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Abstract

Most models of qualitative reasoning depend upon
gualitative representations of quantity that make the
necessary and relevant distinctions for the reason-
ing task at hand. Automatically generating such ab-
stractions from numerical models has been pointed
out to be a practically significant and potentially
difficult problem [Struss, 200B Previous work
[Sachenbacher and Struss, 2D0%ed finite rela-
tional models as a starting point to generate ab-
stractions. In this paper, we work with a black box
model that relates an output variable with known
landmarks to a set of input variables for which the
landmarks need to be determined. For most prob-
lems of practical significance, the input space is
too large to be exhaustively examined. We present
a simple randomized scheme for discovering land-
marks which performs surprisingly well in time that
is only polylogarithmic in the input size.

1 Introduction
A key insight of qualitative reasoning is that powerful rea-
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to writing qualitative model fragments. The problem of how
to automatically find the necessary and relevant distinctions
remains largely unsolved (but sEachenbacher and Struss,
2001] [Paritosh, 2008.

[Struss, 200Bhas pointed out the practical importance and
difficulties in generating such abstractions automatically from
numerical simulation models. In a real-life industrial sce-
nario, one might have access to complex and opague numeri-
cal models — MATLAB/Simulink models with nonlinear ana-
Iytic functions, tables with empirical data and even black-box
model fragments with C code. Transforming such a model
into a qualitative diagnosis model provides finite compact
representations that can be used for on-board diagnosis.

In this paper, we present the Landmark Discovery (LD)
problem, and randomized algorithms which solve it with
provable performance guarantees. The time complexity of
our algorithms is only polylogarithmic in the input size with
polynomially small error probability.

We motivate the problem with an example in Section 2.
Section 3 is devoted to definitions and terminology. Section
4 presents the problem formulation, algorithm and analyses.
Section 5 discusses related work. We conclude with future
work in section 6.

soning can be performed with an appropriate quantization of

the continuous space. In tlguantity spaceaepresentation

[Forbus, 1984 continuous values are represented via sets 0

ordinal relationships to interesting comparison points. Ther
are two kinds of such comparison pointsmit pointsare de-
rived from general properties of a domain as applicable to

specific situation. The precise numerical values of these limi
points can change over time, e.g., the boiling point of a fluid

is the function of its pressuré.andmark valueslenote con-
stant points of comparison on the space of numerical value

By letting the modeler choose these comparison points, th

guantity space representation allows for variable resolutio

reasoning task at hand. For example, the temperature of

S

2 Black Box Landmark Discovery

{et’s look at a simple example. Consider the case of fluid

Flow through a pipe. At low velocities, the flow is smooth,

or laminar. Depending on the ratio of inertial and viscous
rces, which is captured by Reynold’s number, the flow can
e laminar, transitional, or turbulent.

Suppose for a certain flow, we are given a black-box model,
M, that relates the Reynold’s numbé, in a certain flow to
the velocity of flow,V, the characteristic distance describing
the flow, D, viscosity of fluid,, and the densityy. This is

to make just the necessary and relevant distinctions for t},?used for the sake of illustration, as for certain flows one might

%ave a closed-form expression for Reynold’s number.

fluid might be represented in terms of its relationship to the

freezing and boiling points of the fluid. The particular com-

parison points are usually chosen by the modeler as a first ste (0,V,D,1 )—
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J[0,2000] = Laminar
0 (2000,4000] = Transient
0 (4000,00) = Turbulent

M
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Figure 1:Black box model for computing Reynold’s number




In this model,R is the output variable, and we can query and finite.Landmarksare points in the domains of each input
the model with values for all the input variables, namely,variable. The output variable belongs to two different target
V, D, n and p. For each of the input variables, we distinctions across a landmark of a given variable, for some
are given the range of values that they can take, and theombination of input values of the other variables. We repre-
granularity. The interesting distinctions for the values ofsent the landmarks for the input variable as the landmark
Reynold’'s number characterizing the flow are given to us aget, £/ = {7, ..., ¢ }. Alandmark set is callethaximalif

{(0,2000), (2000, 4000), (4000, c0) } with the three intervals it contains all the landmarks for that input variable. We illus-

corresponding to laminar, transitional and turbulent flow scetrate these concepts in Figure 2(a) for the case of one input
narios. FollowinglSachenbacher and Struss, 2D0%e call  and one output variable.

these thearget distinctions We are interested in finding the
corresponding distinctions for the input variable. The rangg,nqmark sets for each of the input variables. In the next sec-
and the granularity of input variables gives rise to a discretqion we formally define this problem '

input space. This space can be very large. Not all distinctions '
in the input space are needed if we are just interested in type

of flow. Given a black box model and a set of target qual- ; ;
itative distinctions for the output variable, we are interested4 Algorithms and analysis

in finding the coarsest representation of the input space, i.§ue first present the simpler case of one input variable to illus-

the minimum distinctions that we need to make in order 416 the algorithm, after which we discuss the general case of
capture all the distinctions thatl makes. d input variables.

One such representation is a sefarfdmarksfor each of
the input variables. If there aréinput variables, the land- . . . .
marks imply a grid whose cells arédimensional hyper- 4.1 Landmark Discovery with one input variable
rectangles such that for any point inside this hyper-rectangl
the output variable is in the same target qualitative state.

The landmark discoveryroblem is to find the maximal

e .
Problem 1 (Landmark Discovery: 1 Input).
INPUT: A functionf : 7 — 7.

it ; OuTPUT: A set of pointsC = {¢4, ..., ¢, } such thatf (¢; —

3 Definitions and Terminology 1) % F(€)vi and|£] is maximized.
We consider a system with one output variabje,and d o . )
input variables. The discussion here can be generalized to Let n be the number of points in the input space, i.e.,
the case of more than one output variables. We assunfe = |Z|. Let L, = {{1,...,(,} be the true landmark set
that there is a model)/, which has a functional form, i.e., such that/; < ¢, < ---£,. We now present a randomized
y = M(x1,22,...,14). We say thal/ is a black box model algorithm which outputs a landmark séf,; C £, such that
as we don’t know) directly, or make any assumptions about Lout CONtains all the landmarks il with high probability.
M. M could be instantiated as Simulink/C code. We can
query M with vaIL_Jes for the input variables to find the value Algorithm 1 1-LD(c,0)
for the output variable.

We assume that input variable, can take real values from 1. Samplef uniformly ats = C‘l"% points fromZ. Letthe
a given closed interval. Even though input variables can take  points ber;, 7o, ..., suchthaty; <7, < ... <r,.
real values, because of measurement and/or observability lim-, | et o — .
itations, we have a maximum granularity on the input values. ) . .
A measurement granularity is the smallest difference that can 3- Foralli € [1,s — 1], if f(r:) # f(r; + 1), do a binary
be noticed. Thus the domain of input variables is observable ~ S€arch to find a landmarksuch thatf (¢) # f(¢ — 1).
as a set of discrete points in the given interval. In Sachen- Let Lot = Lour U {¢}.
bacher and Struss’ formalism, this corresponds to the set of 4. OQutputL,,.
observable distinctions for the variable. Let the domain of an
input variable,z;, be the sef = {1,2,...,n}. We assume
the cardinality of each of the dimensions to be the same for ) ] )
the ease of exposition. However, this assumption is not critil heorem 1. Algorithm 1-LD finds all landmarks which are at
cal for either the correctness or performance of our algorithmleasts-n apart in O(£ log? n) runtime with error probability
The output variable takes on real values. Furthermore, we(m/n) for any constant > 0.
are given a partition of the domain of output variable, which
correspond to qualitatively distinct regions called theget
distinctions

By querying the model), with values for the input vari- _ ’ )
ables we can obtain the value for the output variable, and thugf algorithm isO(§ log™ n).
the corresponding target distinction. Thusimplies a map- Foranyl; € L, suchthat; — ¢;_1,€;41 — £; > d-n, let
ping, f, from the discrete input space to the discrete output?’,, be the probability of not including; in £,.:. Note that
space of target distinctions. Letbe the set of givearget  if the set of sample points contain somg € [¢;_1,¢;] and
distinctionsfor the output variable. Note thatis countable x5 € [¢;,¢;,1], then we are guaranteed to inclugan Lg.s.

PROOF For any two consecutive sample points, Algorithm
1-LD spends at mosP(log n) time for binary search. Since
there are a total af(§ log n) sample points, the total runtime
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Figure 2:Example of the landmark discovery problem for one input variable. Figure 2(a) shows the relationship between the input variable
x and the output variablg. Ty, T1, T are target distinctions fay. Figure 2(b) shows the intervals on the domaincafientified by the

landmarks 41, 42, . .

., ¢s corresponding to the given target distinctions. All points within an interval between two adjacent landmarks on

map to the same target distinction pnAcross a landmark, the variahtemaps to different target distinctions.

Therefore,
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SinceP,, < 2-n~¢forall /; € L., the probability that
Lout Misses any of the landmarksh which are at least-n

apart is at mose-m-n—¢ which iso(m/n°). R

Corollary 1.1. If all landmarks inL, are at leasty-n apart,
then Algorithm 1-LD finds them all in tim@( § log? n) with

error probability o(m /n°) for any constant > 0.

4.2 Landmark Discovery with d input variables

Problem 2. [Landmark Discoveryd Inputs]
INPUT: A functionf : 7¢ — A.

OuTPUT: Setsf!,..., L% wherell = {#,...

that the following holds for all < j <d
1. For all ¢

flot, o = g it )

2. |£7] is maximized.

€ LI, Elx'l,...,_asj_l,xji"‘l,...
T such thatf(z!,... 2771 ¢ — 1,29+ .

43} such

,xd S

@) £

Let n = |Z|. The total size of the input spaceri€. Let

£l=1a,...,

¢} be the true landmark set. We present a

randomized algorithm which outputs a Iandmarkség C
L% such thatC? . contains all the landmarks i€ with high

probability.

For the d-dimensional case, the landmarks imply a grid
whose cells aré-dimensional hyper-rectangles such that for
any point inside this hyper-rectangle, the output variable is in
the same target qualitative state.

Letd = (a',...,a?) denote a point in d-dimensional space
and @ be its j* components’. Each landmark? € £
defines al—1 dimensional axis parallel hyperplafg,; given

by the equationZ7 = ¢/. Further letA,; and B,; be two
adjacent grid cells such that their common face lighnand
the points in4,; belong to a different target qualitative state

than those inB,,, i.e. if@ € A,; andb € B, thenf(a) #
f(l?). We call any sucmegv andB,v,Z to beE{—separated grid
cells

Definition For any two pointst and i such thatf(z) #
f(#), alandmark/’ is said toresolve# andy if and only if
< <gordd <03 <,

Figure3 illustrates these definitions for the case of two in-
put variables.

Algorithm 2 d-LD(c,A)
1. Samplef uniformly ats = < log n points fromZ<.
2. Letll , =0 Vj.
3. For all pairs of sample points, andsy, if ﬂé{ € L7 for
any j such that?’ resolvess, ands,, then do /a binary
search between, ands, to find a landmark/, which

’

resolves them. Lef? , = £7 U {¢}}.

out

4. Outputl? , V.

out

Theorem 2. Algorithm d-LD finds all landmarkg such
that /—separated grid cells are at leash-n? large in
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Figure 3:Example illustrating the concepts used in th@imensional landmark discovery problem. Shown is the input space for two inputs.
Figure 3(a) depicts regions which correspond to different target qualitative distinctions, 1 and 2. The dotted lines in Figure 3(b) indicate th
grid implied by these regions. The landmatkiefines the 1 dimensional hyperplane (line), represented by the thickdiaed B represents

the ¢-separated grid regions.

O(m(52)? log? n) runtime with error probabilityo(mm/n)  too close to each other. Such an assumption is quite reason-
for any constant: > 0. able in practice. For instance, based on physical or measure-
ment constraints, we might expect how close the landmarks

PrROOE For any pair of sample points, we spend at most ; .
O(m) time searching for a resolving landmark. For everycan be. The constafitaptures this constraint. The constant

landmark, we spend at mot(dlog n) time for the binary represents the tradeoff between running time and probabilis-

search in which it is discovered. Hence the total running timetIC guarantee of success.
is O(ms? + mdlogn) which isO(m(<¢)2log? n).
F( +j % ) (m(Z) jg : . 5 Related Work
or any#! € L3, let A and B be two ¢ —separated grid
cells. Note that a point il and one inB can be resolved Although the idea of necessary and relevant distinctions is
only by the landmark’. Hence, we are guaranteed to include @ cornerstone of qualitative reasoning, Struss and Sachen-
53 in Egut if the set of sample points contain somg € A bacher were the first to highlight and formalize the problem

. d d as theQualitative Abstraction ProblertStruss and Sachen-
andzg € B. Therefore, if 4] > An®and|B| 2 Anf, then bacher, 199P They gave a solution to the case of finite re-

P, < Pr[# a sample inA OR 7 a sample inB] fg%rfl models, and an implementation of their algorithm,
- (1 B AI)S N (1 B Im)s The problem presented here is a special case of the qual-
- nd nd itative abstraction problem for the case of ordered domains.

And ® The domainZ¢ of the functionf maps to the concept ab-
< 2. (1 - — ) servable distinctionsThedomain abstractionsire captured
n by the setsL. Thetarget distinctionsare captured by the set
d

= 2(1-A)TF" T o .

e ton(1—a) Thetarget d|st|nct|ons_are present onl_y on the single output
= 2n~ & variable (in our formulation). Our algorithm extends easily to
< opcd the case when there are target distinctions on more than one

output variable. We find thdomain abstractionsC for each
SinceP,; < 2-n—¢forall ff € L3 forall dimensiong, the  variable (with target distinctions) separately and then merge
‘ (find intersections) of the results. This statement has actually
been proved iStruss and Sachenbacher, 1099
The problem formulation in this work prescribes a func-
tional relationship that connects each variable with target dis-
. . tinctions with the other variables. The requirements that the
4.3 Discussion resultant solution bdistinguishingand maximalis captured
The input spacd? is too large to be exhaustively searched by conditions 1 and 2 in Problem 2 in Section 4. While the
for landmarks. In an adversarial situation, scanning the entirsolution methodology described[iBachenbacher and Struss,
input space is unavoidable. However, the above algorithm&001] applies to general case of unordered domains, the work
demonstrate that we can get good guarantees for finding aflere presents an efficient way of solving the problem with
the landmarks in sublinear time when the landmarks are natrdered domains. Our approach could be used in conjunc-

probability thatZ,.; misses any of the landmarks e £ for
any j such that the” —separated grid cells are at ledstn?
in size is at mos2-m-n~? which iso(m/n°¢). B



tion with their model-based approach which exploits knowl-[Struss and Sachenbacher, 1p%ter Struss and Martin
edge of relationships between variables. Or, one could use Sachenbacher. Significant Distinctions Only: Context-
our methods to create a finite abstraction of the input space Dependent Automated Qualitative Modeling. Rroceed-
that could be then used as a starting point by a system like ings of the13!" International Workshop on Qualitative
AQUA. In our problem we assume that at least one of the Reasoning, Loch Awe, Scotlgri®99.

output variables is also the target variable. _ [Struss, 200B Peter Struss. Automated Abstraction of Nu-
Another very different approach is taken Bparitosh, = " erical Simulation Models - Theory and Practical Experi-
2003. The goal of his work is to find cognitively plausi-  ence. InProceedings of the Workshop of Algebrain Models

ble qualitative representations of quantity. The key insight ¢ Reasoning, KI-2003, Hamburg, Germagg03.
there is that important qualitative distinctions arise because ' ’ ’

of discontinuities in the relational structure of the domain.
The theory has been implemented in a system, CARVE, that
takes a set of examples represented in predicate calculus as
input and determines tHamit points on various quantitative
dimensions.

6 Conclusions and Future Work

Clearly, no algorithm can guarantee to find all the landmarks
without looking at the entire input space. However the in-
put space could be prohibitively large to be exhaustively ex-
amined. For such cases we are able to find landmarks that
are not too close to each other with polynomially small error
probability in polylogarithmic runtime.

In this paper we have only analyzed the case when the qual-
itative states correspond to axis-parallel hyper-rectangles in
the input space. As future work, we intend to extend these
techniques to general d-dimensional polyhedra. We also be-
lieve there is scope for tightening the analysis and improving
the run-time of the algorithm by more carefully choosing a
subset of all the pairs of sample points to be resolved.

We presented sublinear algorithms for finding all land-
marks under the assumption that they are not too close. An-
other possible approach might be to allow the landmarks to
be arbitrarily close but exploit the property that the number
of landmarks for a variable is usually much less than its input
space.
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