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Abstract

We describe a case study in which we appligt
learning Qualitatively faithful quantitative learn-
ing) to the analysis and prediction of ozone concen-
trations in the cities of Ljubljana and Nova Gorica,
Slovenia. We used program QUIN to induce a qual-
itative model from numerical data that include the
measurements of several meteorological and chem-
ical variables. The resulting qualitative model con-
sists of tree-structured monotonic qualitative con-
straints. We show how this model for Nova Gorica
enables a nice interpretation of complex meteoro-
logical and chemical processes that affect the level
of ozone concentration. For Ljubljana, in addition
to inducing a qualitative model from data, we ex-
tended the qualitative model to also enable numer-
ical prediction. In this case, we used in addition to
measured data also data from the European mete-
orological prognostic model ALADIN which itself
does not model pollutants. Program QCGrid was
used to induce a numerical prediction model which
respects the constraints in the qualitative model and
fits the data well. We show that qualitatively con-
strained numerical model improves numerical pre-
diction in comparison with some standard numeri-
cal learning methods.

Introduction

In this paper we present an applicatior@ff learning Quali-
tatively faithful quantitative learningSucet al., 2004)to the

The measurements and ALADIN data were provided by En-
vironmental Agency of the Republic of Slovenia (ARSO). For
the Ljubljana qualitative model, we performed a qualitativ
to-quantitative transformation, discussed later, to aedainu-
merical prediction model. The advantage @f learning,
used here, is in its paying attention to the qualitative ectrr
ness of induced numerical models. We compared the numer-
ical accuracy of our)? model to the accuracy of two other,
standard numerical learning methods: linear regressi®) (L
and regression trees (M5), both implemented in Wakiten

and Frank, 2000 In addition to superior explanatory power,
the Q2 model also had better numerical, although the differ-
ences in accuracy were not statistically significant. Numer
cal predictions are, by expert opinion, good enough to be use
operationally.

The processes that are involved in ozone formation are nu-
merous and complex. Analytical models, such as CAHR-
viron, 2004, consist of systems of differential equations, to
capture the physics of the system, and include over 100 chem-
ical reaction equations to describe the chemical processes
The overall understanding of such complex models is diffi-
cult. But even if that is achieved, such models are usually
not useful in practice for prediction, because we can ondy us
equations that include the independent variables that we ca
measure.

In section 2, we describe the ozone domain, some back-
ground facts and motivation. We give an overview@t
learning method in section 3. The available data is desgribe
in detail in section 4. We present the results in section 5,
assess what has been achieved, and discuss future work in
section 6.

analysis and prediction of ozone concentrations in thestiti

of Ljubljana and Nova Gorica. For Nova Gorica, we induced2 The Ozone problem

a qualitative model from numerical meteorological datenfte  Meteorological and chemical processes that affect thd leve
perature, relative humidity, wind speed and directionasol of ozone concentration are very complex. Ozo6g)(in
radiation, precipitation) and air quality measuremeidls, ( the lower atmosphere (troposphere) has harmful effects on
NO, NO,, CO). The purpose of such a model is to provide vegetation and human health. In Slovenia, typical maximum
the experts with a relatively simple, interpretable model o ozone concentration during summer is between 200 and 230
the complex dynamics. For Ljubljana, in addition to induc-mg/m?3. The information and alert thresholds that affect hu-
ing a qualitative model from data, we extended the qualitgati man health are 180 and 240g/m? per hour, respectively.
model to also enable numerical prediction. In this casdl-ava In the capital, Ljubljana (LJ), they are only exceeded a few
able data included aforementioned measurements as well &mes per year. The small city of Nova Gorica (GO) in the
predictions of the European meteorological prognosticehod Western part of the country has on average higher levels of
ALADIN [Aladin, 1997 for the period from 2001 to 2003. concentration that also appear more often. High tropospher



ozone episodes in Slovenia are mainly due to the local seurce  QUIN induces qualitative trees in a top-down greedy fash-
(in LJ) and the long-range transport of ozone and its precurion, similarly to induction of decision tred8reimanet al,,
sors (in GO), generally originating from Western Europee Th 1984; Quinlan, 1992 The first difference between two ap-
highest ozone concentrations occur in summer, with a maxproaches is that in induction of qualitative trees, a differ
imum in the afternoon and a minimum in the early morningent error measure is used (based on minimum description
[A. Planindek, 200D Nitrogen oxides and VOCs (volatile length[Rissanen, 19798 The second difference is in labels,
organic compounds) are released into the troposphere fromassigned to leaves. In decision trees, the leaves areddbell
variety of biogenic and anthropogenic sources. Most of anwith values of the dependent variable, whereas in qualita-
thropogenic sources are emitted as results of the combustidive trees the leaves are labelled with what we gadhotonic
of fossil fuels. Ozone concentration in rural and elevated a qualitative constraintswhich are a kind of monotonicity con-
eas is typically twice as high as in urban areas. straints that are widely used in the field of qualitative ceas

Ozone concentrations are regularly monitored, and, adng [Forbus, 1984; Kuipers, 1994
cording to European regulations, environmental agencies A monotonic qualitative constrairt/ -~ wheres; €
have to provide short term predictions. In this paper weyappl {+, —}, stands for an arbitrary relation between the class
the Q2 approach to machine learning to induce a qualitativevariable andn attributes, so that such a relation respects the
and quantitative model for such predictions. qualitative constraints given by siges The class and any

of the attributes can be either continuous or ordinal. Fer ex
2 : ample, consider the constraifit= M*tm (X1, ..., X,,,).

3 Q" learning method Arelation(Y, X1, ..., X,,,) between clas¥” andm attribute
The learning problem addressed by th& method is as fol- X3, ..., X,, respects this constraint if for all= 1,...,m,
lows. Given is a set of numerical examples S, (observationsilassY is s;-related to attributeX,;. We say thatt” is “+"-
measurements), where each example consists of the valuesrefated positively relatedl to an attributeX if for all pairs
a set of independent variables and a set of dependent vafy:,z1) and(y2, z2) of values ofX andY" in the projection
ables. The problem is to find a numerical functignfor  of the relation onY, X): z1 < z2 = y1 < y2. “Negatively
each dependent variable, for predicting the value of the i-t related” is defined analogously.
dependent variable given the values of the independent vari Note that this definition does not require that the class vari
ables.Q? learning solves this problem in two stages (Fig. 1):able is a function of the attributes mentioned in an MQC.
(1) Construct qualitative constraints QC that hold in thedmo As defined above, MQCs can have more than one argument.
eled domain, and (2) Construct numerical functignso that ~ For example,Z = M™*~(X,Y) says thatZ monotoni-
these functions (a) respect the constraints QC, and (b)it thcally increases inX and monotonically decreases ¥n If
data S numerically . The resulting numerical functions con-Z=M"*~(X,Y) and bothX andY increase, then accord-
stitute a numerical model of the domain. The intermediatdéng to this constraintZ may increase, decrease or stay un-
qualitative constraints QC are also part of the overall rhode changed. In such a case, a MQC cannot make an unambigu-
the part that is not useful directly for making numerical-pre ous prediction of the qualitative changeZn This is called
dictions, but useful for the understanding and interpi@tat ~ qualitative ambiguity As qualitative ambiguity usually in-

The two stages above can be carried out in various ways. lereases with the number of arguments in an MQC, QUIN
this paper we used program QUISuc, 2003 that induces Prefers MQCs with less arguments.
qualitative constraints in the form of qualitative treeada Empirical resultdSuc, 2003 Sucet al, 2004 show that
program QCGrid Vladusitet al,, 2003 that performs piece- QUIN can handle noisy data and, at least in simple domains,
wise linear regression respecting a given qualitative ttee ~ produces qualitative trees that correspond to the human int
the following paragraphs we present in more detail the buildition.
ing blocks of theR? learning approach, and a simple illustra-

tive example (subsection 3.3). 3.2 QCGrid
The QCGrid algorithm (QCGrid stands fdDualitatively
3.1 Qualitative induction Constrained Griglis a regression algorithm that performs the

Q2Q transformation shown in Fig. 1. Inputs to the QCGrid
algorithm are (Fig. 2 - lines 8 and 9): learning data and qual-
itative constraints of one leaf of the qualitative tree aatap
meterk that defines the maximum density of the grid. Results
of the QCGrid algorithm are piece-wise linear functiong tha
respect given qualitative constraints.

When constructing the grid we search for a suitable grid

spanned over the training data, using binary split seamh; ¢
monly used in regression tree learning algorithms. 4_ele-
L Numerical note the learning data in the current leaf and consist of one
Data S —> —» Qualitative __ — UMM attribute () and the function valueyj. First, we perform lin-
constraints function f; . .
ear regression and obtain the error, denoted 8%, ,.divided,

_ ) ) whereM S E stands foMean Squared Errarin the next step
Figure 1:Q* Learning Schema we try to find the valuer, of the independent variable that

QUIN (QUalitative INduction) is a learning program that
looks for qualitative patternsn numerical data. QUIN ex-
presses such qualitative patternsdualitative trees In this
section we only give a brief introduction to QUIN; its deall
description and evaluation is given[iBuc, 2003



1: function NTree =Q2(S, k)
2: QTree = QUIN(S)
3: NTree = CopyStructure(QTree) {Copy structure of the QTree to NTree
{Induce quantitative models in leaves of the QFree
4: for Leafe QTreedo
5. Data = ExtractData(S, QTree, Leaf) {Use qualitative tree (QTree) to partition S over leajves
6: QConstr = GetQualitativeConstraints(QTree, LeafStore qualitative constraints of the current Léaf
7:  Grid = GridSearch(Datd;) {Find grid points with respect to parametkmusing Datg
8: QGrid = QRegress(Data, Grid, QConstr) {Learn (qualitatively consistent) function values in thénp® of the Grid
9:  NTree(Leaf) = QGrid {Copy regression result into current Leaf of NTyee
10: end for

Figure 2: Outline of th&)? learning approach. The two stages of the algorithm are edvab: (1) Induction of the qualitative
model (line 2) and (2) induction of qualitatively consistprece-wise linear functions (lines 4 — 11).

splits S into two subsetsS; and S, "best”. The subses; When approximating function values in points of the grid
contains the learning examples that satisfy< x, and the  we maximize the fit to the data between the grid points using
S, contains examples whete> z, holds. LetX denote the linear models. Thus, we transform the geneévab E equa-
values of the independent variahién data sefS. Candidates tion:

for the grid pointz, are all values in thé(. Using each value

. L . 1

as a candidate far, value, we divideS into S; and S, and MSE = I Z (Yint,s — yi)Q =
perform linear regression in both subsets to obtain ther erro |51 €S
M SEqjividea(z4). In order for somer, to be found as the 1 )
"best” grid point, all of the following criteria must hold: 1S,] Z (az; +b—yi)

V2 € X : MSEqivided(rg) < MSEqividea(®) (@6we)eLs

M S Egivided(T4) < MSEindivided ~ Wherey; andyix,; denote the original and predicted func-
1) >= k & |S,| >= k tion values. As we use linear models of the original data,

we can replace the termy ; with az; + b. Further trans-

In the above equation,denotes the minimal number of ex- formation follows with incorporation of grid pointg € G -
amples in each subset and is usually given as percentage @ivision of the approximation function into piece-wisedar
the examples in the leaf. When the best grid point in$he function:
has been found, the algorithm recursively proceeds to both
subsetsS; and.S,.. The output is a set of grid point&+]. 1 9
If dataset hadn attributes, the above procedure would be MSE = S Z (i + b1 — )"+ ...+
employed for each attribute thus obtaini6ég, Gs, ..., G, (91<2i<g2,y:)€S
grids. The resulting grids would be obtained with Carthe-
sian product of the onedimensional grids. Z

In the next step of the QCGrid algorithm we learn qualita-
tively consistent function values in the previously founitlg
pointsG. To this end we use quadratic programming algo-We rewrite the above equation in order to express the slope
rithm [Coleman and Li, 1996; Gikt al, 1981, mathemati-  .gefficients explicitly: for i-th regions; — 24125 The

. gi+1—3gi
cally formulated as: translation of ther; pointintoz; — g; gives the intercept coef-

ficients ¢;) a new meaning - they become the function values
min leHx +fTx at the grid points. The rewritten equation for our example is
X 2 given below.

2
(anxi + by, — Uz)
(gn—1<z:i<gp,y:)ES

Ax<b

. . L 1 i — ?
The (quadratic) criterion function is given by matfikand MSE =— Z (x 1 (bg —b1) + b1 — yz) +

vectorf. It must be minimized over all vectoss The re- 5] (wignes V92 T 91

maining three equations give additional constraints: dine

inequalities are defined with matrix and vectorb; simi- r 2
larly A, andbe, define linear equalities. Lower and upper ...+ Z (lig"_l(bn —bp_1)+bp_1— yl) )
bounds ofx are defined byb andub respectively. (zignes NI T In—1



whereg;_1 <z; <g;forj=2,... n. z <0.0

In the above formulation of thé/SFE equation the in-
tercept coefficients; denote the function values at the grid /
points. In orded to minimize\/SE on the datasef, the y=M, y=M
matrix H andf (the criterion function) must be filled with (z)
coefficients ab;. The matrixH is square and symmetric, and @
its fields contain the coefficients that are located next & th x <-0.01
mixed terms after we have simplified the above expression.

We mark the coefficient next to the mixed tetin- b; with /
k;i;. It then follows: H;; = k;;. Similarly, f contains coeffi-
cients that are placed next to the teym

Qualitative constraints are taken into account with matrix (b)

A andb. The values are set according to the= M (z)

which means that the function values;)(at split points Figure 3: (a) Hand-crafted qualitative tree for the = 22
Gi < G2 < ... < Geng must satisfy the inequalities:  gomain.(b) Qualitative tree induced by QUIN.

by < by < ... < bena)) (see[Suc and Bratko, 20q3or

detailed description).

The outline of the)? algorithm in Fig. 2 shows construc- 44
tion of the numerical model. In every leaf of the qualita- 354
tive tree, qualitative constraints are replaced with cstesit 34
piece-wise linear functions, based on the data contained in
that particular leaf. When glueing these functions togethe
the problem of discontinuities in the class variable at the v
borders between leaves is not addressed. We have consid-
ered several possible approaches towards this issue,und fo
them to be overall unsatisfactory, as they cannot guarantee 057
both continuity and qualitative faithfulness of the model. 0

-0.5
3.3 Q? Simple example 2 s 1 05 51 1
Here we show an example of tlig? learning approach. We
sampled a simple function and used §)®learning approach Figure 4: QCGrid model foy = z2. The root split from
in order to reconstruct the function qualitatively and diitan QUIN's qualitative tree is indicated by a vertical linezat=
tatively. —0.01.

For the purpose of the example we sampled the function
y = x2. We randomly chose 20 values of the independent o ) )
variablez from the interval: € [-2,2]. In each of the sam- ~ We extend this simple example with comparison of the
pled points, we computed the value of the dependent variableumerical accuracy between the descrilidapproach and
y. This way, we obtained a dataset with 20 examples, eaclpcally weighted regression - LWR\tkesonet al, 1997,
example consisting of the value of the independent variable implemented in WEKA[Witten and Frank, 2040 We ob-
and the corresponding function valye= 22. tained learning data with additional resampling of the z2

The first step of the)? approach is the construction of a function thus obtaining 10 datasets, each consisting of 20
qualitative model. A hand crafted qualitative model for ourexamples, with no added noise. The comparison was per-
simple example is shown in Fig(®. The induced qualitative formed as follows: Both methods used internal 4-fold cross-
model is shown in Fig. (b). We can see that the only differ- Vvalidation to determine the best prediction parametersRLW
ence between the models is the value of the internal (sygjjiti  used Gaussian weighting function, with possible values for
node - when constructing the hand crafted model we knevdumber of nearest neighbours taken frgin2, ..., 20]. Pos-
the correct splitting value, whereas QUIN was given only thesible values for parametér of the QCGrid algorithm were
sampled learning data and no background knowledge regarégken from[0.1,0.2,...,0.5]. Each of the 10 datasets was
ing the function to be modeled. Both qualitative trees allg fu once used as the learning set for both methods. The induced
consistent with the learning data. models were then tested on the remaining 9 datasets, thus we

To perform qualitative-to-quantitative transformatiore w Performed 90 experiments. The error was measuredradth
used the QCGrid algorithm. Fig. 4 shows the result of themean squared errofRMSE).

Q2Q transformation, when using QUIN-induced qualitative To evaluate the obtained results, we first performed a
tree. QCGrid induced piecewise linear functions in bothpaired comparison of all 90 obtained numerical errors. The
leaves of the qualitative tree - both functions consist of¢h (> approach had lower RMSE in 74% of the experiments.
segments, as the value of paramdtevas set to 0.2. Hence Mean RMSE over all 90 experiments of th8 approach was
the minimum number of examples in segments of both leave8.12, with standard deviation 0.1, while LWR achieved only
was 2. It can also be observed that extreme data values a@e32, with standard deviation 0.29. We then grouped numeri-
end points of the underlying grid. cal results, obtained with the same learning set and average

x=-0.01

2 -
1.51
14

b=
o
o
—
—
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o



them. So, we had 10 average prediction errors, each resulthe current stage of the project, only ground-level data was
ing from one of the learning sets. Such comparison betweensed. The values in model grid points present the average
learning algorithms shows th&}? is on average better in 9 over the whole model grid cell and it is not possible to as-
out of 10 cases. To determine whether these differences asess, within the model framework, a sub grid cell variation.
significant, we performed t-test, which showed the signifi-When interpolating meteorological parameters in a seatecte
cance at level 0.04. point (for instance a meteorological station) from modet ou
The obtained results were further analysed in order to deput fields, it is erroneously assumed that model output repre
termine the reason for poor performance of the LWR ap-sents values in the centers of model grid cells. Therefore we
proach. Fig. 5 shows prediction of both methods on one ofpproximated the values at the required points through nu-
the test sets, if learning set shown in Fig. 4 is used. We camerical regression. We decided to use stepwise linearsegre
see that LWR makes rather large quantitative and quaktativsion method to build a regression model for each of the mete-
errors - a consequence of poor learning examples coverage arological parameters separately. With the stepwise nietho
some regions of the learning dataset. Using qualitative-moda regression model is built progressively. At each step, the
els as guidance in such problematic areas alleviates predimdependent variable which has the smallest P-value (using
tion, hence better performance of 8 approach. F-test), is added to the model, but only if that probabilgy i
smaller tharD.05. Variables already in the regression equa-
tion are removed if their P-value becomes larger thanThe
method terminates when no more variables are eligible for in
clusion or removal. In our case, independent variables were
meteorological measurements of temperature, solar radjat
relative humidity and pressure at the meteorologicalmtati
in Ljubljana and Nova Gorica. The dependent variables are
prognostic model values at 210 grid points over Slovenih wit
resolution of 11 km. Time resolution of data is 3 hours. Final
results were eight linear regression models (for four nreteo
logical variables at two stations).
Meteorological and air quality measurements are done
half-hourly. No additional preprocessing is needed, sthee
] o ) predictions are made for the location of meteorological sta
Figure 5: Prediction of the two competing approaches: LWRjon.
makes rather large quantitative and more qualitative 8/ror - The data from the ALADIN model were used together with
while Q* predictions are qualitatively consistent. meteorological and air quality measurements to induce-a pre
diction model for Ljubljana. On the other hand, only half-
. hourly spaced meteorological and air quality measurements
4 The learning data were used alone to induce a qualitative model for Nova Gor-

Available data are meteorological (temperature, reldtive ~ ica, which was evaluated by a meteorologist and a chemist.

midity, wind speed and direction, solar radiation, preipi  The principals used in CAMx model were compared to the

tion) and air quality measurement®4, NO, NO,, CO)  induced qualitative model.

as well as predictions of the ALADIN model. Because of

changes in the structure of the ALADIN model, we are im-5 Results

ited to use its predictions only from 2001 to 2003. The mea; o

surement data was taken from the same period with a lot o?'l Qualitative model

missing values encountered. The measuring tolerances afdie available data for qualitative model building was a $et o

also high and prevent potencial improvement of numericameteorological and air quality half-hourly measurements i

accuracy which is in the same range as the tolerances. Nova Gorica. Nova Gorica was chosen because the measure-
By an expert opinion, the amount of data is too small inments showed higher levels of ozone concentrations and more

many aspects, namely the time period, the number of mednteresting dynamics. Namely, the experts expected tleat th

sured variables and the number of measurement stations. Vanodel would highly depend on wind direction because wind

ious important measurements, such as VOC, are currentig known to be the reason for high level concentrations. To

not available and the process of acquiring them is underwagnable a reference to the time of the day, the attribuies in-

Even so, it was possible to induce meaningful qualitativecluded as an index of the begining of each half-hourly period

models, and a numerical model whose prediction accuracye. t € [0,47]. QUIN cannot efficiently handle large learn-

suffices for operational use. To enable the evaluation of théng sets, neither in terms of examples nor the attributeg. Th

accuracy of the induced model, the data was split at the verigarning set was therefore sampled taking evétyexample

beginning into the learning set and the test set. The legrninand subsets of 4 attributes were passed to QAN 2003

set was taken to include the data from 2001-2002, while dat@he output models were evaluated by coverage and qualita-

from 2003 was left for testing. tive uncertainty which QUIN calculates. The following sét o
ALADIN output data are 3D fields of meteorological pa- attributes came out to be the best on the given learning set:

rameters with a finite resolution, in our case 11 km. Up torelative humidity ), solar radiation.§), index of half-hour




interval ¢), nitrogen dioxide concentratiolMO). The re- in section 4. At that point, the meteorological measuresent

sulting qualitative tree is shown in figure 6. were performed. The attributes used alg:AX NO (max.
s : concentration ofVO in the last 36 hours before the predic-
Experts’ interpretation tion is made)Tavg915L.J (avg. of the ALADINSs predic-

The first look at the selected attributes shows that no kreletions of temperature from 09:00 to 15:00) in Ljubljana (LJ)
vant attributes were chosen. Surprisingly, no dependence and Ssum015L.J (the sum of ALADINs predictions of so-
wind can be found, which can, by one interpretation, indi-jar radiation from 00:00 to 15:00). The qualitative tree for
cate that local sources of ozone precursors in the city havgjubljana is shown in figure 7. It shows that the ozone con-
an important role in ozone formation. It also turns out, fromcentration is positively correlated with the temperatune a
the analysis of data scatter plots, that the wind directieam solar radiation while negatively correlated with the cance
surements themselves cannotindicate the informationtibat tration of NO. The concentration aV O in the leaves of the
human expert can conclude from other sources, such as Itafyalitative trees reflects the dominating mechanisms of the
ian air pollution cadastral registers etc., that were natuait  ozone cycle. Higher NO concentrations occur during night
disposal. time with low ozone concentration (right branch). On the
The split in the root of the tree is made on< 10 which  contrary, high ozone concentration as a result of photoehem

means 5 a.m. and clearly separates the dynamics at nigl#fal formation prevents high'O concentration (left branch).
and day. The monotonic qualitative constraint (MQW)Q)

may seem disturbing since there is no solar radiation during MAXNO <443
the night, but the analysis of the examples in the leaf shows - ~_
slightly increasing dependence, presumably in summer.days:it -/ 700500 araxxo) Tavg915LJ < 279.2
In the right subtree, there is a split an < 35, i.e. _—
17:30. This break point separates the periods of increas- MG o015 LT, MAXNO, Tavg915L.7) M(Jr:_?iu771015LJ,Tuv_q915LJ)

ing/decreasing dependence regardingrhe ozone concen-
tration grows with, i.e. O3 = M(Jg), until 17:30. The produc-

tion of O3 is higher than consumption. Although it has been
generally known to happen in the late afternoon, there awe tw
possible explanations, not excluding each other. Since WE,

are modeling the system in_ the cities i.t is very likely that th scribe the presence and intensity of photochemical restio
amount of traffic, which is increased in the afternoon Whenin the atmosphere. During night time and cloudy days with-
EJVe((;ple g0 .home_l_frzom Wori, Influ?nces thlj‘ by mc;_reasm_gtygut solar radiation, temperatures are usually lower. In our
0 gaemlsspnsih Ieselaqgve nown (t)c?use_rhe reac |odns Wit3se, temperature showed better statistical correlatitm w
3, 0€Creasing the level aF; concentration. 1n€ SECONA €X- ;46 concentration, which resulted in the second leafs Thi

planation says that solar radiation is decreasing, respiti : ; :
i X ' proves that highest ozone concentrations occur during day-
O3 decreasing. The right subtree of the 35 node includes time in summer in hot, sunny and dry weather.

two splits ONN 0. The value of the upper split separates ?he We used QCGrid to build a numerical model from the qual-
space to higher and lowév O concentrations, while the split itative one. Numerical accuracy of induced model is com-
onNO; < 8.6 further separates low and average concentrag - - o linear regression (LR) and model trees (F@in-

tions. Obviously, MQCs are the same but the regression fun an, 1992. Table 1 shows the RMSE measured on the test

tions in the leaves differ by slope which is the reason faéhr oo™ 5 t;ms out to be superior to LR and M5, although not
leaves instead of one. This is a concequence of highly norEignificantly '

linear chemical processes. Finlayson-Pifimlayson-Pitts
and Pitts, 200Pdiscusses the non-linearity of the dependence

of O3(NO,,VOC) while the qualitative constraints are the Taple 1: Comparison of the numerical accuracy of the com-

Figure 7: Qualitative model for Ljubljana

Temperature and solar radiation are statistically higbly c
lated, so a model can choose each of the variables to de-

same as in our model. . peting methods

The left subtree of < 35 demands a meteorological expla-
nation. The space is nicely separated by relative humidity ( RMSE on testsef LR MS | Q2
to dry (H < 35), average wetds < H < 93) and precipita- Ljubljana 21.63] 22.94] 199
tion (H > 93). The MQCs are also easily explained since we

+,+,+
always have one or more dependence ftosn= M(t,&NOZ).

TheM(+H) in the left leaf of the subtree is not very logical but 6 Discussion and related work

the analysis again shows that the regression slope is v&ry 10 A qualitative model was induced from available measurement
almost 0. In fact, this dependence could easily be removegaia of meteorological and air quality variables. The peepo
from the tree in the pruning process, if necessary. of this model is to describe the complex process of ozone
. . formation. The qualitative model was evaluated from sev-
5.2 Numerical predictions eral perspectives - by expert meteorologist, expert chtemis
The attributes used in the learning process were built flemt and compared to models in the literatuf€iflayson-Pitts and
ALADIN predictions at the model grid points, neighboring Pitts, 2000). The experts found the models explanatory and
the meteorological station point in both cities, as desatib consistent with their understanding of the relevant preess
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Figure 6: The qualitative model for Nova Gorica built fromasarement data. Attributes: relative humidifj)( solar radiation
(5), index of half-hour intervalt], nitrogen dioxide concentratiotO-)

Separate qualitative models were induced for ozongana, for evaluation of our qualitative model from the chem-
process analysis and prediction of ozone concentratidmein t istry point of view. National ICT Australia is founded by the
city of Ljubljana. ALADIN model forecasts were used as Australian Government’'s Backing Australia’s Ability irat
attributes for this purpose. The accuracy of numericalipred tive, in part through the Australian Research Council.
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