2],...(dm-1, dm]}  
 

where d0 and dm are the extreme values of F, and the rest of 
the landmarks dk are chosen from among the pattern values 
x1j,…xNj of F.  
This new method takes as possible landmarks all the pattern 
values of F. The criterion applied considers a landmark d as 
suitable when it splits a neighbourhood of d into two mean-
ingful different intervals, in order to ensure that the discreti-
zation obtained generates a qualitative model containing the 
essential changes in the application domain. 
The key idea is to implement a criterion to distinguish 
meaningful different adjacent intervals consisting of a 
maximization process of the qualitative distance. This crite-
rion is based on five concepts: labels of the outputs of the 
neighbours, size of the neighbourhood previously fixed via a 
parameter L, percentage P of neighbours considered when 
computing qualitative labels, qualitative distances between 
output labels, and biggest local maxima. 
 



First, for each pattern Xi only its value xij corresponding to F 
and its output value yi are considered. Secondly, the values 
x1j,…xNj of F are ordered in a non-decreasing sequence: xi(1)j 
≤ … ≤ xi(N)j (note that the extreme values are d0 =  xi(1)j and 
dm = xi(N)j). Let us rename this sequence as d0 ≤ … ≤ dN. The 
candidates for landmarks are d1,…,dN-1. 
The steps needed to determine suitable landmarks among 
these candidates are the following: 
 

• A positive integer L < N/2 and a positive parameter 
P < 100 are previously fixed. 

• For a candidate landmark di, let us consider the two 
sets of pattern values at the left and right sides of 
di, respectively: D- = {di-L,…,di-1}, with the conven-
tion that if at the left side of di there are less than L 
values, D- contains these, and D+ = {di+1,…,di+L}, 
with a similar convention. 

• Let SP(D-) be the most precise qualitative expres-
sion of the outputs corresponding to, at least, P% 
of the patterns whose values are in D- 

• If different qualitative expressions of the same pre-
cision satisfy the latter condition, the one corre-
sponding to a larger number of patterns is chosen. 

• The same process applied to D+ gives the qualita-
tive expression SP(D+). 

• The qualitative distance, defined in section 3, be-
tween SP(D-) and SP(D+) is associated to the candi-
date landmark d. 

• The candidate landmarks chosen are those associ-
ated to the biggest local maxima of the distance 
function. These are the suitable landmarks of the 
discretization. 

 
Before presenting the pseudo-code of this algorithm, some 
observations about the different steps must be made. The 
fixed parameter L is associated to the desired level of discre-
tization. That is to say, a large value of L leads to a reduced 
number of landmarks, and a small L will increase this num-
ber. 
The association of each landmark to the qualitative expres-
sions, related with the outputs, gives them a representation 
that is directly linked to the proposed learning problem. 
The pseudo code used to obtain SP(D-) is the following: 
                  
                       left: l=1 
      right: r=2n 

SP(D-)=[l,r]    
(corresponds to the smallest possible precision interval). 
 

      C=L    (number of patterns in SP(D-)) 
       
If Fl<Fr  
  If (C–Fl)·100/L>P then 

 l=l+1       (eliminates the label on the left) 

C=C–Fl 
else end 

else 
 If (C–Fr)·100/L>P then  

r=r–1       (eliminates the label on the right) 
C=C–Fr 

else end 
end if 
 
where the qualitative basic labels are:  

Nn=1,Nn-1 =2,…,Pn=2n, 
and F1, F2,…F2n are the frequencies of patterns with output 
values of, respectively, Nn ,Nn-1,… Pn. 

In the next section, the effects of the parameters L and P in 
the determination of the landmarks is heuristically dis-
cussed. Some graphs of the distance function are shown in 
order to observe the chosen local maxima. 

5 An example  
To illustrate the proposed discretization method, a set of 200 
patterns is considered. The patterns are characterized by a 
continuous input variable F and a qualitative ordered output 
O in an OM(3). Data have been generated to obtain ordered 
values of F. Values between 0 and 50 in F are associated to 
output values from N3 to P3; between 50 and 100 are associ-
ated with values between N3 and P1; from 100 to 150 the 
outputs are between N1 and P3, and the last 50 patterns take 
values N3 and N2. The discretization method will be able to 
determine these three landmarks (50, 100 and 150). 
 

 
 

Figure 2. Distribution of the data. 
 
Distances associated to each possible landmark are shown in 
figures associated to different values of L and P. Figure 3 
shows results for the same value of parameter P and three 
different values of L. Better results are observed by avoiding 
small values of L. A reduced value of this parameter leads to 
too many non-desired maxima, hiding the suitable land-
marks.  
 



 

 

 
 

Figure 3. Results varying parameter L.  
 
Regarding parameter P, which refers to the frequency of 
patterns associated to the qualitative expressions, figure 4 
shows results for the same value of L and three different 
values of P. The best results are obtained with values be-
tween 0.7 and 1. Nevertheless, the value 1 means consider-
ing the less precise qualitative expression and therefore tak-
ing into account the outliers in the process of discretization.  
 

 

 

 
 

Figure 4. Results varying parameter P. 
 

6 Conclusions and future work 
The present work aims at motivating, defining and analysing 
the use of supervised discretization algorithms in models 
based on orders of magnitude spaces. 
The focus of this paper is the design of an automatic algo-
rithm to be used in problems for which the output variable is 
described in terms of qualitative values of orders of magni-
tude. For this reason a distance between qualitative values is 
introduced and used to maximize the distinction between 
contiguous labels. 



The following discretization algorithm will be applied to 
each of the input variables separately. The case in which the 
landmarks of the various input variables are not independ-
ent, which has to lead to dependent discretizations, is a mat-
ter of on-going research.  
 
Although this paper has focused on the discretization of 
each of the variables separately, the methodological aspects 
considered can be used in a more complex situation.  
When considering an OM(n), different approaches can be 
analysed to measure the distance between labels. It seems to 
be reasonable to look for other suitable distances in these 
kinds of sets.  
With regard to open problems and future work, the follow-
ing comments can be made: 
 
• To define new criteria for choosing landmarks related to 

landmarks in other input variables. 
• To define new distances between qualitative orders of 

magnitude labels. 
• To apply the given method in real problems of ranking 

or ordered multi-classification might be considered.  
 
In particular, the methodology given in this paper is going 
to be used within the MERITO project, supported by the 
Spanish Ministry of Science and Technology. The project 
addresses the prediction and measurement of financial credit 
risk. 
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