
Abstract
It has recently been proven that it is impossible to
build a sound and complete qualitative simulator
using the QSIM representation for input and out-
put. We provide an alternative proof which em-
ploys a smaller subset of the QSIM vocabulary,
and show that the problem persists for several
weakened versions of the representation. For this

purpose, we demonstrate a method for modeling
and simulating an arbitrary Unlimited Register Ma-
chine using QSIM, and thereby establish that
QSIM has universal computational power. Our
findings may be helpful for researchers interested
in constructing provably sound and complete quali-
tative simulators using weaker representations.

1 Introduction
State-of-the-art qualitative simulators [Weld and de Kleer,
1990; Forbus, 1990; Kuipers, 1994] are known to be sound1;
no trajectory which is the solution of a concrete equation
matching the input can be missing from the output. How-
ever, it has recently been proven [Say and Ak n, 2003] that
it is impossible to provide the additional guarantee of com-
pleteness that such a simulator will never produce a spurious
prediction for any input: For any sound qualitative simulator
using the input-output representation and task specification
of the QSIM [Kuipers, 1994] methodology, there exist input
models and initial states whose simulation output will con-
tain behaviors that do not correspond to any possible solu-
tion of the input equations.

The proof in [Say and Ak n, 2003] shows that a sound
and complete qualitative simulator employing the vocabu-
lary mentioned above, if it existed, could be used to solve
any given instance of Hilbert s Tenth Problem, which is
famously undecidable [Matiyasevich, 1993]. The procedure
involves building a QSIM model representing the given
problem, simulating it several times starting from carefully
constructed initial states representing candidate solutions,
and examining the output to read out the solution.

1 The terms sound and complete are used in the same sense as
in [Kuipers, 1994] throughout the paper.

It is important to note that this proof does not necessarily
mean that all hope of constructing a provably sound and
complete qualitative simulator is completely lost. One may
try to weaken the input-output representation so that it no
longer possesses the problematic power which enables one
to unambiguously encode instances of Hilbert s Tenth Prob-
lem into a QSIM model. (Of course, this weakening must be
kept at the minimum possible level for the resulting pro-
gram to be a useful reasoner; for instance, removing the
program s ability to distinguish between negative and non-
negative numbers would possibly yield a sound and com-
plete simulator, but the output of that program would just
state that everything is possible and this is not what we
want from these methods.) This is why one should examine
the incompleteness proof in [Say and Ak n, 2003] to see
exactly which features of the QSIM representation are used
in the construction of the reduction; any future qualitative
simulator supporting the same vocabulary subset would be
incorporating the same problem from the start.

Here is a listing of the QSIM representational items used
in that proof: Of the several qualitative constraint types
available in the vocabulary [Kuipers, 1994], only the mono-
tonic increasing function (M+), derivative (d/dt), multiplica-
tion (mult) and constant constraints are utilized. (Note the
absence of the add constraint, which can be implemented
using the others, in this list.) Qualitative interval magnitudes
like (0,), with what one might call infinite uncertainty

about the actual value of the represented number, are used
for initializing several variables and form an essential part
of the argument. QSIM s ability to explicitly represent infi-
nite limits is utilized for equating a landmark to the number

by stating that it is twice the limit of the function arctan x
as x nears infinity. Finally, the operating region transition
feature is used heavily, since it is thanks to this characteris-
tic that the sine function can be represented in the qualita-
tive vocabulary.

In this paper, we consider several alternative subsets of
the representation, and show that the ineradicable spurious
prediction problem persists even when only the add and
constant constraints are allowed, and infinite landmarks are
banished. If one allows the mult constraint as well, then the
resulting qualitative simulator is inherently incomplete even
when the representation of negative numbers is forbidden
and every variable is forced to be specified with zero uncer-

Causes of Ineradicable Spurious Predictions in Qualitative Simulation

Özgür Y lmaz and A. C. Cem Say
Bo aziçi University

Department of Computer Engineering
Bebek, 34342, stanbul, Turkey

yilmozgu@boun.edu.tr, say@boun.edu.tr

tainty (i.e. as a single unambiguous real number) in the ini-
tial state.

The rest of the paper is structured as follows: In Section
2, we clarify what one means when one talks about a sound
and complete qualitative simulator. Section 3 describes the
Turing-equivalent abstract automata called Unlimited Regis-
ter Machines (URM) used in our proof of incompleteness.
Section 4 contains the main results of this paper, whereas
Section 5 is a conclusion.

2 Desiderata for a sound and complete
qualitative simulator

It is important at this point to clarify exactly what one
would expect from a hypothetical sound and complete
qualitative simulator. If the input model yields a finite
behavior tree of genuine solutions, it is obvious that the
program is supposed to print the descriptions of the
behaviors forming the branches of this tree, and nothing
else, in finite time. If the input model and initial state are
inconsistent, i.e., the correct output is the empty tree, the
program should report this inconsistency in finite time.

Finally, if the input yields a behavior tree with infinitely
many branches, (QSIM s ability of introducing new
landmarks during the simulation makes this possible) the
program is supposed to run forever, adding a new state to its
output every once in a while. More formally, for every
positive i, there has to be an integer s such that the program
will have printed out the first i states of the behavior tree
(according to some ordering where the root, i.e. the initial
state, is state number 1, and no descendants of any particular
state are printed before that state itself) at the end of the sth

step in its execution. Note that these requirements mean that
a sound and complete simulator would have to be able to
decide whether the initial system state description given to it
is consistent with the input model or not within a finite time.
This necessity is used in the proof of incompleteness in
Section 4.

3 Unlimited register machines
The easiest way of thinking about a URM is to see it as a
computer with infinite memory which supports a particu-
larly simple programming language. A URM [Cutland,
1980] program P consists of a finite sequence of instructions
I1, I2, ..., I|P|. The instructions may refer to the machine s
registers Ri, each of which can store an arbitrarily big natu-
ral number. We use R1, R2, ... to refer to URM registers, and
r1, r2, r3 ... for the register contents.

There are four types of URM instructions:
succ(n): Increment the content of register n by one.

Rn rn + 1
zero(n): Set the content of register n to zero.

Rn 0
jump(m, n, q): Compare registers m and n. If they are

equal, continue with instruction q.

If rm = rn then jump to Iq

transfer(m, n): Transfer the contents of Rm to Rn. Only
Rn is modified.

Rn rm

A URM program starts execution with the first instruc-
tion. If the current instruction is not a jump whose equality
condition is satisfied, it is followed by the next instruction
in the list. The program ends if it attempts to continue be-
yond the last instruction, or if a jump to a nonexistent ad-
dress is attempted.

If P = I1, ..., I|P| is a URM program, it computes a function
P(k) : Nk

N. P(k)(a1, ..., ak) is computed as follows:
- Initialization: Store a1, ..., ak in registers R1, ..., Rk, re-

spectively, and set all other registers referenced in
the program to 0.

- Iteration: Starting with I1, execute the instructions in the
order described above.

- Output: If the program ends, then the computed value of
the function is the number r1 contained in register R1.
If the program never stops, then P(k)(a1, ..., ak) is un-
defined.

Table 1 contains an example of a URM program which
computes the function f(x, y) = x + y. Note that the function
is from N2 to N, where the input values x and y are stored in
registers R1 and R2, and the output of the function is ex-
pected to be stored in R1 at the end of the program.

I1: zero(3)

I2: jump(2, 3, 6)

I3: succ(1)

I4: succ(3)

I5: jump(1, 1, 2)

TABLE 1. URM program computing f(x, y) = x + y

The program first sets R3 to zero. It checks to see if R3 =
R2 (in the case that y = 0). Otherwise, it increments both R1

and R3. This continues until x has been incremented y times,
and the value in R1 is returned.

The URM model of computation is equivalent to the nu-
merous alternative models such as the Turing machine
model, the Gödel-Kleene partial recursive functions model
and Church s lambda calculus [Cutland, 1980; Shepherdson
and Sturgis, 1963] in the sense that the set of functions
computable by URM s is identical to the set of the functions
that can be computed by any other model. This means that a
model which can simulate any given URM is as powerful as
a Turing machine, since it can simulate any given Turing
machine. In our new proof of QSIM incompleteness in the
next section, we will make use of the fact that the halting
problem for URM s is undecidable. [Cutland, 1980]

4 New incompleteness results for qualitative
simulators

All the incompleteness results about new subsets of the
QSIM vocabulary that are presented in this paper are based
on the following theorem, which shows that QSIM can
simulate any URM, and thereby has Turing-equivalent
computational power.

Theorem 1:

For any URM program P with |P| instruc-
tions, there exists a QSIM model QP with |P|+2 operating
regions, which simulates it.

Proof:

The proof will be by construction. Suppose we are
given a URM program P with instructions I1, ..., I|P|. Let R1,
..., RN be the registers mentioned in the instructions of P.
Now define your QSIM variables as follows:

For any Ri in P, define a QSIM variable NRi which will
represent it. Define U, V, Z, and X, which will serve as aux-
iliary variables. U s legal range is the interval (0, one),
where one is a landmark equal to 1. (Exact representation of
any integer is possible in QSIM using a collection of add,
constant and mult constraints. [Say and Ak n, 2003]) V is
the derivative of U and is a finite positive constant in every
operating region. Z is constant at zero in every operating
region. So QP has a total of N+4 variables.

Our QSIM model will have |P|+2 operating regions: Each
instruction Ii of P will have a corresponding operating re-
gion named OpRegi. The two remaining regions are OpReg0,
corresponding to the initialization stage of P, and
OpReg|P|+1, corresponding to its end.

The specification of each operating region must contain
the constraints that are valid in that region, the boolean con-
ditions (composed of primitives of the form Vari-
able=<qualitative magnitude, qualitative direction>) which
would trigger transitions to other operating regions when
they are obtained, and lists that detail which variables in-
herit their previous magnitudes after such a transition, and
which of them are initialized to new values during that
switch. Tables 2-8 describe how to prepare these items for
the operating regions in our target model, based on the pro-
gram P. There are six different operating region templates
(or types) used in the construction; one for each URM
instruction type, one for OpReg0, and one for OpReg|P|+1.

The model of OpReg0 is depicted in Table 2. This is
where our simulation of P will start. All the NRi variables
are supposed to be set to landmarks equated to their proper
initial values specified by the user of P in the initial state.
U is supposed to be initialized to (0, inc) in the initial state.
Since V is always positive, QSIM will compute a single
qualitative behavior segment, which ends with a transition
to OpReg1 when U reaches (one, inc) at time-point t1 for this
region.

As seen in Tables 2-8, exactly which variables keep their
values during a transition depends on the type of the target
operating region. Regions corresponding to instructions of
the type zero(n) and transfer(m, n) should not inherit the
value of Rn from their predecessors, since they involve the

replacement of that value by another one anyway. All other
types of regions, including the succ(n) type, inherit all the
register contents from their predecessors. (Although the
value of Rn does change in a succ instruction, the new value
depends on the old one, unlike the cases of zero(n) and
transfer(m, n). The corresponding QSIM variable NRn in-
creases continuously during the simulation of a region of
type succ(n), and a new region transition occurs exactly at
the moment when it has increased by one unit).

Operating Region: OpReg0

{Type: Initialization}
Constraint Set: constant(V)

constant(Z)

constant(X)

constant(NRi) (for all i

{1, ...,N})

d/dt(U, V)
Possible Transition:

Trigger: (U = (one, inc))

New Operating Region: OpReg1

Variables inheriting qualitative magnitudes:
 See Table 3, indexed by the type of OpReg1

 Variables with new asserted values: U

(0, inc)

TABLE 2. Model of the operating region OpReg0, corresponding
to the initialization of the URM

Type of target operating region: succ(n) OR jump(m, n, q)

Variables inheriting qualitative magnitudes:
 NRi for all i

{1,..., N}, V, Z

Type of target operating region: End

Variables inheriting qualitative magnitudes:
 NRi for all i

{1,..., N}, V, Z, X

Type of target operating region: zero(n) OR transfer(m, n)

Variables inheriting qualitative magnitudes:
 NRi for all i

{1,..., N}-{n}, V, Z, X

TABLE 3. Variables which should inherit magnitudes according
to type of the target operating region

The simulation of the given URM program proceeds as
follows: As described in the previous section, the URM
starts with an initial configuration, where the registers R1,
..., Rk store the nonnegative integers a1, ..., ak, which form
the input of the program, respectively. The other N-k regis-
ters are set to 0. Correspondingly our QSIM program has for
each of the first k NRi variables the quantity spaces (0, li,),
if the corresponding input ai is nonzero, where the land-
marks li s are equated to the natural numbers ai. (The addi-
tional auxiliary variables and constraints necessary for the
unambiguous expression of these numbers are supposed to
be included in OpReg0, in addition to what is presented in
Table 2. All these additional variables are inherited and held
constant in all operating regions.) These NRi variables with
nonzero initial values start on the landmarks, with qualita-
tive values (li, std), whereas those with zero initial values

(NRi, i {1, ..., k} s.t. ai=0) and the remaining NRi variables
i

{k+1, ..., N} have quantity spaces (0,) and start on (0,

std). The variable X has the quantity space (- , 0,) and
starts initially at (0, std). The quantity space of the variable
U is (0, one) where the landmark one is equated to 1, as
mentioned above. U starts initially at qualitative value (0,
inc).The derivative of U, V, has as quantity space (0, speed,

), where speed is also equated to 1. It starts at qualitative
value (speed, std) and is constant in the whole simulation.

Note that all variables start the simulation at landmarks,
whose values are given with zero initial uncertainty.

Operating Region: OpRegi

{Type: zero(n)}
Constraint Set: add(Z, Z, NRn)

constant(V)

constant(Z)

constant(X)

constant(NRi) (for all i

{1,...,N})

d/dt(U, V)
Possible Transition:

Trigger: (U = (one, inc))

New Operating Region: OpRegi+1

Variables inheriting qualitative magnitudes:
 See Table 3, indexed by the type of OpRegi+1

 Variables with new asserted values: U

(0, inc)

TABLE 4. Model template for operating regions corresponding to
zero(n) instructions of the URM

Operating Region: OpRegi

{Type: succ(n)}
Constraint Set: add(X, U, NRn)

constant(V)

constant(Z)

constant(X)

constant(NRi) (for all i

{1,...,N}-{n})

d/dt(U, V)
Possible Transition:

Trigger: (U = (one, inc))

New Operating Region: OpRegi+1

Variables inheriting qualitative magnitudes:
 See Table 3, indexed by the type of OpRegi+1

 Variables with new asserted values: U

(0, inc)

TABLE 5. Model template for operating regions corresponding to
succ(n) instructions of the URM

Our model is so constrained that a sound and complete
qualitative simulator is guaranteed to produce exactly one
behavior prediction for any initial state corresponding to a
valid URM input. To see this, it is sufficient to observe that,
at any step of the simulation, there is sufficient information
available to the simulator to compute the exact numerical
value of every variable in the model. (This just corresponds
to tracing the URM program and keeping note of the reg-
ister contents up to that step.) If the modeled URM halts on
the particular input given in the initial state, the QSIM be-
havior is supposed to be a finite one, ending when the vari-

able U attempts to exceed one in OpReg|P|+1. If the URM
computation does not halt, then the QSIM behavior is sup-
posed to be a single infinite sequence of states, which never
visits OpReg|P|+1. We are now ready to state the new version
of the incompleteness theorem.

Operating Region: OpRegi

{Type: transfer(m, n)}
Constraint Set: add(NRm, Z, NRn)

constant(V)

constant(Z)

constant(X)

constant(NRi) (for all i

{1,...,N})

d/dt(U, V)
Possible Transition:

Trigger: (U = (one, inc))

New Operating Region: OpRegi+1

Variables inheriting qualitative magnitudes:
 See Table 3, indexed by the type of OpRegi+1

 Variables with new asserted values: U

(0, inc)

TABLE 6. Model template for operating regions corresponding to
transfer(m, n) instructions

Operating Region: OpRegi

{Type: jump(m, n, q)}
Constraint Set: add(NRm, X, NRn)

constant(V)

constant(Z)

constant(NRi) (for all i

{1, ...,N})

d/dt(U, V)
Possible Transition:

Trigger: (U = (one, inc)) AND (X

(0, std))

New Operating Region: OpRegi+1

Variables inheriting qualitative magnitudes:
 See Table 3, indexed by the type of OpRegi+1

 Variables with new asserted values: U

(0, inc)

Possible Transition:

Trigger: (U = (one, inc)) AND (X = (0,std))

New Operating Region: OpRegq

Variables inheriting qualitative magnitudes:
 See Table 3, indexed by the type of OpRegq

 Variables with new asserted values: U

(0, inc)

TABLE 7. Model template for operating regions corresponding to
jump(m, n, q) instructions

Operating Region: OpReg|P|+1

{Type: End}
Constraint Set: constant(V)

constant(Z)

constant(X)

constant(NRi) (for all i

{1, ,N})

d/dt(U, V)

TABLE 8. Model of the operating region OpReg|P|+1,
corresponding to the end of the URM program

Theorem 2:

Even if the qualitative representation is nar-

rowed so that only the d/dt, add, mult, and constant con-
straints can be used in QDE s, and each variable is forced to
start at a finite landmark whose value is given with zero
uncertainty in the initial state, it is still impossible to build a
sound and complete qualitative simulator based on this in-
put-output vocabulary.

Proof:

Assume, for the sake of the contradiction, that
such a sound and complete simulator exists. We know show
how to solve the halting problem for URM s using that al-
gorithm as a subroutine.

Construct the corresponding QSIM model as described in
Theorem 1 for the URM program P whose halting status on
a particular input is supposed to be decided. Now define a
new variable S with quantity space (0, one,), where the
landmark one is equated to the number 1. S starts at the
value (one, std) in the initial state. Add the constraint con-
stant(S) to all the operating regions, and specify that the
value of S is inherited in all possible transitions. Insert the
new constraint add(Z, Z, S) in OpReg|P|+1. Consider what the
simulator is supposed to do when checking the initial state
for consistency. Note that we would have an inconsistency
if the simulation ever enters OpReg|P|+1, since the add con-
straint that we inserted to that region implies that S is zero,
which would contradict with the inherited value of one. So a
simulator which is supposed not to make any spurious pre-
dictions is expected to reject the initial state at time t0 as
inconsistent, if the simulation is going to enter OpReg|P|+1, in
other words, if the URM program under consideration is
going to halt. If this sound and complete simulator does not
reject the initial state due to inconsistency, but goes on with
the simulation, then we can conclude that the program P will
not halt. This forms a decision procedure for the halting
problem. Since the halting problem is undecidable, a sound
and complete simulator using this representation can not
exist.

It is in fact possible to remove the derivative constraint
(which is only used in our proof to ensure that the behavior
tree has at most one branch) from the representation as well,
and the incompleteness result shown above would still
stand:

Theorem 3: Even if the qualitative representation is nar-
rowed so that only the add, mult, and constant constraints
can be used in QDE s, and each variable is forced to start at
a finite landmark whose value is given with zero uncertainty
in the initial state, it is still impossible to build a sound and
complete qualitative simulator based on this input-output
vocabulary.

Proof:

We will make a minor modification to the proof of
Theorem 2. We observe that in the construction of Theorem
1, U always starts every operating region at (0, inc) and the
fact that its derivative is a positive constant forces it to reach
the value (one, inc) in the next time point. Then the transi-
tion to next operating region occurs, and U again receives
the value (0, inc). What happens if we remove the variable V

and all d/dt constraints from the model? In this case, since
U s derivative is not fixed, there are three possible future
states for U: (one, inc), (one, std), and ((0, one), std). We fix
this problem by inserting another possible region transition
specification to all of our regions, except OpReg|P|+1. This
transition will be triggered when U has one of the values
(one, std), and ((0, one), std), and its target will be
OpReg|P|+1. The variable S from the proof of Theorem 2, as
well as all other variables, are inherited completely during
this transition. So all the unwanted behaviors which
would be created due to the elimination of U s derivative
end up in OpReg|P|+1, and should therefore be rejected as
spurious in accordance with the argument of the previous
proof. Hence, once again, the simulator is supposed to ac-
cept the initial state as consistent if and only if P does not
halt, meaning that a sound and complete simulation is im-
possible with this representation as well.

Operating Region: OpRegi

{Type: jump(m, n, q)}
Constraint Set: add(NRm, O, C)

add(NRn, O, Y)

mult(X, C, Y)

constant(O)

constant(C)

constant(Y)

constant(V)

constant(Z)

constant(NRi) (for all i

{1,...,N})

d/dt(U, V)
Possible Transition:

Trigger: (U = (one, inc)) AND (X (one, std))

New Operating Region: OpRegi+1

Variables inheriting qualitative magnitudes:
 Depends on the type of OpRegi+1

 Variables with new asserted values: U

(0, inc)

Possible Transition:

Trigger: (U = (one, inc)) AND (X = (one, std))

New Operating Region: OpRegq

Variables inheriting qualitative magnitudes:
 Depends on the type of OpRegq

 Variables with new asserted values: U

(0, inc)

TABLE 9. Alternative model template for operating regions
corresponding to jump(m, n, q) instructions which avoids negative

numbers

Interestingly, one can even restrict the representation so
that only nonnegative numbers are supported, and the in-
completeness result we proved above still stands:

Theorem 4: Even if the qualitative representation is nar-
rowed so that only the add, mult, and constant constraints
can be used in QDE s, each variable is forced to start at a
finite landmark whose value is given with zero uncertainty
in the initial state, and no variable is allowed to have a nega-
tive value at any time during the simulation, it is still impos-

sible to build a sound and complete qualitative simulator
based on this input-output vocabulary.

Proof:

In our previous proof, only variable X ever has the

possibility of receiving a negative value, and that occurs
only in a jump region. We replace Table 7 with Table 9 and
introduce the new variables O, C, and Y .To all operating
regions we set the constraint that these variables are con-
stant. The variable O has quantity space (0, one) and ini-
tially starts with qualitative value (one, std), where the land-
mark one is set to numerical value 1. O is inherited by all
possible transitions. The remaining variables C and Y are
also inherited by all transitions, except when the target re-
gion is of type jump. The reason for that is similar to other
inheritance mechanisms, i.e. we want these variables to take
new magnitudes appropriate for our simulation in a jump
region. As can be seen in Table 9, X receives the value 1, if
and only if the two compared register values are equal. If
they are unequal, X has a positive value different than 1.
Therefore X s legal range can be perfectly defined as (0,
one,), where one is equated to 1 and no variable ever gets
a negative value during the simulation.

Alternatively, we can keep negative numbers and remove
the mult constraint from the representation, if we drop the
requirement that each variable starts simulation at a value
with zero uncertainty.

Theorem 5: Even if the qualitative representation is nar-
rowed so that only the add and constant constraints can be
used in QDE s, and each variable is forced to start at a finite
landmark in the initial state, it is still impossible to build a
sound and complete qualitative simulator based on this in-
put-output vocabulary.

Proof:

We used the mult constraint in the proofs of Theo-
rems 1-3 only for equating landmark values to unambiguous
integers. Assume that we delete the mult constraints from
our model of Theorem 3. We introduce a new variable
called A, which is constant at a positive landmark named
unit. For any given natural number n, it is possible to intro-
duce a landmark pn to any desired QSIM variable, such that
pn s equality to n*unit can be unambigously deduced. As an
example, Table 10 illustrates how the landmark p6 of vari-
able NR8 is equated to 6*unit. Note that we only use con-
stant and add constraints (and a lot of auxiliary variables)
for this purpose.

So for those of the k registers whose corresponding initial
values (ai s) are nonzero, the corresponding initial land-
marks, li s, can be set such that li = ai *unit. The landmark
one in U s quantity space is renamed as unit. In this new
model, execution of a succ(n) instruction increments Rn s
value by one unit. The jump instruction compares landmarks
whose values equal u*unit and v*unit instead of comparing
two landmarks whose values equal the natural numbers u
and v. The same reasoning applies for the transfer instruc-
tion, where, instead of the value u, u*unit is transferred to
the target register. The zero instruction sets the target regis-
ter to 0, as in the previous construction. So the modeled

machine does just what the original URM does, since the
multiplication of all values by the coefficient unit does not
change the flow of the program, and, in particular, whether
it halts on its input or not. The rest of the argument is identi-
cal to that of the proof of Theorem 3.

CONSTRAINTS

CORRESPONDENCES

MEANING

A = unit

add(A, A, B) unit + unit = p2 p2 = 2 * unit

add(B, A, C) p2 + unit = p3 p3 = 3 * unit

add(C, A, D) p3 + unit = p4 p4 = 4 * unit

add(D, A, E) p4 + unit = p5 p5 = 5 * unit

add(E, A, NR8) p5 + unit = p6 p6 = 6 * unit

TABLE 10. QSIM constraint set built for expressing the equality
p6 = 6 * unit

As a final remark, note that if one has access to a semi-
quantitative simulator [Kuipers, 1994] where it is possible
for the user to specify bounding numerical intervals for the
landmark values, one can use our construction of Theorem
1, and the capability of semi-quantitative simulators to cal-
culate such intervals for the landmarks that are introduced
during the simulation, to employ this simulator for running
an arbitrary URM and reading out its numerical output;
which underlines the computational universality of the
QSIM engine. (Note that the incompleteness results proven
above apply automatically to semi-quantitative simulators,
whose representations are an extension of that of pure
QSIM.)

5 Conclusion

In this paper, we considered several alternative subsets of
the qualitative representation, and showed that the ineradi-
cable spurious prediction problem persists even when only
the add and constant constraints are allowed, and infinite
landmarks are banished. If one allows the mult constraint as
well, then the resulting qualitative simulator is inherently
incomplete even when the representation of negative num-
bers is forbidden and every variable is forced to be specified
with zero uncertainty (i.e. as a single unambiguous real
number) in the initial state. Our proof relies on showing that
the QSIM engine is Turing equivalent, and this big compu-
tational power brings with it the undecidability problems
famously associated with universal computational mecha-
nisms (like whether a Turing machine will enter a certain
state). Hence, from another point of view, this power can be
interpreted as a cause of spurious behaviours. A computabil-
ity tool, which has universal computation power, can hardly
be expected to predict the future states in a complete man-
ner, unless of course its representation power is so weak-
ened to remove it. Note that both the construction of [Say

and Ak n, 2003] and the alternative proof presented here
make heavy use of transitions between multiple operating
regions in the QSIM model, and it is an open problem to
determine whether sound and complete qualitative simula-
tion would be possible if the representation was weakened
so that only a single operating region was allowed in the
models.

References
[Cutland, 1980] N. J. Cutland. Computability: An Introduc-

tion to Recursive Function Theory. Cambridge Univer-
sity Press, 1980.

[Forbus, 1990] K. D. Forbus. The Qualitative Process En-
gine, In D. S. Weld and J. de Kleer, eds. Readings in
Qualitative Reasoning About Physical Systems. San
Mateo, California: Morgan Kaufmann, 220-235, 1990.

[Kuipers, 1994] B. J. Kuipers. Qualitative Reasoning: Mod-
eling and Simulation with Incomplete Knowledge. Cam-
bridge, Mass.: The MIT Press, 1994.

[Matiyasevich, 1993] Y. Matiyasevich. Hilbert s Tenth
Problem. Cambridge, Mass.: The MIT Press, 1993.

[Say and Ak n, 2003] A. C. C. Say, H.L.Ak n. Sound and
complete qualitative simulation is impossible. Artificial
Intelligence 149: 251-266, 2003.

[Shepherdson and Sturgis, 1963] J. C. Shepherdson and H.
E. Sturgis. Computability of Recursive Functions. Jour-
nal for the Association for Computing Machinery 10:
217-255, 1963.

[Weld and de Kleer, 1990] D. S. Weld and J. de Kleer.
Readings in Qualitative Reasoning About Physical Sys-
tems. San Mateo, California: Morgan Kaufmann, 1990.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

