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Diagnosis is the task of finding out the faults affecting a sys-
tem based on observed symptoms. Although a central topi
in Artificial Intelligence (Al) and historically one of the first
to be tackled, automated diagnosis is still a research su
ject. Up to the middle of the 1990s, diagnostic reasonin
mainly focused on static and quasi-static systems, while in th
last decade the applicability of model-based diagnosis to th
larger class oflynamic systentsas been investigate®truss,
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Abstract

A technique for diagnosis of a class of asyn-
chronous discrete-event systems is presented. It
copes with uncertain observations while monitor-
ing the system, by generating diagnostic informa-
tion at the occurrence of each new fragment of ob-
servation. Uncertainty may stem from noise af-
fecting the communication channels, and from the
multiplicity of such channels, which is bound to re-
lax the absolute temporal ordering of the observ-
able events. The challenge in large-scale applica-
tion domains is twofold: reasoning without any ex-
plicit global model of the system, and incremen-
tally generating the knowledge structures, taking
into account that estimates of the system state and
the relevant candidate diagnoses may not survive
the occurrence of a new piece of observation.

Introduction

1997; Brusoniet al, 1998; Consolest al., 2004. This led

to the awareness that such a task depends on the ability

estimate the state based on observations.
Discrete-event systems (DESSs) are a qualitative abstractioother throughinks. Each component is modeled by a com-
of continuous dynamic systems that has been receiving inmunicating automaton that reacts to events either from the ex-

creasing attention from the Al communitiroz and Cordier,

2002; Lamperti and Zanella, 2003; Grastieh al., 2004,
Schumanet al., 2004. Each state variable of a DES can only whereS is the set of stated;, the set of input eventd, the
range over a finite number of symbolic values and the behavset of input terminalsE,,; the set of output event®) the
ior of the DES can be described by means of state changeset of output terminals, arif the nondeterministic transition
driven by a finite set of events. In the literature (as well asfunctionT : S x E;, x I x 2BeutxO , 9S8 A transition
in this paper) the topology of each DES is usually distributed7 < T, from S to ', that is triggered by eventat input ter-

[Penco¥, 2004, specified as a network of components. Theminal I, and generates events, .
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occurred observation fragment. At each step, the reason-
ing engine starts from the current system state and finds out
all possible evolutions (sequences of transitions) that com-
ply with the given fragment, thus reaching the next system
state. However, since there may be several evolutions com-
plying with the same observable event (especially when such
an event is uncertain), each estimated system state is a hy-
perstate (including several candidate system states). More-
over there may be system states in the current hyperstate that
will not survive the next processing step. At each step, the
incremental problem-solving method can either throw away
all the hyperstates apart from the current one (thus reduc-
ing space) or keep them in memory so as to reuse them (thus
increasing efficiency). The approach proposed in this paper
is inspired by thebridged diagnostic methoflLamperti and
Zanella, 2004band by the notion of an uncertain observation
[Lamperti and Zanella, 2002The latter allows the modeling

of real world observations that are uncertain as to the identity
of the observed labels (logical uncertainty) and/or their recip-
rocal emission order (temporal uncertainty) and/or the iden-
tity of the component emitting the label (source uncertainty).
The main difference between an uncertain and a fragmented
gbservation is that the former cumulatively represents all the
Observable events received over a time interval (and therefore

aced in[Lamperti and Zanella, 20QPwhile the latter repre-
ents a single uncertain observable event, namaigssage
o previous contributionin the literature to monitoring-based
diagnosis of DESs considers uncertain observable events.

qt is an input fora posteriori diagnosiswhich is the only task

# Modeling

A systemis a network ofcomponentgonnected to one an-

ternal world or from neighboring components through links.
Formally, the automaton is a 6-tup(8, Ei,, I, E,,, O, T),

.., e} at output terminals

behavioral model of each componentis a communicating aue, , . . ., Oy, respectively, is denoted by

tomaton representing a nondeterministic and complete behav-
ior. The challenge with large-scale DESs is reasoning without

any explicit behavioral model of the whole system.
This paper deals with diagnosis while monitoring a DES. An In terminal is implicitly assumed, thatis meant to receive
A diagnostic result is produced by processing each newlyevents from the external environment. Links store the events
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Figure 1: System¥ and relevant component models.

exchanged between components. A link is characterized by
managementpolicyvhich establishes the effect of each event

insertion or consumption. In this paper we confine the man-

agement policy to a FIFO queue. This way, the only signifi-
cant parameter of the link is iapacity the maximum num-
ber of events that can be buffered. The insertion of an eve
into a full link results in the loss of the event.

Example 1. Centered in Fig. 1 is a syste made of pro-
tectionp and breakers; andb,. Triangles and bullets denote

input and output terminals, respectively. Breakers are con

nected withp through links L; - - - L4, while p is assumed
to receive/send events from/to adjacent systemslaialing
terminalsis, I, / O3, O4. ¥ is an abstraction of the protec-

tion apparatus of a power transmission line, where breaker

are tripped byp when a short circuit occurs on the line. The
breaker model (top of Fig. 1) involves stategclosed) and

1 (open). Transitions are triggered by evenfsandcl re-
ceived at terminal. In 75, the breaker cannot open: this is
signaled top by output eventf. The protection model (bot-
tom of Fig. 1) embodies statés(line is normal),1 (line is
shorted)2 (recovery action requested by left-hand side line),
and3 (recovery action requested by right-hand side line). A
recovery action is needed when a breaker fails to open (thi
causes the enlargement of the isolation). Exaafthe short
has extinguished) movasto normal state anew.

3 Behavior

Given an initial state}.;, system>: evolves in a way that

is both consistent with its topology and component models.

The graph representing the whole set of possible evolution
is thedomainof X rootedin Xy, Dom(X, ¥y). Such a graph
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Figure 2: BehavioBhv (¥, Uy).

Yehavior is ehistory segmenof X. In particular, if the start-

ing node is the initial state of the behavior, such a path is a
historyof >.

Example2. Shown in Fig. 2 is aBhv (¥, ¥y), where¥, =

(So, Lo), So = (0,0, 0), andL, involves empty links. In each
node, the recor@ of the component states fox, p, andbs

is on the top, while the recortl of queues of events within
gnks Ly --- Ly is on the bottom. Incidentally, at most one
event is stored in each link, so that the queue in the link can
be expressed by either the event or a dash (empty link). La-
belso andc are a shorthand farp andcl, respectively. Each
edge is marked by a label identifying a component transition:
single digits refer to transitions of the protection, while two-
digit strings correspond to breaker transitions. For example,
2,9, 31, and 42 stand fdfy (p), To(p), T5(b1), andTy(b2),
respectively. A historyh(T) Is identified by the sequence of
labels (component transitions) marking its edges, as for in-
Stancep (V) = (0, 31, 12, 4), corresponding to the following
scenario: {) a short circuit occurs on the line protected by
andp commands both; andb, to open, {i) b, fails to open,
while (zi7) by opens correctly, andi) p asks the left-hand
side protection a recovery action. O

The concept of behavior has been introduced in this sec-
tion for presentation purposes only. A behavior is a piece of
gnowledge that is implicit in the models inherent to the sys-
tem at hand, that is, the topology of the system, the models of

is connected since an assumption of the approach is thals components, and the domain-dependent constraints. The
the initial state of the system to be monitored is univocally problem solving method for monitoring-based diagnosis pro-
known. ThebehaviorBhv (3, 3) is a connected subgraph of posed in this paper (Section 5), however, does not need any
Dom (X, Xy), which is restricted bylomain-dependent con- explicit behavior to be drawn from such models, the same as
straints A (possibly empty) path between two nodes of the all the methods in previous contributions by the authors.



4 Diagnostic Problem

A diagnostic problem concerns the system model, the ob-
server of the system evolution, the observation, and the char-

acterization of faulty behavior. L€eT be the set of tran-

sitions of components ift, andV a domain of labels in-

cluding the null labele. A viewer V is a mapping from

%"@'@

1 0

TtoV. If (T,e) € VthenT is silentelseT is visible. © 02 e
The product of a historyh andV is the sequence of labels @ . 02"@&’@\ r

ARV ={|Te€h,(T,0) eV, L+£e).

Example 3. A viewerV,, for ¥ can be defined by the set of
visible transitions)y, = {(To(p), sh), (T2(p), 1), (T3(p), ),
(T1(b1), 01), (T2(b1), €1), (T1(b2), 02), (T2(b2), c2)}. O _ _
When the system is operating, each visible transition is perMapping fromT to R. If (T, ¢) € R thenT is normalelseT
ceived byV as amessage Each message is a pair()\, 7), 1S faulty. Asubset C (R —{c}) is ageneric diagnosisThe
where\ = {/y,..., ¢} is a subset oV, namely thdogical ~ Productof a history segment andR is a generic diagnosis
contentwhiler = {1}, ..., 1/ } is a set of messages, namely . @ R = {¢ [ T € h, (T, p) € R, # }. A set of generic
thetemporal contentidentifying all the messages temporally diagnoses is diagnostic set

preceding the current one. ffagmented observatiois alist ~ Example 6. A ruler R, for ¥ can be defined by the set of
of megsva'ges%z <]M1, - --,ét)v\m% V\)/r(lerecth{e following |s}z);\s- faulty transitions, namelyR,, = {(To(p), s), (T3(b1), fo,),
sumea:v: € LNy, g = iy Ti) (T & M1y oy Mim1y)- ) 0

A message is uncertain, both logically and temporallgg- (T4 (_bl)’ fCl)_’ (Ts(b2), f92)’ (Ta(bs, fe5)}

ical uncertaintymeans thaf includes the actual label asso- A diagnostic problemis a 4-tuplep(X) = (o, V, O, R),
ciated with the transition that generated it, but furtspuri- ~ WhereX is the initial state of:, 1V a viewer,O a fragmented
ouslabels may be involved toolemporal uncertaintyneans — observation _OfE' an_dR a r_uler. A sub-problemyp(X)
that only partial ordering is known among messages. The as- € [0..n], is the diagnostic problem relevant to the sub-
sumption making an integral part within the definition of a observatiorOy};). A candidate diagnosisf (%) is a generic

fragmented observation does not prevent time switching bediagnosisi = h® R whereh is a history inBhwv (X, ¥¢) such
tween emission and reception of any two messages. Whatihath XV € ||3(O)|. Thestatic solutiorof p(X), A(p(X)),
states is that, if a messaggeemitted before messageis re- s the set of candidate diagnosesgf:). Thedynamic so-
ceived after, it is impossible to the viewer to know that  |ution of p(X), A(p(X)), is the sequence of static solutions
precedes, that is, the relative emission order of the two mes-relevant to all the sub-problems pfY):

sages is unknown to the viewer. A fragmented observation

may be mapped to anbservation graphy(0) = (2.7),  A(p(D)) = (A(p() ), Alp(D))s - -, Alp(D)m))) -

a DAG wheref) is the set of nodes isomorphic to the mes-

sages in® and Y the set of edges isomorphic to the tem- Example7. Considerp(¥) = (¥¢, Vy, Oy, Ry). Based on
poral contents of messages. sdib-observatiorO};; of O,  Bhu(¥, ¥y) in Fig. 2 andJ(Oy) in Fig. 3, it can be shown

i € [0..n], is the (possibly empty) prefix of up to thei-  that A(p(¥)) = {{s}}, which corresponds to the only his-
th messageQy;) = (uu1, ..., ;). Whenuy = ({¢1},0)and  tory h = (To(p), T1(b1), T1(b2), T1(p), To(b2), To(b1)): a
Vi € [2..n] (ui = ({6}, {ii_1})), O is aplain observation  Short circuit has occurred on the line and the protection ap-
and is denoted by the ligt;, ... /,,) of plain messages paratus has reacted correctly. O

Example 4. A fragmented observation relevant to viewer ;
Vi 18 Oy = (i1, ), whereu, — ({sh},0), p — > Problem Solving

({or}, { D), ps = ({1 e}, {u1}), pa = ({oo}, {po, u3}),  During its operationY. reacts to external events and gener-
ps = ({eat, {pa}), andug = ({c1,7}, {us}). The relevant ates observable events that are perceived as a fragmented ob-
observation graph(0,,) is depicted on the left of Fig. 3.0 servation. Solving a diagnostic problem means generating
its dynamic solution based on each new message. The chal-

Since it is neither trivial nor efficient to reason about the ob- : :
servation graph as is, an additional (acyclic) automaton igenge is to generate each(p(X)y) incrementally, based on

considered, called tiadex spacefthe observatiorg(©) =  the previous solutiom (p(X)(;—1)) and the new message,
(S,E,T, Sy, St), whereS is the set of state® = V — {e} avoiding performing the entire model-based reasoning rooted

the set of eventd[ the transition functionS, the initial state,  in the initial state. Thus, we need to know the state reached

andsS; the set of final states. IHi(©) each path from the root by the system at the occurrence of each message and such
to a final node, called ®@mporal sequenceepresents amode a knowledge has to be drawn directly from the component
in which labels may be chosen in the observation graph withmodels. How to generate, by means of a divide-and-conquer
out violating the constraints imposed by temporal and logical@lgorithm, the evolution of a system, given a state from which

uncertainty. The whole set of such paths is éx¢ensiorof ~ to start from and an observed label, was dealt with in previ-
3(0), denoted|3(0)]. ous works by the authofd amperti and Zanella, 2003But,

even in case the previous state were known, the current state
b S Ue ) . is bound to be uncertain owing to silent transitions and the
3(Oy), whose extensiofjJ(O,)| includes six temporal se- ;ncertainty of messages. However, the set of possible states
quences3 is the only final state. at each newly generated message is confined within a lim-
Let T be the set of transitions relevant to component&jn ited domain, this corresponding to all the states reachable via
andR a set of labels including theull labele. Aruler Risa  silent transitions.

Figure 3: Observation graph and relevant index space.

Example 5. Shown on the right of Fig. 3 is the index space
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Figure 4: MonitorMir (¥, Uo, Vy, Ry).

Let oy be a node ofBhw (%, %)), V a viewer, andR
a ruler for X. The diagnostic closureDcl(oy,V,R) =
(S,E, T, Sy, Sou) is an automaton such th&y = (o, Do)
is theroot, and each staté € S is a pair(o, ©) whereo is
a state ofBhv (3, ¥y) and® the candidate attributenamely
a set of diagnose§ = h ® R whereh = 09 ~ cis a
history segment inBhv (X, Xy). E is the set of transitions
of . T : S x E — S is the transition function such that

(0,D) z (¢/,@") € T iff T is a silent transition of in

Y ando L o' is a transition inBhv (X, X0). Sout € S'is

the leaving setwhereS = (0,®) € Sou iff there exists a
transitions — o’ in Bhv(3, ¥o) whereT” is visible in ).

Example 8. With reference toBhv(¥,¥,) in Fig. 2,
Dcl(5,Vy, Ry) is the subgraph involving state$s, (),
(23,0), and (30,{{fce}}), with Sonx = {(23,0),

(30, {{fc2}1})}, whose states in the behavior are left by visi-

ble transitionsl» (b2) andT3(p), respectively. O

The monitor of a system: with initial state >3, a viewer),
and a rulerR is a graphMir(%, Yo, V,R) = (N, L, E, No)
where AV is the set of nodesf the set of labels£ the
set of edges, andV, the initial node. Each nod&v <
N is the diagnostic closure of a stay € Bhv(X, %),
N = Dcl(Sy,V,R) = (S,E, T, So,Sou). LetSou =
Unen Souwt(IV), So = Unea{S0(V)}, andV andR the
domains of labels iV andR, respectively. Each edde € £
is marked by a label iSqy x (V — {e}) x R x Sg. An edge

N LS, N’, whereS = (¢,9) and S’ = (¢/,®’) are
internal nodes ofV and N’, respectively, is such that)(S’ is

the root of N/, (i7) o 2L, o isatransition inBhv (X, Xo), (¢1)

¢is the (visible) label associated within V, and ¢v) ¢ is the
label associated witli' in R. The initial nodelV, is such that
So(No) = (X0,Dg). Let N be a node oMir(%, Lo, V, R).
Thelocal candidate sef\'°¢( ) is the union of the candidate
attributes relevant to the internal states\of

Example 9. Shown in Fig. 4 isMtr(¥, ¥y, V,,, Ry). Each
node of the monitor is confined by a shaded box and labeled
by i € [0..20] (standing forN;), where0 is the root. Within
each node, faulty transitions are marked by letter$s, C, or

D, which are a shorthand for faults,, fc,, fo,, andfc,, re-
spectively. Candidate attributes are written as strings of such
letters, e.g.AC is a shorthand fof{ A, C'} }. Edges between
nodes are arrows from an internal state of the leaving node to
the root of the entering node, and marked by the labél,in
Identifiers of component transitions are omitted (see Fig. 2).
To(p) is the only transition both visible (labedh) and faulty
(labels). Its ruler label is omitted. O

The notion of a monitor allows the tracing of the system states
based on a given fragmented observation. However, such a
state is uncertain for three reasong:The uncertain nature of
the messageji) The unobservability of the transitions within
the nodes of the monitor, and (Jifhe nondeterminism of the
monitor, where different edges leaving the same node can be
marked by the same label.

The diagnostic joinof two non-empty diagnostic set&;
and A, is the diagnostic sef\; X Ay = {§|§ = 6; U
d2,01 € A1, 62 € As}. Thediagnostic uniorof a non-empty
diagnostic se\ and a label € R, is the diagnostic set

_iA if = ¢
Aue= { {0'| ' =0U{p},6 € A} otherwise.
Let p(X) = (Z0,V,0,R), where©® = (f1,...,4,) is



plain, and Mtr (3, %, V,R) = (N, L,E, Ny). A context i | St A

x = (NN, A) is an association between a nafec N and 0 {So7 {0}

a diagnostic sef\. A monitoring stateM is a set of con- 1 {S1} {{s}, {s, A}, {s,C},{s, A, C}}

texts. Thetrajectory of p(X), Tri(p(X)), is a sequence 2 {S2} {{s},{s,C},{s, B,C}}

(Mo, My, ..., M,) of monitoring states defined as follows: 3| {82,984} | {{s}, {s,C},{s,B,C}}

Mo = {(No, {0)}}; Vi € [1..n], M, is the minimal set of 41 {Ss}p | {{sh{s. B}, {s, D} {s,B,C},

contextsy’ = (N, A’) such thaty € M;_1, x = (N, A), {s,B,D},{s, B,C,D}}
(5,6:,0,50(N")) 51 {Se¢} | {{s},{s:B}.{s,B,C}}

S € Sout(N), S = (6,D), N 22202V N’ ¢ £, and 6| {37 | {{s}}

A'D(DNXA) Y.

Example10. Consideringtr(¥, ¥y, V,, Ry,) inFig. 4, as- Table 1: Generation of the candidate sequeAde(V)).
sumeO,, = (sh,o1,l) and (V) = (Yo, Vy, Oy, Ry).

Then, Trj(¢' (¥)) = (Mg, M1, Mo, M3), where My = .

(o D 0 — ({05 e (N b, T = (Mo, My M), where

(Nao, {{s, C}})} andMs = {(N7, {{s, B,C}})}. O

The candidate sequencef p(X) is a list of diagnostic sets,

Cand(p(%)) = (Ao, Ar, ..., A,), where vielo.n] | Mi= ) M
(S, M)esg
Viel0.n] | A= U (AlY(N) M A) | . The definition of the candidate sequence does not change, as
(N.AYEM; eachA,; depends on the monitoring statd; in the trajectory.

o Theorem 1. The candidate sequence is the dynamic solution
EgamApleAlll ACOHSIﬁeI’Ing Example iOCand(p’(W))A: of the diagnostic problemCand (p(X)) = A(p(%)).
gs 0(’;} 1{’5 A Cg}?j)wAere: {0{55 %g}b} 1{5_3{%5}}:}’,{2 i Theorem 1 is the formal foundation of the monitoring-based
{{s,B.C}}. P SRS EIES O diagnostic technique.  The static solution generated at each
s . ) _ processing step consists in a sound and complete set of can-
The notions of trajectory and candidate sequence were indidate diagnoses with respect to the (uncertain) messages re-
troduced based on plain observations. On the other hangeijved so far. The proof is omitted for space reasons.

monitoring-based diagnosis is meant for diagnostic prOblemj:'xamplel& With reference to the diagnostic probleai®)

with fragmented observations. Such observations are reprez"¢ ; ; :
sented %y a DAG from which an index space can be geﬁegefmed in Example 12, the candidate sequeh¢e(V)) will
,Ag), as detailed in Table 1. Specifically,

ated. Since each state of the index space corresponds to s&g (80: A1, - - [ . . h C
eral possible ways in which observabFe labels ma;p/ have beefach sub-observatiofly; is associated with the set of final
generated by the evolution &f (several plain observations), statesS{*! of the decoratioi*(0y;), whose monitoring at-
the computation of the candidate sequence in the general casgbutes were computed in Example 12. The diagnostic set
requires associating each st&tef the index space with the reduces to the singletof{s}} upon the arrival of the sixth
set of monitoring states that are consistent with all the plainmessage: although boffy,, and V¢ are relevant to the mon-
observations relevant tg. itoring attribute Mg, attribute M, does not include any node
Let p(X) = (20,V,0O,R), 3(0O) = (S,E,T,So,S¢). of the monitor leavingVi4, but only Ny, a neighbor ofVy.

The decoration of J(O) based onp(X) is an automaton As expectedAg equals the static solutiof (p(¥)) obtained
MO) = (SM,EM, TM, Sé\/l,SM) isomorphic t0J(0), in Example 7. More generally, and in accordance with Theo-
where each stat& ¢ S is marked by amonitoring at-  rem 1, itcan be shown th&tand (p(¥)) = A(p(V)). O

tribute M = o ¢ o Mk, Where[|S| is the set of plain  The diagnostic technique has been substantiated by a variety
observations up t& in 3(0), O' = (f1,...,4), ¢'(X) =  of algorithms. It is worth mentioning théncrementproce-
(20, V, 0, R), and Trj(¢' (X)) = (Mo, M1, ..., My). dure, which builds the index space. The peculiarityrafre-

: _ tis twofold: (1) the new index space is generated incre-
Example 12. Consider p(¥) = (T, Vy, Oy, Ry) (see men :
Fig. 3). The decoration af(0,,) can be expressed by deter- mentally, upon the reception of each message and based on

9 Lot . - the previous index space, afi?)) such a generation is per-
mining each monitoring attributé; that is relevant to node ¢, me directly, without any transformation from a nondeter-

%{j € E - 7%:(]/\\]:0{?5}%?0’ éj%}z}'{/{\;llc:}}{)g]v& {{35}})}' ministic to a deterministic automaton.
T(Vi ] A CH Y Mi = (N2, {5, B.C D)}, M -
[(N1o 145D, (Vi {{s, B, PN}, Mg = {(Nig. {{s3}), 6 Conclusion o

(Mg, {{s, B}, {s, B,C}})}, M7 = {(No, {{s} D} This paper deals with monitoring-based diagnosis of DESs, a

Based on the concept of index-space decoration, both ndask that is also considered by the diagnoser appr{@am-
tions of trajectory and candidate sequence can be straighRathet al, 1995; 1996 and its extens_lo%Ro_ze and Cordier,
forwardly generalized to diagnostic problems involving a 2003, by the incremental decentralized diagnoser approach
fragmented observation with uncertain messages as fo{PenCO@ etal, 2001, and by the bridged diagnostic method
lows. Letp(Y) be a diagnostic problem involving a frag- Lamperti and Zanella, 2004aAll these contributions differ

: - ~MA N from the current one in several aspects.
mented observatio® = (u1,..., un). LetI¥(Op) = First, in the class of considered systeriSampattet al.,

(SMEM, TM, Sg,S{1), i € [0..n]. The @eneralized  1995; 1996; Pencelet al, 2001 deal with synchronous
trajectory of (X)) is the sequence of monitoring states DESs,[Roz and Cordier, 20G2with timed asynchronous

O
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