
Abstract 
It has recently been proven that it is impossible to 
build a sound and complete qualitative simulator 
using the QSIM representation for input and out-
put. We provide an alternative proof which em-
ploys a smaller subset of the QSIM vocabulary, 
and show that the problem persists for several 
weakened versions of the representation. For this 

purpose, we demonstrate a method for modeling 
and simulating an arbitrary Unlimited Register Ma-
chine using QSIM, and thereby establish that 
QSIM has universal computational power. Our 
findings may be helpful for researchers interested 
in constructing provably sound and complete quali-
tative simulators using weaker representations. 

1 Introduction 
State-of-the-art qualitative simulators [Weld and de Kleer, 
1990; Forbus, 1990; Kuipers, 1994] are known to be sound1; 
no trajectory which is the solution of a concrete equation 
matching the input can be missing from the output. How-
ever, it has recently been proven [Say and Ak n, 2003] that 
it is impossible to provide the additional guarantee of com-
pleteness that such a simulator will never produce a spurious 
prediction for any input: For any sound qualitative simulator 
using the input-output representation and task specification 
of the QSIM [Kuipers, 1994] methodology, there exist input 
models and initial states whose simulation output will con-
tain behaviors that do not correspond to any possible solu-
tion of the input equations. 

The proof in [Say and Ak n, 2003] shows that a sound 
and complete qualitative simulator employing the vocabu-
lary mentioned above, if it existed, could be used to solve 
any given instance of Hilbert s Tenth Problem, which is 
famously undecidable [Matiyasevich, 1993]. The procedure 
involves building a QSIM model representing the given 
problem, simulating it several times starting from carefully 
constructed initial states representing candidate solutions, 
and examining the output to read out the solution. 

                                                

 

1 The terms sound and complete are used in the same sense as 
in [Kuipers, 1994] throughout the paper. 

It is important to note that this proof does not necessarily 
mean that all hope of constructing a provably sound and 
complete qualitative simulator is completely lost. One may 
try to weaken the input-output representation so that it no 
longer possesses the problematic power which enables one 
to unambiguously encode instances of Hilbert s Tenth Prob-
lem into a QSIM model. (Of course, this weakening must be 
kept at the minimum possible level for the resulting pro-
gram to be a useful reasoner; for instance, removing the 
program s ability to distinguish between negative and non-
negative numbers would possibly yield a sound and com-
plete simulator, but the output of that program would just 
state that everything is possible and this is not what we 
want from these methods.) This is why one should examine 
the incompleteness proof in [Say and Ak n, 2003] to see 
exactly which features of the QSIM representation are used 
in the construction of the reduction; any future qualitative 
simulator supporting the same vocabulary subset would be 
incorporating the same problem from the start. 

Here is a listing of the QSIM representational items used 
in that proof: Of the several qualitative constraint types 
available in the vocabulary [Kuipers, 1994], only the mono-
tonic increasing function (M+), derivative (d/dt), multiplica-
tion (mult) and constant constraints are utilized. (Note the 
absence of the add constraint, which can be implemented 
using the others, in this list.) Qualitative interval magnitudes 
like (0, ), with what one might call infinite uncertainty

 

about the actual value of the represented number, are used 
for initializing several variables and form an essential part 
of the argument. QSIM s ability to explicitly represent infi-
nite limits is utilized for equating a landmark to the number 

by stating that it is twice the limit of the function arctan x 
as x nears infinity. Finally, the operating region transition 
feature is used heavily, since it is thanks to this characteris-
tic that the sine function can be represented in the qualita-
tive vocabulary. 

In this paper, we consider several alternative subsets of 
the representation, and show that the ineradicable spurious 
prediction problem persists even when only the add and 
constant constraints are allowed, and infinite landmarks are 
banished. If one allows the mult constraint as well, then the 
resulting qualitative simulator is inherently incomplete even 
when the representation of negative numbers is forbidden 
and every variable is forced to be specified with zero uncer-

Causes of Ineradicable Spurious Predictions in Qualitative Simulation 

Özgür Y lmaz and A. C. Cem Say 
Bo aziçi University 

Department of Computer Engineering 
Bebek, 34342, stanbul, Turkey 

yilmozgu@boun.edu.tr, say@boun.edu.tr 



tainty (i.e. as a single unambiguous real number) in the ini-
tial state. 

The rest of the paper is structured as follows: In Section 
2, we clarify what one means when one talks about a sound 
and complete qualitative simulator. Section 3 describes the 
Turing-equivalent abstract automata called Unlimited Regis-
ter Machines (URM) used in our proof of incompleteness. 
Section 4 contains the main results of this paper, whereas 
Section 5 is a conclusion. 

2 Desiderata for a sound and complete 
qualitative simulator 

It is important at this point to clarify exactly what one 
would expect from a hypothetical sound and complete 
qualitative simulator. If the input model yields a finite 
behavior tree of genuine solutions, it is obvious that the 
program is supposed to print the descriptions of the 
behaviors forming the branches of this tree, and nothing 
else, in finite time. If the input model and initial state are 
inconsistent, i.e., the correct output is the empty tree, the 
program should report this inconsistency in finite time. 

Finally, if the input yields a behavior tree with infinitely 
many branches, (QSIM s ability of introducing new 
landmarks during the simulation makes this possible) the 
program is supposed to run forever, adding a new state to its 
output every once in a while. More formally, for every 
positive i, there has to be an integer s such that the program 
will have printed out the first i states of the behavior tree 
(according to some ordering where the root, i.e. the initial 
state, is state number 1, and no descendants of any particular 
state are printed before that state itself) at the end of the sth 

step in its execution. Note that these requirements mean that 
a sound and complete simulator would have to be able to 
decide whether the initial system state description given to it 
is consistent with the input model or not within a finite time. 
This necessity is used in the proof of incompleteness in 
Section 4. 

3 Unlimited register machines 
The easiest way of thinking about a URM is to see it as a 
computer with infinite memory which supports a particu-
larly simple programming language. A URM [Cutland, 
1980] program P consists of a finite sequence of instructions 
I1, I2, ..., I|P|. The instructions may refer to the machine s 
registers Ri, each of which can store an arbitrarily big natu-
ral number. We use R1, R2, ... to refer to URM registers, and 
r1, r2, r3 ... for the register contents. 

There are four types of URM instructions: 
succ(n): Increment the content of register n by one.    

Rn  rn + 1 
zero(n): Set the content of register n to zero.    

Rn 0 
jump(m, n, q): Compare registers m and n. If they are 

equal, continue with instruction q.     

If rm = rn then jump to Iq 

transfer(m, n): Transfer the contents of Rm to Rn. Only 
Rn is modified.    

Rn  rm 

A URM program starts execution with the first instruc-
tion. If the current instruction is not a jump whose equality 
condition is satisfied, it is followed by the next instruction 
in the list. The program ends if it attempts to continue be-
yond the last instruction, or if a jump to a nonexistent ad-
dress is attempted. 

If P = I1, ..., I|P| is a URM program, it computes a function 
P(k) : Nk 

 

N. P(k)(a1, ..., ak) is computed as follows: 
- Initialization: Store a1, ..., ak in registers R1, ..., Rk, re-

spectively, and set all other registers referenced in 
the program to 0. 

- Iteration: Starting with I1, execute the instructions in the 
order described above. 

- Output: If the program ends, then the computed value of 
the function is the number r1 contained in register R1. 
If the program never stops, then P(k)(a1, ..., ak) is un-
defined. 

Table 1 contains an example of a URM program which 
computes the function f(x, y) = x + y. Note that the function 
is from N2 to N, where the input values x and y are stored in 
registers R1 and R2, and the output of the function is ex-
pected to be stored in R1 at the end of the program.  

I1: zero(3)  

I2: jump(2, 3, 6) 

I3: succ(1) 

I4: succ(3) 

I5: jump(1, 1, 2) 

TABLE 1. URM program computing f(x, y) = x + y  

The program first sets R3 to zero. It checks to see if R3 = 
R2 (in the case that y = 0). Otherwise, it increments both R1 

and R3. This continues until x has been incremented y times, 
and the value in R1 is returned. 

The URM model of computation is equivalent to the nu-
merous alternative models such as the Turing machine 
model, the Gödel-Kleene partial recursive functions model 
and Church s lambda calculus [Cutland, 1980; Shepherdson 
and Sturgis, 1963] in the sense that the set of functions 
computable by URM s is identical to the set of the functions 
that can be computed by any other model. This means that a 
model which can simulate any given URM is as powerful as 
a Turing machine, since it can simulate any given Turing 
machine. In our new proof of QSIM incompleteness in the 
next section, we will make use of the fact that the halting 
problem for URM s is undecidable. [Cutland, 1980]  



4 New incompleteness results for qualitative 
simulators  

All the incompleteness results about new subsets of the 
QSIM vocabulary that are presented in this paper are based 
on the following theorem, which shows that QSIM can 
simulate any URM, and thereby has Turing-equivalent 
computational power.   

Theorem 1:

 

For any URM program P with |P| instruc-
tions, there exists a QSIM model QP with |P|+2 operating 
regions, which simulates it.   

Proof:

 

The proof will be by construction. Suppose we are 
given a URM program P with instructions I1, ..., I|P|. Let R1, 
..., RN be the registers mentioned in the instructions of P. 
Now define your QSIM variables as follows: 

For any Ri in P, define a QSIM variable NRi which will 
represent it. Define U, V, Z, and X, which will serve as aux-
iliary variables. U s legal range is the interval (0, one), 
where one is a landmark equal to 1. (Exact representation of 
any integer is possible in QSIM using a collection of add, 
constant and mult constraints. [Say and Ak n, 2003]) V is 
the derivative of U and is a finite positive constant in every 
operating region. Z is constant at zero in every operating 
region. So QP has a total of N+4 variables.  

Our QSIM model will have |P|+2 operating regions: Each 
instruction Ii of P will have a corresponding operating re-
gion named OpRegi. The two remaining regions are OpReg0, 
corresponding to the initialization stage of P, and 
OpReg|P|+1, corresponding to its end. 

The specification of each operating region must contain 
the constraints that are valid in that region, the boolean con-
ditions (composed of primitives of the form Vari-
able=<qualitative magnitude, qualitative direction>) which 
would trigger transitions to other operating regions when 
they are obtained, and lists that detail which variables in-
herit their previous magnitudes after such a transition, and 
which of them are initialized to new values during that 
switch. Tables 2-8 describe how to prepare these items for 
the operating regions in our target model, based on the pro-
gram P. There are six different operating region templates 
(or types ) used in the construction; one for each URM 
instruction type, one for OpReg0, and one for OpReg|P|+1. 

The model of OpReg0 is depicted in Table 2. This is 
where our simulation of P will start. All the NRi variables 
are supposed to be set to landmarks equated to their proper 
initial values specified by the user of P in the initial state. 
U is supposed to be initialized to (0, inc) in the initial state. 
Since V is always positive, QSIM will compute a single 
qualitative behavior segment, which ends with a transition 
to OpReg1 when U reaches (one, inc) at time-point t1 for this 
region. 

As seen in Tables 2-8, exactly which variables keep their 
values during a transition depends on the type of the target 
operating region. Regions corresponding to instructions of 
the type zero(n) and transfer(m, n) should not inherit the 
value of Rn from their predecessors, since they involve the 

replacement of that value by another one anyway. All other 
types of regions, including the succ(n) type, inherit all the 
register contents from their predecessors. (Although the 
value of Rn does change in a succ instruction, the new value 
depends on the old one, unlike the cases of zero(n) and 
transfer(m, n). The corresponding QSIM variable NRn in-
creases continuously during the simulation of a region of 
type succ(n), and a new region transition occurs exactly at 
the moment when it has increased by one unit).  

Operating Region:  OpReg0 

{Type: Initialization} 
Constraint Set: constant(V) 

 

constant(Z) 

 

constant(X) 

 

constant(NRi) (for all i 

 

{1, ...,N}) 

 

d/dt(U, V) 
Possible Transition: 

 

Trigger: ( U = (one, inc) )  

 

New Operating Region: OpReg1 

 

Variables inheriting qualitative magnitudes: 
  See Table 3, indexed by the type of OpReg1 

 Variables with new asserted values:  U 

 

(0, inc) 

TABLE 2. Model of the operating region OpReg0, corresponding 
to the initialization of the URM   

Type of target operating region: succ(n) OR  jump(m, n, q) 

 

Variables inheriting qualitative magnitudes: 
 NRi   for all i 

 

{1,..., N}, V, Z 
------------------------------------------------------------------- 
Type of target operating region: End 

 

Variables inheriting qualitative magnitudes: 
 NRi   for all i 

 

{1,..., N}, V, Z, X 
------------------------------------------------------------------- 
Type of target operating region:  zero(n) OR  transfer(m, n) 

 

Variables inheriting qualitative magnitudes: 
 NRi   for all i 

 

{1,..., N}-{n}, V, Z, X 

TABLE 3. Variables which should inherit magnitudes according 
to type of the target operating region  

The simulation of the given URM program proceeds as 
follows: As described in the previous section, the URM 
starts with an initial configuration, where the registers R1, 
..., Rk store the nonnegative integers a1, ..., ak, which form 
the input of the program, respectively. The other N-k regis-
ters are set to 0. Correspondingly our QSIM program has for 
each of the first k NRi variables the quantity spaces (0, li, ), 
if the corresponding input ai is nonzero, where the land-
marks li s are equated to the natural numbers ai. (The addi-
tional auxiliary variables and constraints necessary for the 
unambiguous expression of these numbers are supposed to 
be included in OpReg0, in addition to what is presented in 
Table 2. All these additional variables are inherited and held 
constant in all operating regions.) These NRi variables with 
nonzero initial values start on the landmarks, with qualita-
tive values (li, std), whereas those with zero initial values 



(NRi, i  {1, ..., k} s.t. ai=0) and the remaining NRi variables 
i 

 
{k+1, ..., N} have quantity spaces (0, ) and start on (0, 

std). The variable X has the quantity space (- , 0, ) and 
starts initially at (0, std). The quantity space of the variable 
U is (0, one) where the landmark one is equated to 1, as 
mentioned above. U starts initially at qualitative value (0, 
inc).The derivative of U, V, has as quantity space (0, speed, 

), where speed is also equated to 1. It starts at qualitative 
value (speed, std) and is constant in the whole simulation.  

Note that all variables start the simulation at landmarks, 
whose values are given with zero initial uncertainty. 

  

Operating Region:  OpRegi 

{Type: zero(n)} 
Constraint Set: add(Z, Z, NRn) 

 

constant(V) 

 

constant(Z) 

 

constant(X) 

 

constant(NRi) (for all i 

 

{1,...,N}) 

 

d/dt(U, V) 
Possible Transition: 

 

Trigger: ( U = (one, inc) )  

 

New Operating Region: OpRegi+1 

 

Variables inheriting qualitative magnitudes: 
  See Table 3, indexed by the type of OpRegi+1 

 Variables with new asserted values:  U 

 

(0, inc) 

TABLE 4. Model template for operating regions corresponding to 
zero(n) instructions of the URM  

Operating Region:  OpRegi 

{Type: succ(n)} 
Constraint Set: add(X, U, NRn) 

 

constant(V) 

 

constant(Z) 

 

constant(X) 

 

constant(NRi) (for all i 

  

{1,...,N}-{n}) 

 

d/dt(U, V) 
Possible Transition: 

 

Trigger: ( U = (one, inc) )  

 

New Operating Region: OpRegi+1 

 

Variables inheriting qualitative magnitudes: 
  See Table 3, indexed by the type of OpRegi+1 

 Variables with new asserted values:  U 

 

(0, inc) 

TABLE 5. Model template for operating regions corresponding to 
succ(n) instructions of the URM  

Our model is so constrained that a sound and complete 
qualitative simulator is guaranteed to produce exactly one 
behavior prediction for any initial state corresponding to a 
valid URM input. To see this, it is sufficient to observe that, 
at any step of the simulation, there is sufficient information 
available to the simulator to compute the exact numerical 
value of every variable in the model. (This just corresponds 
to tracing the URM program and keeping note of the reg-
ister contents up to that step.) If the modeled URM halts on 
the particular input given in the initial state, the QSIM be-
havior is supposed to be a finite one, ending when the vari-

able U attempts to exceed one in OpReg|P|+1. If the URM 
computation does not halt, then the QSIM behavior is sup-
posed to be a single infinite sequence of states, which never 
visits OpReg|P|+1. We are now ready to state the new version 
of the incompleteness theorem.  

Operating Region:  OpRegi 

{Type: transfer(m, n)} 
Constraint Set: add(NRm, Z, NRn) 

 

constant(V) 

 

constant(Z) 

 

constant(X) 

 

constant(NRi) (for all i 

 

{1,...,N}) 

 

d/dt(U, V) 
Possible Transition: 

 

Trigger: ( U = (one, inc) )  

 

New Operating Region: OpRegi+1 

 

Variables inheriting qualitative magnitudes: 
  See Table 3, indexed by the type of OpRegi+1 

 Variables with new asserted values:  U 

 

(0, inc) 

TABLE 6. Model template for operating regions corresponding to 
transfer(m, n) instructions  

Operating Region:  OpRegi 

{Type: jump(m, n, q)} 
Constraint Set: add(NRm, X, NRn) 

 

constant(V) 

 

constant(Z) 

 

constant(NRi) (for all i 

 

{1, ...,N}) 

 

d/dt(U, V) 
Possible Transition: 

 

Trigger: ( U = (one, inc) ) AND ( X 

 

(0, std) ) 

 

New Operating Region: OpRegi+1 

 

Variables inheriting qualitative magnitudes: 
  See Table 3, indexed by the type of OpRegi+1 

 Variables with new asserted values:  U 

 

(0, inc) 

 

Possible Transition: 

 

Trigger: ( U = (one, inc) ) AND ( X = (0,std) ) 

 

New Operating Region: OpRegq 

 

Variables inheriting qualitative magnitudes: 
  See Table 3, indexed by the type of OpRegq 

 Variables with new asserted values:  U 

 

(0, inc) 

TABLE 7. Model template for operating regions corresponding to 
jump(m, n, q) instructions  

Operating Region:  OpReg|P|+1 

{Type: End} 
Constraint Set: constant(V) 

 

constant(Z) 

 

constant(X) 

 

constant(NRi) (for all i 

 

{1, ,N}) 

 

d/dt(U, V) 

TABLE 8. Model of the operating region OpReg|P|+1, 
corresponding to the end of the URM program  



Theorem 2:

  
Even if the qualitative representation is nar-

rowed so that only the d/dt, add, mult, and constant con-
straints can be used in QDE s, and each variable is forced to 
start at a finite landmark whose value is given with zero 
uncertainty in the initial state, it is still impossible to build a 
sound and complete qualitative simulator based on this in-
put-output vocabulary.  

Proof:

 

Assume, for the sake of the contradiction, that 
such a sound and complete simulator exists. We know show 
how to solve the halting problem for URM s using that al-
gorithm as a subroutine.  

Construct the corresponding QSIM model as described in 
Theorem 1 for the URM program P whose halting status on 
a particular input is supposed to be decided. Now define a 
new variable S with quantity space (0, one, ), where the 
landmark one is equated to the number 1. S starts at the 
value (one, std) in the initial state. Add the constraint con-
stant(S) to all the operating regions, and specify that the 
value of S is inherited in all possible transitions. Insert the 
new constraint add(Z, Z, S) in OpReg|P|+1. Consider what the 
simulator is supposed to do when checking the initial state 
for consistency. Note that we would have an inconsistency 
if the simulation ever enters OpReg|P|+1, since the add con-
straint that we inserted to that region implies that S is zero, 
which would contradict with the inherited value of one. So a 
simulator which is supposed not to make any spurious pre-
dictions is expected to reject the initial state at time t0 as 
inconsistent, if the simulation is going to enter OpReg|P|+1, in 
other words, if the URM program under consideration is 
going to halt. If this sound and complete simulator does not 
reject the initial state due to inconsistency, but goes on with 
the simulation, then we can conclude that the program P will 
not halt. This forms a decision procedure for the halting 
problem. Since the halting problem is undecidable, a sound 
and complete simulator using this representation can not 
exist. 

 

It is in fact possible to remove the derivative constraint 
(which is only used in our proof to ensure that the behavior 
tree has at most one branch) from the representation as well, 
and the incompleteness result shown above would still 
stand:  

Theorem 3: Even if the qualitative representation is nar-
rowed so that only the add, mult, and constant constraints 
can be used in QDE s, and each variable is forced to start at 
a finite landmark whose value is given with zero uncertainty 
in the initial state, it is still impossible to build a sound and 
complete qualitative simulator based on this input-output 
vocabulary.  

Proof:

 

We will make a minor modification to the proof of 
Theorem 2. We observe that in the construction of Theorem 
1, U always starts every operating region at (0, inc) and the 
fact that its derivative is a positive constant forces it to reach 
the value (one, inc) in the next time point. Then the transi-
tion to next operating region occurs, and U again receives 
the value (0, inc). What happens if we remove the variable V 

and all d/dt constraints from the model? In this case, since 
U s derivative is not fixed, there are three possible future 
states for U: (one, inc), (one, std), and ((0, one), std). We fix 
this problem by inserting another possible region transition 
specification to all of our regions, except OpReg|P|+1. This 
transition will be triggered when U has one of the values 
(one, std), and ((0, one), std), and its target will be 
OpReg|P|+1. The variable S from the proof of Theorem 2, as 
well as all other variables, are inherited completely during 
this transition. So all the unwanted behaviors which 
would be created due to the elimination of U s derivative 
end up in OpReg|P|+1, and should therefore be rejected as 
spurious in accordance with the argument of the previous 
proof. Hence, once again, the simulator is supposed to ac-
cept the initial state as consistent if and only if P does not 
halt, meaning that a sound and complete simulation is im-
possible with this representation as well. 

  

Operating Region:  OpRegi 

{Type: jump(m, n, q)} 
Constraint Set: add(NRm, O, C) 

 

add(NRn, O, Y) 

 

mult(X, C, Y) 

 

constant(O) 

 

constant(C) 

 

constant(Y) 

 

constant(V) 

 

constant(Z) 

 

constant(NRi) (for all i 

 

{1,...,N}) 

 

d/dt(U, V) 
Possible Transition: 

 

Trigger: ( U = (one, inc) ) AND ( X  (one, std) ) 

 

New Operating Region: OpRegi+1 

 

Variables inheriting qualitative magnitudes: 
  Depends on the type of OpRegi+1 

 Variables with new asserted values:  U 

 

(0, inc) 

 

Possible Transition: 

 

Trigger: ( U = (one, inc) ) AND ( X = (one, std) ) 

 

New Operating Region: OpRegq 

 

Variables inheriting qualitative magnitudes: 
  Depends on the type of OpRegq 

 Variables with new asserted values:  U 

 

(0, inc) 

TABLE 9. Alternative model template for operating regions 
corresponding to jump(m, n, q) instructions which avoids negative 

numbers  

Interestingly, one can even restrict the representation so 
that only nonnegative numbers are supported, and the in-
completeness result we proved above still stands:  

Theorem 4: Even if the qualitative representation is nar-
rowed so that only the add, mult, and constant constraints 
can be used in QDE s, each variable is forced to start at a 
finite landmark whose value is given with zero uncertainty 
in the initial state, and no variable is allowed to have a nega-
tive value at any time during the simulation, it is still impos-



sible to build a sound and complete qualitative simulator 
based on this input-output vocabulary.  

Proof:

 
In our previous proof, only variable X ever has the 

possibility of receiving a negative value, and that occurs 
only in a jump region. We replace Table 7 with Table 9 and 
introduce the new variables O, C, and Y .To all operating 
regions we set the constraint that these variables are con-
stant. The variable O has quantity space (0, one) and ini-
tially starts with qualitative value (one, std), where the land-
mark one is set to numerical value 1. O is inherited by all 
possible transitions. The remaining variables C and Y are 
also inherited by all transitions, except when the target re-
gion is of type jump. The reason for that is similar to other 
inheritance mechanisms, i.e. we want these variables to take 
new magnitudes appropriate for our simulation in a jump 
region. As can be seen in Table 9, X receives the value 1, if 
and only if the two compared register values are equal. If 
they are unequal, X has a positive value different than 1. 
Therefore X s legal range can be perfectly defined as (0, 
one, ), where one is equated to 1 and no variable ever gets 
a negative value during the simulation. 

 

Alternatively, we can keep negative numbers and remove 
the mult constraint from the representation, if we drop the 
requirement that each variable starts simulation at a value 
with zero uncertainty.  

Theorem 5: Even if the qualitative representation is nar-
rowed so that only the add and constant constraints can be 
used in QDE s, and each variable is forced to start at a finite 
landmark in the initial state, it is still impossible to build a 
sound and complete qualitative simulator based on this in-
put-output vocabulary.  

Proof:

 

We used the mult constraint in the proofs of Theo-
rems 1-3 only for equating landmark values to unambiguous 
integers. Assume that we delete the mult constraints from 
our model of Theorem 3. We introduce a new variable 
called A, which is constant at a positive landmark named 
unit. For any given natural number n, it is possible to intro-
duce a landmark pn to any desired QSIM variable, such that 
pn s equality to n*unit can be unambigously deduced. As an 
example, Table 10 illustrates how the landmark p6 of vari-
able NR8 is equated to 6*unit. Note that we only use con-
stant and add constraints (and a lot of auxiliary variables) 
for this purpose. 

So for those of the k registers whose corresponding initial 
values (ai s) are nonzero, the corresponding initial land-
marks, li s, can be set such that li = ai *unit. The landmark 
one in U s quantity space is renamed as unit. In this new 
model, execution of a succ(n) instruction increments Rn s 
value by one unit. The jump instruction compares landmarks 
whose values equal u*unit and v*unit instead of comparing 
two landmarks whose values equal the natural numbers u 
and v. The same reasoning applies for the transfer instruc-
tion, where, instead of the value u, u*unit is transferred to 
the target register. The zero instruction sets the target regis-
ter to 0, as in the previous construction. So the modeled 

machine does just what the original URM does, since the 
multiplication of all values by the coefficient unit does not 
change the flow of the program, and, in particular, whether 
it halts on its input or not. The rest of the argument is identi-
cal to that of the proof of Theorem 3. 

  
CONSTRAINTS

 
CORRESPONDENCES

 
MEANING 

A = unit   

add(A, A, B) unit + unit = p2 p2 = 2 * unit 

add(B, A, C) p2 + unit = p3 p3 = 3 * unit 

add(C, A, D) p3 + unit = p4 p4 = 4 * unit 

add(D, A, E) p4 + unit = p5 p5 = 5 * unit 

add(E, A, NR8) p5 + unit = p6 p6 = 6 * unit 

TABLE 10. QSIM constraint set built for expressing the equality 
p6 = 6 * unit

  

As a final remark, note that if one has access to a semi-
quantitative simulator [Kuipers, 1994] where it is possible 
for the user to specify bounding numerical intervals for the 
landmark values, one can use our construction of Theorem 
1, and the capability of semi-quantitative simulators to cal-
culate such intervals for the landmarks that are introduced 
during the simulation, to employ this simulator for running 
an arbitrary URM and reading out its numerical output; 
which underlines the computational universality of the 
QSIM engine. (Note that the incompleteness results proven 
above apply automatically to semi-quantitative simulators, 
whose representations are an extension of that of pure 
QSIM.) 

5 Conclusion  

In this paper, we considered several alternative subsets of 
the qualitative representation, and showed that the ineradi-
cable spurious prediction problem persists even when only 
the add and constant constraints are allowed, and infinite 
landmarks are banished. If one allows the mult constraint as 
well, then the resulting qualitative simulator is inherently 
incomplete even when the representation of negative num-
bers is forbidden and every variable is forced to be specified 
with zero uncertainty (i.e. as a single unambiguous real 
number) in the initial state. Our proof relies on showing that 
the QSIM engine is Turing equivalent, and this big compu-
tational power brings with it the undecidability problems 
famously associated with universal computational mecha-
nisms (like whether a Turing machine will enter a certain 
state). Hence, from another point of view, this power can be 
interpreted as a cause of spurious behaviours. A computabil-
ity tool, which has universal computation power, can hardly 
be expected to predict the future states in a complete man-
ner, unless of course its representation power is so weak-
ened to remove it. Note that both the construction of [Say 



and Ak n, 2003] and the alternative proof presented here 
make heavy use of transitions between multiple operating 
regions in the QSIM model, and it is an open problem to 
determine whether sound and complete qualitative simula-
tion would be possible if the representation was weakened 
so that only a single operating region was allowed in the 
models. 
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