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Abstract

A technique for diagnosis of a class of asyn-
chronous discrete-event systems is presented. It
copes with uncertain observations while monitor-
ing the system, by generating diagnostic informa-
tion at the occurrence of each new fragment of ob-
servation. Uncertainty may stem from noise af-
fecting the communication channels, and from the
multiplicity of such channels, which is bound to re-
lax the absolute temporal ordering of the observ-
able events. The challenge in large-scale applica-
tion domains is twofold: reasoning without any ex-
plicit global model of the system, and incremen-
tally generating the knowledge structures, taking
into account that estimates of the system state and
the relevant candidate diagnoses may not survive
the occurrence of a new piece of observation.

1 Introduction
Diagnosis is the task of finding out the faults affecting a sys-
tem based on observed symptoms. Although a central topic
in Artificial Intelligence (AI) and historically one of the first
to be tackled, automated diagnosis is still a research sub-
ject. Up to the middle of the 1990s, diagnostic reasoning
mainly focused on static and quasi-static systems, while in the
last decade the applicability of model-based diagnosis to the
larger class ofdynamic systemshas been investigated[Struss,
1997; Brusoniet al., 1998; Consoleet al., 2002]. This led
to the awareness that such a task depends on the ability to
estimate the state based on observations.

Discrete-event systems (DESs) are a qualitative abstraction
of continuous dynamic systems that has been receiving in-
creasing attention from the AI community[Rozé and Cordier,
2002; Lamperti and Zanella, 2003; Grastienet al., 2004;
Schumannet al., 2004]. Each state variable of a DES can only
range over a finite number of symbolic values and the behav-
ior of the DES can be described by means of state changes
driven by a finite set of events. In the literature (as well as
in this paper) the topology of each DES is usually distributed
[Pencolé, 2004], specified as a network of components. The
behavioral model of each component is a communicating au-
tomaton representing a nondeterministic and complete behav-
ior. The challenge with large-scale DESs is reasoning without
any explicit behavioral model of the whole system.

This paper deals with diagnosis while monitoring a DES.
A diagnostic result is produced by processing each newly

occurred observation fragment. At each step, the reason-
ing engine starts from the current system state and finds out
all possible evolutions (sequences of transitions) that com-
ply with the given fragment, thus reaching the next system
state. However, since there may be several evolutions com-
plying with the same observable event (especially when such
an event is uncertain), each estimated system state is a hy-
perstate (including several candidate system states). More-
over there may be system states in the current hyperstate that
will not survive the next processing step. At each step, the
incremental problem-solving method can either throw away
all the hyperstates apart from the current one (thus reduc-
ing space) or keep them in memory so as to reuse them (thus
increasing efficiency). The approach proposed in this paper
is inspired by thebridged diagnostic method[Lamperti and
Zanella, 2004a] and by the notion of an uncertain observation
[Lamperti and Zanella, 2002]. The latter allows the modeling
of real world observations that are uncertain as to the identity
of the observed labels (logical uncertainty) and/or their recip-
rocal emission order (temporal uncertainty) and/or the iden-
tity of the component emitting the label (source uncertainty).
The main difference between an uncertain and a fragmented
observation is that the former cumulatively represents all the
observable events received over a time interval (and therefore
it is an input fora posteriori diagnosis, which is the only task
faced in[Lamperti and Zanella, 2002]) while the latter repre-
sents a single uncertain observable event, namely amessage.
No previous contribution in the literature to monitoring-based
diagnosis of DESs considers uncertain observable events.

2 Modeling
A systemis a network ofcomponentsconnected to one an-
other throughlinks. Each component is modeled by a com-
municating automaton that reacts to events either from the ex-
ternal world or from neighboring components through links.
Formally, the automaton is a 6-tuple(S,Ein, I,Eout,O,T),
whereS is the set of states,Ein the set of input events,I the
set of input terminals,Eout the set of output events,O the
set of output terminals, andT the nondeterministic transition
functionT : S × Ein × I × 2Eout×O 7→ 2S. A transition
T ∈ T, from S to S′, that is triggered by evente at input ter-
minal I, and generates eventse1, . . . , ek at output terminals
O1, . . . , Ok, respectively, is denoted by

T = S
(e,I)−−−−−−−−−−−−→

(e1,O1),...,(ek,Ok)
S′.

An In terminal is implicitly assumed, that is meant to receive
events from the external environment. Links store the events



Figure 1: SystemΨ and relevant component models.

exchanged between components. A link is characterized by a
managementpolicy, which establishes the effect of each event
insertion or consumption. In this paper we confine the man-
agement policy to a FIFO queue. This way, the only signifi-
cant parameter of the link is itscapacity, the maximum num-
ber of events that can be buffered. The insertion of an event
into a full link results in the loss of the event.

Example 1. Centered in Fig. 1 is a systemΨ made of pro-
tectionp and breakersb1 andb2. Triangles and bullets denote
input and output terminals, respectively. Breakers are con-
nected withp through linksL1 · · ·L4, while p is assumed
to receive/send events from/to adjacent systems viadangling
terminalsI3, I4 / O3, O4. Ψ is an abstraction of the protec-
tion apparatus of a power transmission line, where breakers
are tripped byp when a short circuit occurs on the line. The
breaker model (top of Fig. 1) involves states0 (closed) and
1 (open). Transitions are triggered by eventsop andcl re-
ceived at terminalI. In T3, the breaker cannot open: this is
signaled top by output eventf . The protection model (bot-
tom of Fig. 1) embodies states0 (line is normal),1 (line is
shorted),2 (recovery action requested by left-hand side line),
and3 (recovery action requested by right-hand side line). A
recovery action is needed when a breaker fails to open (this
causes the enlargement of the isolation). Eventok (the short
has extinguished) movesp to normal state anew.

3 Behavior
Given an initial stateΣ0, systemΣ evolves in a way that
is both consistent with its topology and component models.
The graph representing the whole set of possible evolutions
is thedomainof Σ rooted in Σ0, Dom(Σ, Σ0). Such a graph
is connected since an assumption of the approach is that
the initial state of the system to be monitored is univocally
known. ThebehaviorBhv (Σ, Σ0) is a connected subgraph of
Dom(Σ, Σ0), which is restricted bydomain-dependent con-
straints. A (possibly empty) path between two nodes of the

Figure 2: BehaviorBhv (Ψ, Ψ0).

behavior is ahistory segmentof Σ. In particular, if the start-
ing node is the initial state of the behavior, such a path is a
historyof Σ.

Example 2. Shown in Fig. 2 is aBhv (Ψ, Ψ0), whereΨ0 =
(S0, L0), S0 = (0, 0, 0), andL0 involves empty links. In each
node, the recordS of the component states forb1, p, andb2
is on the top, while the recordL of queues of events within
links L1 · · ·L4 is on the bottom. Incidentally, at most one
event is stored in each link, so that the queue in the link can
be expressed by either the event or a dash (empty link). La-
belso andc are a shorthand forop andcl, respectively. Each
edge is marked by a label identifying a component transition:
single digits refer to transitions of the protection, while two-
digit strings correspond to breaker transitions. For example,
2, 9, 31, and 42 stand forT2(p), T9(p), T3(b1), andT4(b2),
respectively. A historyh(Ψ) is identified by the sequence of
labels (component transitions) marking its edges, as for in-
stance,h(Ψ) = 〈0, 31, 12, 4〉, corresponding to the following
scenario: (i) a short circuit occurs on the line protected byΨ
andp commands bothb1 andb2 to open, (ii) b1 fails to open,
while (iii) b2 opens correctly, and (iv) p asks the left-hand
side protection a recovery action. 2

The concept of behavior has been introduced in this sec-
tion for presentation purposes only. A behavior is a piece of
knowledge that is implicit in the models inherent to the sys-
tem at hand, that is, the topology of the system, the models of
its components, and the domain-dependent constraints. The
problem solving method for monitoring-based diagnosis pro-
posed in this paper (Section 5), however, does not need any
explicit behavior to be drawn from such models, the same as
all the methods in previous contributions by the authors.



4 Diagnostic Problem
A diagnostic problem concerns the system model, the ob-
server of the system evolution, the observation, and the char-
acterization of faulty behavior. LetT be the set of tran-
sitions of components inΣ, andV a domain of labels in-
cluding the null labelε. A viewer V is a mapping from
T to V. If (T, ε) ∈ V then T is silent elseT is visible.
The product of a historyh andV is the sequence of labels
h � V = 〈` | T ∈ h, (T, `) ∈ V, ` 6= ε〉.
Example 3. A viewerVψ for Ψ can be defined by the set of
visible transitions,Vψ = {(T0(p), sh), (T2(p), l), (T3(p), r),
(T1(b1), o1), (T2(b1), c1), (T1(b2), o2), (T2(b2), c2)}. 2

When the system is operating, each visible transition is per-
ceived byV as amessage. Each messageµ is a pair(λ, τ ),
whereλ = {`1, . . . , `k} is a subset ofV, namely thelogical
content, whileτ = {µ′

1, . . . , µ
′
h} is a set of messages, namely

thetemporal content, identifying all the messages temporally
preceding the current one. Afragmented observationis a list
of messages,O = 〈µ1, . . . , µn〉, where the following is as-
sumed:∀i ∈ [1 ..n], µi = (λi, τi) (τi ⊆ {µ1, . . . , µi−1}).
A message is uncertain, both logically and temporally.Log-
ical uncertaintymeans thatλ includes the actual label asso-
ciated with the transition that generated it, but furtherspuri-
ouslabels may be involved too.Temporal uncertaintymeans
that only partial ordering is known among messages. The as-
sumption making an integral part within the definition of a
fragmented observation does not prevent time switching be-
tween emission and reception of any two messages. What it
states is that, if a messagea, emitted before messageb, is re-
ceived afterb, it is impossible to the viewer to know thata
precedesb, that is, the relative emission order of the two mes-
sages is unknown to the viewer. A fragmented observation
may be mapped to anobservation graphγ(O) = (Ω, Υ),
a DAG whereΩ is the set of nodes isomorphic to the mes-
sages inO and Υ the set of edges isomorphic to the tem-
poral contents of messages. Asub-observationO[i] of O,
i ∈ [0 ..n], is the (possibly empty) prefix ofO up to thei-
th message,O[i] = 〈µ1, . . . , µi〉. Whenµ1 = ({`1}, ∅) and
∀i ∈ [2 ..n] (µi = ({`i}, {µi−1})), O is aplain observation,
and is denoted by the list〈`1, . . . , `n〉 of plain messages.

Example 4. A fragmented observation relevant to viewer
Vψ is Oψ = 〈µ1, . . . , µ6〉, whereµ1 = ({sh}, ∅), µ2 =
({o1}, {µ1}), µ3 = ({l, ε}, {µ1}), µ4 = ({o2}, {µ2, µ3}),
µ5 = ({c2}, {µ4}), andµ6 = ({c1, r}, {µ5}). The relevant
observation graphγ(Oψ) is depicted on the left of Fig. 3.2

Since it is neither trivial nor efficient to reason about the ob-
servation graph as is, an additional (acyclic) automaton is
considered, called theindex spaceof the observation,I(O) =
(S, E, T, S0, Sf), whereS is the set of states,E = V − {ε}
the set of events,T the transition function,S0 the initial state,
andSf the set of final states. InI(O) each path from the root
to a final node, called atemporal sequence, represents a mode
in which labels may be chosen in the observation graph with-
out violating the constraints imposed by temporal and logical
uncertainty. The whole set of such paths is theextensionof
I(O), denoted‖I(O)‖.

Example 5. Shown on the right of Fig. 3 is the index space
I(Oψ), whose extension‖I(Oψ)‖ includes six temporal se-
quences.=7 is the only final state. 2

Let T be the set of transitions relevant to components inΣ,
andR a set of labels including thenull labelε. A ruler R is a

Figure 3: Observation graph and relevant index space.

mapping fromT to R. If (T, ε) ∈ R thenT is normalelseT
is faulty. A subsetδ ⊆ (R−{ε}) is ageneric diagnosis. The
productof a history segmenth andR is a generic diagnosis
h ⊗ R = {ϕ | T ∈ h, (T, ϕ) ∈ R, ϕ 6= ε}. A set of generic
diagnoses is adiagnostic set.

Example 6. A ruler Rψ for Ψ can be defined by the set of
faulty transitions, namelyRψ = {(T0(p), s), (T3(b1), fo1),
(T4(b1), fc1), (T3(b2), fo2), (T4(b2, fc2)}. 2

A diagnostic problemis a 4-tuple℘(Σ) = (Σ0,V,O,R),
whereΣ0 is the initial state ofΣ, V a viewer,O a fragmented
observation ofΣ, andR a ruler. A sub-problem℘(Σ)[i] ,
i ∈ [0 ..n], is the diagnostic problem relevant to the sub-
observationO[i]. A candidate diagnosisof ℘(Σ) is a generic
diagnosisδ = h⊗R whereh is a history inBhv (Σ, Σ0) such
thath� V ∈ ‖I(O)‖. Thestatic solutionof ℘(Σ), ∆(℘(Σ)),
is the set of candidate diagnoses of℘(Σ). Thedynamic so-
lution of ℘(Σ), ∆(℘(Σ)), is the sequence of static solutions
relevant to all the sub-problems of℘(Σ):

∆(℘(Σ)) =
〈
∆(℘(Σ)[0]), ∆(℘(Σ)[1]), . . . , ∆(℘(Σ)[n])

〉
.

Example 7. Consider℘(Ψ) = (Ψ0,Vψ,Oψ,Rψ). Based on
Bhv(Ψ, Ψ0) in Fig. 2 andI(Oψ) in Fig. 3, it can be shown
that∆(℘(Ψ)) = {{s}}, which corresponds to the only his-
tory h = 〈T0(p), T1(b1), T1(b2), T1(p), T2(b2), T2(b1)〉: a
short circuit has occurred on the line and the protection ap-
paratus has reacted correctly. 2

5 Problem Solving
During its operation,Σ reacts to external events and gener-
ates observable events that are perceived as a fragmented ob-
servation. Solving a diagnostic problem means generating
its dynamic solution based on each new message. The chal-
lenge is to generate each∆(℘(Σ)[i]) incrementally, based on
the previous solution∆(℘(Σ)[i−1]) and the new messageµi,
avoiding performing the entire model-based reasoning rooted
in the initial state. Thus, we need to know the state reached
by the system at the occurrence of each message and such
a knowledge has to be drawn directly from the component
models. How to generate, by means of a divide-and-conquer
algorithm, the evolution of a system, given a state from which
to start from and an observed label, was dealt with in previ-
ous works by the authors[Lamperti and Zanella, 2003]. But,
even in case the previous state were known, the current state
is bound to be uncertain owing to silent transitions and the
uncertainty of messages. However, the set of possible states
at each newly generated message is confined within a lim-
ited domain, this corresponding to all the states reachable via
silent transitions.



Figure 4: MonitorMtr(Ψ, Ψ0,Vψ,Rψ).

Let σ0 be a node ofBhv (Σ, Σ0), V a viewer, andR
a ruler for Σ. The diagnostic closureDcl(σ0,V,R) =
(S,E,T, S0,Sout) is an automaton such thatS0 = (σ0, D0)
is theroot, and each stateS ∈ S is a pair(σ, D) whereσ is
a state ofBhv (Σ, Σ0) andD thecandidate attribute, namely
a set of diagnosesδ = h ⊗ R whereh = σ0 ; σ is a
history segment inBhv (Σ, Σ0). E is the set of transitions
of Σ. T : S × E 7→ S is the transition function such that
(σ, D) T−→ (σ′, D′) ∈ T iff T is a silent transition ofΣ in

V andσ
T−→ σ′ is a transition inBhv (Σ, Σ0). Sout ⊆ S is

the leaving set, whereS = (σ, D) ∈ Sout iff there exists a

transitionσ
T ′

−→ σ′ in Bhv (Σ, Σ0) whereT ′ is visible inV.

Example 8. With reference toBhv (Ψ, Ψ0) in Fig. 2,
Dcl(5,Vψ,Rψ) is the subgraph involving states(5, ∅),
(23, ∅), and (30, {{fc2}}), with Sout = {(23, ∅),
(30, {{fc2}})}, whose states in the behavior are left by visi-
ble transitionsT2(b2) andT3(p), respectively. 2

Themonitor of a systemΣ with initial stateΣ0, a viewerV,
and a rulerR is a graphMtr(Σ, Σ0,V,R) = (N ,L, E , N0)
whereN is the set of nodes,L the set of labels,E the
set of edges, andN0 the initial node. Each nodeN ∈
N is the diagnostic closure of a stateS0 ∈ Bhv (Σ, Σ0),
N = Dcl(S0,V,R) = (S,E,T, S0,Sout). Let Sout =⋃
N∈N Sout(N ), S0 =

⋃
N∈N {S0(N )}, andV andR the

domains of labels inV andR, respectively. Each edgeE ∈ E
is marked by a label inSout × (V − {ε})×R× S0. An edge

N
(S,`,ϕ,S′)−−−−−−→ N ′, whereS = (σ, D) andS′ = (σ′, D′) are

internal nodes ofN andN ′, respectively, is such that (i) S′ is

the root ofN ′, (ii) σ
T−→ σ′ is a transition inBhv (Σ, Σ0), (iii)

` is the (visible) label associated withT in V, and (iv) ϕ is the
label associated withT in R. The initial nodeN0 is such that
S0(N0) = (Σ0, D0). Let N be a node ofMtr(Σ, Σ0,V,R).
Thelocal candidate set∆loc(N ) is the union of the candidate
attributes relevant to the internal states ofN .
Example 9. Shown in Fig. 4 isMtr(Ψ, Ψ0,Vψ,Rψ). Each
node of the monitor is confined by a shaded box and labeled
by i ∈ [0 ..20] (standing forNi), where0 is the root. Within
each node, faulty transitions are marked by lettersA, B, C, or
D, which are a shorthand for faultsfo1, fc1, fo2, andfc2, re-
spectively. Candidate attributes are written as strings of such
letters, e.g.,AC is a shorthand for{{A, C}}. Edges between
nodes are arrows from an internal state of the leaving node to
the root of the entering node, and marked by the label inVψ .
Identifiers of component transitions are omitted (see Fig. 2).
T0(p) is the only transition both visible (labelsh) and faulty
(labels). Its ruler label is omitted. 2

The notion of a monitor allows the tracing of the system states
based on a given fragmented observation. However, such a
state is uncertain for three reasons: (i) The uncertain nature of
the message, (ii) The unobservability of the transitions within
the nodes of the monitor, and (iii) The nondeterminism of the
monitor, where different edges leaving the same node can be
marked by the same label.

The diagnostic joinof two non-empty diagnostic sets∆1
and ∆2 is the diagnostic set∆1 1 ∆2 = {δ | δ = δ1 ∪
δ2, δ1 ∈ ∆1, δ2 ∈ ∆2}. Thediagnostic unionof a non-empty
diagnostic set∆ and a labelϕ ∈ R, is the diagnostic set

∆ ] ϕ =
{

∆ if ϕ = ε
{δ′ | δ′ = δ ∪ {ϕ}, δ ∈ ∆} otherwise.

Let ℘(Σ) = (Σ0,V,O,R), whereO = 〈`1, . . . , `n〉 is



plain, andMtr(Σ, Σ0,V,R) = (N ,L, E , N0). A context
χ = (N, ∆) is an association between a nodeN ∈ N and
a diagnostic set∆. A monitoring stateM is a set of con-
texts. Thetrajectory of ℘(Σ), Trj(℘(Σ)), is a sequence
〈M0,M1, . . . ,Mn〉 of monitoring states defined as follows:
M0 = {(N0, {∅)}}; ∀i ∈ [1 ..n], Mi is the minimal set of
contextsχ′ = (N ′, ∆′) such thatχ ∈ Mi−1, χ = (N, ∆),

S ∈ Sout(N ), S = (σ, D), N
(S,`i,ϕ,S0(N

′))−−−−−−−−−−→ N ′ ∈ L, and
∆′ ⊇ (D 1 ∆) ] ϕ.

Example 10. ConsideringMtr(Ψ, Ψ0,Vψ,Rψ) in Fig. 4, as-
sumeO′

ψ = 〈sh, o1, l〉 and ℘′(Ψ) = (Ψ0,Vψ,O′
ψ,Rψ).

Then, Trj(℘′(Ψ)) = 〈M0,M1,M2,M3〉, whereM0 =
{(N0, {∅})}, M1 = {(N3, {{s}})}, M2 = {(N8, {{s}}),
(N20, {{s, C}})}, andM3 = {(N7, {{s, B, C}})}. 2

The candidate sequenceof ℘(Σ) is a list of diagnostic sets,
Cand (℘(Σ)) = 〈∆0, ∆1, . . . , ∆n〉, where

∀i ∈ [0 ..n]


∆i =

⋃

(N,∆)∈Mi

(∆loc(N ) 1 ∆)


 .

Example 11. Considering Example 10,Cand (℘′(Ψ)) =
〈∆0, ∆1, ∆2, ∆3〉, where∆0 = {∅}, ∆1 = {{s}, {s, A},
{s, C}, {s, A, C}}), ∆2 = {{s}, {s, C}, {s, B, C}}, ∆3 =
{{s, B, C}}. 2

The notions of trajectory and candidate sequence were in-
troduced based on plain observations. On the other hand,
monitoring-based diagnosis is meant for diagnostic problems
with fragmented observations. Such observations are repre-
sented by a DAG from which an index space can be gener-
ated. Since each state of the index space corresponds to sev-
eral possible ways in which observable labels may have been
generated by the evolution ofΣ (several plain observations),
the computation of the candidate sequence in the general case
requires associating each state= of the index space with the
set of monitoring states that are consistent with all the plain
observations relevant to=.

Let ℘(Σ) = (Σ0,V,O,R), I(O) = (S, E, T, S0, Sf).
The decoration of I(O) based on℘(Σ) is an automaton
IM(O) = (SM, EM, TM, SM

0 , SM
f ) isomorphic toI(O),

where each state= ∈ S is marked by amonitoring at-
tribute M =

⋃
O′∈‖=‖ Mk, where‖=‖ is the set of plain

observations up to= in I(O), O′ = 〈`1, . . . , `k〉, ℘′(Σ) =
(Σ0,V,O′,R), andTrj (℘′(Σ)) = 〈M0,M1, . . . ,Mk〉.
Example 12. Consider℘(Ψ) = (Ψ0,Vψ,Oψ,Rψ) (see
Fig. 3). The decoration ofI(Oψ) can be expressed by deter-
mining each monitoring attributeMi that is relevant to node
=i, i ∈ [0 ..7]: M0 = {(N0, {∅})}, M1 = {(N3, {{s}})},
M2 = {(N8, {{s}}), (N20, {{s, C}})}, M3 =
{(N1, {{s, A, C}})}, M4 = {(N7, {{s, B, C}})}, M5 =
{(N10, {{s}}), (N12, {{s, B, C}})}, M6 = {(N16, {{s}}),
(N14, {{s, B}, {s, B, C}})},M7 = {(N0, {{s}})}. 2

Based on the concept of index-space decoration, both no-
tions of trajectory and candidate sequence can be straight-
forwardly generalized to diagnostic problems involving a
fragmented observation with uncertain messages as fol-
lows. Let ℘(Σ) be a diagnostic problem involving a frag-
mented observationO = 〈µ1, . . . , µn〉. Let IM(O[i]) =
(SM
i , EM

i , TM
i , SM

0i
, SM

fi
), i ∈ [0 ..n]. The (generalized)

trajectory of ℘(Σ) is the sequence of monitoring states

i S
M
fi ∆i

0 {=0} {∅}
1 {=1} {{s}, {s,A}, {s,C}, {s,A,C}}
2 {=2} {{s}, {s,C}, {s,B,C}}
3 {=2,=4} {{s}, {s,C}, {s,B,C}}
4 {=5} {{s}, {s,B}, {s,D}, {s,B,C},

{s,B,D}, {s, B,C,D}}
5 {=6} {{s}, {s,B}, {s,B,C}}
6 {=7} {{s}}

Table 1: Generation of the candidate sequence∆(℘(Ψ)).

Trj(℘(Σ)) = 〈M0,M1, . . . ,Mn〉, where

∀i ∈ [0 ..n]


Mi =

⋃

(=,M)∈SM
fi

M


 .

The definition of the candidate sequence does not change, as
each∆i depends on the monitoring stateMi in the trajectory.

Theorem 1. The candidate sequence is the dynamic solution
of the diagnostic problem:Cand (℘(Σ)) = ∆(℘(Σ)).
Theorem 1 is the formal foundation of the monitoring-based
diagnostic technique. The static solution generated at each
processing step consists in a sound and complete set of can-
didate diagnoses with respect to the (uncertain) messages re-
ceived so far. The proof is omitted for space reasons.

Example 13. With reference to the diagnostic problem℘(Ψ)
defined in Example 12, the candidate sequence∆(℘(Ψ)) will
be 〈∆0, ∆1, . . . , ∆6〉, as detailed in Table 1. Specifically,
each sub-observationO[i] is associated with the set of final
statesSM

fi
of the decorationIM(O[i]), whose monitoring at-

tributes were computed in Example 12. The diagnostic set
reduces to the singleton{{s}} upon the arrival of the sixth
message: although bothN14 andN16 are relevant to the mon-
itoring attributeM6, attributeM7 does not include any node
of the monitor leavingN14, but onlyN0, a neighbor ofN16.
As expected,∆6 equals the static solution∆(℘(Ψ)) obtained
in Example 7. More generally, and in accordance with Theo-
rem 1, it can be shown thatCand (℘(Ψ)) = ∆(℘(Ψ)). 2

The diagnostic technique has been substantiated by a variety
of algorithms. It is worth mentioning theIncrementproce-
dure, which builds the index space. The peculiarity ofIncre-
mentis twofold: (1) the new index space is generated incre-
mentally, upon the reception of each message and based on
the previous index space, and(2) such a generation is per-
formed directly, without any transformation from a nondeter-
ministic to a deterministic automaton.

6 Conclusion
This paper deals with monitoring-based diagnosis of DESs, a
task that is also considered by the diagnoser approach[Sam-
pathet al., 1995; 1996] and its extension[Rozé and Cordier,
2002], by the incremental decentralized diagnoser approach
[Pencolé et al., 2001], and by the bridged diagnostic method
[Lamperti and Zanella, 2004a]. All these contributions differ
from the current one in several aspects.

First, in the class of considered systems:[Sampathet al.,
1995; 1996; Pencol´e et al., 2001] deal with synchronous
DESs, [Rozé and Cordier, 2002] with timed asynchronous



DESs (and is oriented to telecommunication networks), while
[Lamperti and Zanella, 2004a] with polymorphic systems, in-
tegrating both synchronous and asynchronous behavior. The
method in this paper, instead, copes with untimed asyn-
chronous DESs, where a system transition amounts to a com-
ponent transition, triggered by a single event, and wherein
there may be delays between the time an event is received
and the time it is consumed. Every such system may follow
behavioral silent cycles over time, which is not the case for
the diagnoser approach and its extension.

Second, monitoring-based diagnosis in this paper adapts
the diagnostic algorithm in[Lamperti and Zanella, 2004a],
which is quite different from the algorithms of both the diag-
noser approach and the incremental decentralized diagnoser
approach. Moreover, the definition of a diagnostic problem in
the current paper differs from[Lamperti and Zanella, 2004a]
since it includes the notions of a ruler and a viewer[Lamperti
and Zanella, 2004b], which decouple the component models
from the descriptions of their observability and abnormality
properties.

The essential novelty of this paper lies in the extension
of monitoring-based diagnosis to uncertain observations. In
[Rozé and Cordier, 2002] the observation is a completely
certain stream of time-stamped alarms and represents time
constraints explicitly. A certain plain observation is consid-
ered in [Sampathet al., 1995; 1996; Pencol´e et al., 2001;
Lamperti and Zanella, 2004a]. The approach in this paper,
instead, takes as input a sequence of observation fragments,
each fragment being both logically and temporally uncertain.
At the occurrence of each new fragment, the index space is
updated and a new hyperstate of the monitor is generated.
Owing to temporal uncertainty, at every newly-received mes-
sage, additional sequences of labels may have to be added to
the ones hypothesized so far. However, the assumption in-
herent to fragmented observations prevents any sequence of
labels hypothesized in previous monitoring steps from being
refuted. The algorithm for updating the index space, which is
not shown in this paper for shortness, produces as output a de-
terministic automaton in one shot. In[Lamperti and Zanella,
2002], instead, the index space was built based on the whole
uncertain observation of the a posteriori diagnosis problem
and its construction required the transformation of a nonde-
terministic automaton into a deterministic one.

Each new hyperstate of the monitor can be built modu-
larly by breaking down the problem into a hierarchy of in-
dependent subproblems, where parallelism may be exploited
and no previous construction of the global system behavior is
needed, the same as in previous contributions by the authors
[Lamperti and Zanella, 2003].

A major limitation of the approach is its computational
complexity. The tractability of state estimation was addressed
by Livingstone[Muscettolaet al., 1998] and L2[Kurien and
Nayak, 2000] by adopting optimizations and approximations.
In this paper, instead, an exact method is applied and the scal-
ability of the approach is increased by distributed and incre-
mental processing, in the creation of both the monitor and the
index space. Moreover, the efficiency of the reasoning mech-
anism could benefit from a trade-off between time and space,
in particular if some nodes of the monitor (or some compiled
knowledge supporting their construction) were generated off-
line by preprocessing utilities. Providing experimental evi-
dence to these claims is an engagement for future work.
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