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INTRODUCTION
The main challenges in predicting the weather are insuf-
ficient computational power and gaps in our understand-
ing of the complex dynamics of atmospheric phenomena.
There are comparatively straightforward solutions to these
problems: enough teraflops, the right equations. But what
happens when you have neither? This is the problem fac-
ing aviation turbulence forecasters, who are charged with
the task of predicting turbulent conditions that would af-
fect aircraft, but who have neither the computational re-
sources to predict it explicitly nor a complete understand-
ing of how to derive it accurately from available observation
data. Yet, commercial and private aviation communities ex-
pect accurate, timely turbulence forecasts. The automated
turbulence forecasting system currently funded by the Fed-
eral Aviation Administration’s Aviation Weather Research
Program (FAA/AWRP) and used by the National Oceanic
and Atmospheric Administration’s Aviation Weather Center
(NOAA/AWC) integrates qualitative and quantitative rea-
soning about atmospheric conditions and observations to
produce a forecast. This tool, called Graphical Turbulence
Guidance (GTG), was developed by the National Center for
Amospheric Research (NCAR) and NOAA’s Global Sys-
tems Division (NOAA/GSD). This paper describes the struc-
ture and function of GTG and explores how to improve its
turbulence forecasting using better data. Obviously, better
data should improve a forecast. Because of the complexity
of the software and the system, however, there are significant
challenges involved.

The accuracy of turbulence forecasts is critically impor-
tant; pilots’ ability to avoid turbulence affects the safety
of the millions of people who fly commercial and private
aircraft every year. Although fatalities are low, 65% of
all weather-related commercial aircraft incidents can be at-
tributed to turbulence encounters, and major carriers esti-
mate that they receive hundreds of injury claims and pay out
“tens of millions” per year (Sharmanet al. 2006). Turbu-
lence can occur in thunderstorms, clouds, over mountains,
near the ground, and even in clear air. Clear-air turbulence
or CAT is particularly hard to avoid because it is invisible
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both to the eye and to radar. One seasoned pilot noted that
CAT was his “greatest worry” when flying (Salby 2006). In
order to change flight paths to avoid turbulence, air traffic
controllers, airline flight dispatchers, and flight crews must
know where CAT pockets are likely to be. The dynamical
scales on which CAT appears, however, are far finer than
those of any current weather model. And observations of
the state of the system—reports radioed in by pilots who en-
counter CAT—are sparse and subjective. For these reasons,
no currently available CAT forecast, either human or auto-
mated, meets the Turbulence Joint Safety Implementation
Team’s* recommended> 0.8 probability of moderate-or-
greater (MOG) turbulence detection and> 0.85 probability
of null turbulence detection.

The underlying physics that makes forecasting so hard
is one of the “grand challenge” problems of computational
science. Turbulence exhibits structure at all scales, all of
which trade energy with one another in complicated ways,
and numerical methods simply cannot keep up. Turbulent
eddies at the scales that affect aircraft (∼ 100m), for ex-
ample, are a microscale phenomenon, but operational nu-
merical weather prediction (NWP) models cannot resolve
that scale. There has been some work on understanding
how the energy associated with turbulent eddies at aircraft
scales cascades down from larger scales of atmospheric mo-
tion (Dutton & Panofsky 1970; Koshyk & Hamilton 2001;
Tung & Orlando 2003), but that understanding has not yet
translated into new turbulence prediction algorithms.

Faced with simulations that are too coarse to truly re-
solve the behavior that is of interest, plus sparse, subjective
observations reported by pilots, the NWP community ap-
plies an interesting mix of qualitative and quantitative rea-
soning in order to identify regions where aircraft-scale ed-
dies are likely to form. The basic reasoning tool is a set
of diagnostics: “rules of thumb” that reflect human experts’
partial knowledge of the physics and their empirical obser-
vations over the years. These diagnostics are described
in more detail in the following section. Though many of
them have been quantified and formalized as technology im-
proved, they are still not up to the forecasting task.

* TJIST is comprised of representatives from the FAA, NASA,
federal laboratories and end users, and all these groups are working
to improve turbulence forecasting accuracy.



The imperfect nature of the mapping between diagnostics
and turbulence leads forecasters to depend, at least partially,
on available turbulence observations. Those, too, are inade-
quate to the task. Currently, the only available observations
are qualitative observations reported by pilots (PIREPs).A
pilot who encounters a pocket of CAT radios in a report
of ‘light’ or ‘moderate to severe,’ for instance. These are
sparse, aircraft-dependent, highly subjective assessments of
turbulence. Pilots are not required to report turbulence at
regular intervals, so there may be only one or two PIREPs
per flight—if any. Pilots report the level of turbulence they
experienced, which can vary for the same atmospheric con-
ditions depending on aircraft size, design, and pilot expe-
rience. In addition, the distribution of reports is not repre-
sentative of the state of the atmosphere because pilots rarely
report non-turbulent areas. Further description of PIREPs
and their limitations as a data source can be found in the
third section of this paper.

Very recently, much better turbulence observation data
—termed in-situ data (Cornman, Morse, & Cunning 1995;
Cornman, Meymarris, & Limber 2004)—has become avail-
able. This data, which is described in the fourth section of
this paper, is part of a major effort by the FAA, some major
airlines, and the NCAR’s Research Applications Laboratory
(NCAR/RAL). In-situ data is recorded automatically every
minute during cruise by on-board software. It addresses
many of the faults of PIREPs: it is aircraft-independent,
objective, and less sparse. While the in-situ measurement
and reporting system is still in its first and limited deploy-
ment, we feel the data can and should be used now to in-
crease turbulence forecasting accuracy. Not only does it
offer higher-resolution observations, but it also helps alle-
viate the inconsistent null turbulence-reporting issues that
arise with PIREPs (Takacset al. 2005).

The ideas in this paper are related to work by sev-
eral groups in the QR community. Orodonez & Zhao
(2000) found climatological features using a spatial aggre-
gation framework. Although we are also working on cli-
matology, our goal is not to find large-scale features, and
we do not use geometric reasoning. Rather, we are trying
to integrate existing qualitative and quantitative data topro-
duce alocal forecast of a small-scale feature (turbulence).
Geometric reasoning may well play a role in our future
work, as there may be useful and interesting patterns in CAT
distributions—alone or in conjunction with climatological
features like the jet stream or geographical features like the
Rocky Mountains. Like Yip (1995), we are reasoning quali-
tatively about coherent features in fluid systems; unlike Yip,
we are working with coarse data, local scales, and detailed
forecasts. The scale difference is key in our work. Oishi
& Ikebuchi (1996) predict small-scale rainfall by solving
for its three main predictors qualitatively. Turbulence pre-
dictors are large-scale, and we are solving for them quan-
titatively before interpreting their results qualitatively—at
smaller scales. Note that our starting point is an existing nu-
merical simulation (weather prediction) model, and our goal
is to integrate that into a qualitative forecasting framework,
not to redo the simulation or modeling in a qualitative or
semi-qualitative manner. One of our fundamental issues is

the transformation of quantitative measurements into qual-
itative values, which has been treated at length in the QR
literature (e.g. Yamasakiet al. (1998)). We face sparse data
problems similar to those treated in Struss, Sachenbacher,
& Dummert (1997), but our system is infinite-dimensional
and we want not only to diagnose, but also to forecast. Like
Guglielmann & Ironi (2004), GTG uses fuzzy logic in the
modeling process, but again, its target system is not finite
dimensional.

CLEAR-AIR TURBULENCE
DIAGNOSTICS

A clear-air turbulence diagnostic is a simple turbulence
model (equation) derived from qualitative expert knowl-
edge based on experience or from basic physical principles.
Through the years when forecasts were done manually, fore-
casters developed “rules of thumb” about what atmospheric
conditions typically indicated turbulence. These rules of
thumb were an attempt to link the large-scale meteorolog-
ical data that was available and the micro-scale CAT that
was the subject of the forecast (Hopkins 1977). Forecasters
later quantified these rules, creating CATdiagnostics. For
instance, a major cause of CAT is the Kelvin-Helmholtz in-
stability: when gravity waves become steep and unstable,
they may break into a chaotic motion (Dutton & Panofsky
1970). This typically happens in areas of strong vertical
shear* and low local Richardson number (Ri, the ratio of
static stability and wind shear). Strong vertical shear over-
comes what little stability exists, enabling the wave to break.
Thus many qualitative CAT diagnostics concern shears and
Ri. There are many different diagnostics linking a large-
scale condition to small-scale turbulence. Their predictive
power varies, depending upon the large-scale condition that
they represent and how directly it is linked to turbulence.

Forecasters use these diagnostics by mapping their values
to different turbulence severity levels. As an example, low
Ri indicates high turbulence. Early on, forecasters deter-
mined some unofficial thresholds to quantify the severity of
turbulence that corresponded to a given diagnostic value—
“Ri< 0.25 ↔ moderate or greater turbulence,” for example
(Dutton & Panofsky 1970). In this way, forecasters took
their qualitative knowledge about large-scale atmospheric
conditions and their relationship to small-scale turbulence,
quantified it in the form of diagnostic equations, then in-
terpreted the results using thresholds to produce a qualita-
tive forecast. The GTG forecasting system does exactly the
same thing. Its authors used several years’ worth of PIREPs
to develop threshold values for each diagnostic that map to
different levels of PIREP turbulence severity. This allows
the diagnostics to work neatly with the qualitative PIREP
observations in the GTG system.

QUALITATIVE OBSERVATIONS OF
TURBULENCE

Until very recently, the only observation data about aircraft-
scale turbulence came from pilots’ reports. According to the

* The difference in velocity between horizontal layers



Table 1: Turbulence intensity values used in the Pilot Reporting system and their definitions. Taken from Shwartz (1996).

Value Intensity Definition
0 None No turbulence is present
1 Light Loose objects remain at rest
2 Light-moderate
3 Moderate Unsecured objects are dislodged; occupants feels

definite strains against seatbelts and shoulder
straps

4 Moderate-severe
5 Severe Occupants thrown violently against seatbelts; mo-

mentary loss of aircraft control; unsecured objects
are tossed about

6 Severe-extreme
7 Extreme Aircraft is tossed violently about, impossible to

control; may cause structural damage
9 Missing No mention of turbulence

FAA Pilot Reporting System guidelines, a pilot must imme-
diately report when and where s/he encounters turbulence,
icing, or any other hazardous condition during flight. S/he
must also respond with a hazardous condition report when
queried by ground crew. A PIREP consists of a flight num-
ber, general location and time, and an assessment of the haz-
ardous condition. In the case of a turbulence encounter, the
assessment is a number from 0-7 that represents the quali-
tative severity of turbulence experienced by the pilot. The
PIREP number system is shown in Table 1.

The pilot reporting system was not designed to be used for
scientific data analysis; it was intended to keep Flight Ser-
vice Stations and Air Route Traffic Control Centers aware
of in-route conditions so that they might relay the informa-
tion to other flights in the area (Shwartz 1996). PIREPs
have been used quantitatively in verifications and forecasts
simply for the lack of any better data with which to ver-
ify diagnostics’ predictions or study the phenomenon of
turbulence itself (Shwartz 1996). There are several spe-
cific properties of PIREPs that make them undesirable as a
data source and limit their use in understanding and fore-
casting turbulence: aircraft dependence, accuracy of lo-
cation and time reported, and sparseness and distribution
of reports. For turbulence reports specifically, the regu-
lations state (in Shwartz (1996)): “The degree of the tur-
bulence intensity is determined by the pilot.” Not only is
a PIREP the pilot’s subjective assessment, but the same
amount of atmospheric turbulence can have different ef-
fects on aircraft of different sizes, causing conflicting re-
ports anywhere from 25% to 32% of the time (Shwartz 1996;
Sharmanet al. 2002a).

Location and time accuracy of PIREPs is hindered by
the rules of the reporting system. Pilots usually report the
cities or aviation map (NAVAID) locations they are closest
to when they experience the turbulence. Most NAVAID lo-
cations are kilometers apart, however, which leaves a large
uncertainty in the location field of a PIREP. There may also

be a time lag between the encounter and the report. A par-
ticularly thorny problem is ‘en route’ reports: the turbulent
event could have been located anywhere in the flight path.
16.6% of PIREPs containing turbulence intensities give ‘en
route’ observations (Shwartz 1996).

PIREPs are a spatially sparse data set. Not only is aircraft
coverage of the atmosphere at any one time infinitesimal,
but most PIREPs do not contain turbulence information. At
best, a few hundred per hour in the contintental U.S. are us-
able —still far fewer than needed for a comprehensive as-
sessment of the current atmospheric conditions at all com-
mon flight altitudes. This includes all sources of turbulence,
not just CAT. In fact, PIREPs do not specify the type of tur-
bulence, so researchers must compare PIREP location with
data about lightning strikes to separate probable convective
(thunderstorm) turbulence from CAT.

The amount of PIREP information available at any given
time varies widely by time of day, season, altitude and geo-
graphical region (Shwartz 1996). The majority of reports are
during the day, along major airline routes, and at the typical
cruising altitudes of the two distinct groups of pilots: gen-
eral aviators, who fly up to 18000ft, and commercial airline
pilots, who cruise at 30000 to 35000ft. CAT varies geo-
graphically, occuring more in the southwest and west than
in the northeast. It also varies seasonally, occuring more
frequently in the continental U.S. in the winter, when the
jet stream (and its associated winds and weather patterns)
moves down to lower latitudes.

Pilots rarely file turbulence reports when flying is smooth,
so PIREPS are not really representative of the state of the at-
mosphere (Dutton 1980; Sharmanet al. 2006). The vast
majority of turbulence reports should be ‘smooth’ or ‘null’
turbulence, but because pilots rarely feel it necessary to re-
port the absence of hazardous conditions, null reports make
up only half of all turbulence reports. Lack of PIREPs, then,
may mean the area has a null turbulence level, or just that
the pilot did not report the turbulence. Additionally, the area



may not be along a flight path, or there might not be many
flights using that flight path. Worse yet, it is believed that
severe turbulence is probably underreported because of the
maintenance checks required for the aircraft after a severe
report (Sharman 2005). All of these factors make it difficult
to interpret the PIREPs data set.

For all of these reasons, it is the general consensus
in the aviation research community that PIREPs should
not be used quantitatively (for example, (Shwartz 1996;
Brown & Young 2000; Sharman 2005)). This data is sparse
and irregular, its accuracy most likely varies, and its distri-
bution does not reflect the distribution of turbulence in the
atmosphere. As stated above, PIREPs have been the only
source of observation data for researchers, and so they have
been forced to use them for turbulence research. Recently,
however, NCAR researchers have developed and deployed
a new observation system, the In-situ Turbulence Reporting
System, that addresses the subjectivity and many of the ir-
regularities of PIREPs.

IN-SITU DATA: SEMI-QUANTITATIVE
OBSERVATION DATA

In-situ turbulence measurements are sensor data that is
recorded by special software on commercial aircraft dur-
ing flight. These measurements use existing avionics data
and are reported using existing communications networks.
Detailed coverage of in-situ data methods can be found in
Cornman (1995; 2004).

An in-situ measurement is a measurement of the eddy dis-
sipation rate (EDR) around an aircraft. Eddies are irregular
currents of air, and the rate at which eddies break down is
recognized as a good measure of atmospheric turbulence in-
tensity (Panofsky & Dutton 1984). EDR is fundamentally
different than PIREPs because itobjectivelyrecords the ef-
fects of turbulence. It can be estimated from accelerometer
or vertical wind data. Both methods yield approximately
the same aircraft-independent data. We focus here on data
from the accelerometer method, which uses aircraft verti-
cal acceleration data to estimate EDR. This can be con-
verted to an aircraft-independent form using the inverse of
an “aircraft vertical-acceleration response function,” which
describes how a particular aircraft responds to gusts* . Cur-
rently, in-situ measurements of EDR are being gathered
from 197 United Airlines aircraft (101 737s and 96 757s).
Several other airlines will deploy the system in the coming
year. An example of this data is shown in Figure 1.

EDR data is reported once a minute in cruise and more
frequently during takeoff and landing, depending on rate of
altitude change. Each in-situ data report is a location triple
(latitude, longitude, altitude) and a median and peak (95th
percentile) EDR reading from measurements taken over the
corresponding minute. Reporting just these two intensity
fields reduces transmission costs while still providing a way
to distinguish between discrete and continuous turbulence
events. The two EDR fields are binned, and each possible

* This function considers the vertical motion and pitch of the
aircraft, various wing lift forces, etc.

pair of median/peak values for a minute is mapped to a sin-
gle 8-bit character. These data are then downloaded off the
aircraft to the ground using the Aircraft Communication and
Reporting System (ACARS) network. This binning turns
otherwise continuous quantitative observation data into aset
of discrete values that are cognate to the PIREP intensity
levels.

In-situ data reflects the actual state of the atmosphere
(Dutton 1980; Sharmanet al. 2006). Meteorologists’ ex-
perience indicates that at any time, at most 1% of the at-
mosphere at upper levels should contain MOG turbulence.
Corroborating this, over 99% of in-situ reports are reportsof
null turbulence, as shown in Figure 2. In contrast, about half
of PIREPs report null turbulence, 27% report light, 17% re-
port moderate and 1% report severe. Unlike pilots, who sub-
stantially underreport the null events, sensors are objective
and therefore provide a more realistic status of atmospheric
turbulence.

Understanding In-Situ Data
While in-situ data accuracy as a measure of atmospheric
turbulence has been verified (Cornman, Morse, & Cunning
1995; Cornman, Meymarris, & Limber 2004), researchers
are still uncertain about how to interpret the data qualita-
tively, in terms of the turbulence intensity levels reported by
pilots. At what EDR value, for instance, does a 757 aircraft
become hard to control? Binning of the data may further
complicate the interpretation. The in-situ value bins were
somewhat arbitrary, so there is no guarantee that they corre-
spond to qualitative levels of turbulence such as moderate or
severe.

In an effort to understand the qualitative features of in-
situ data, and with an eye towards integrating it—instead of
PIREPs—into GTG, we compared fourteen months of in-
situ data to PIREPs from the same flights coincident in time
and location* . This comparison is not trivial. While a tur-
bulent event may result in single PIREP observation, there
may be a number of in-situ observations proportional to the
duration of the event. Moreover, in-situ data contains both
a median and peak EDR reading each minute. When turbu-
lence is light over several minutes with one big jolt midway,
does the pilot report the jolt (severe), or her overall impres-
sion of the event (moderate)? The way pilots report turbu-
lence may vary depending on the pilot and situation.

To compare these very different observations, we defined
a turbulent event to be a set of consecutive peak EDR read-
ings of the second bin or higher. We (somewhat arbitrarily)
used the highest peak EDR value of that set to be the repre-
sentative ‘in-situ value’ for the event. This method ignored
much of the knowledge about a turbulent event that is inher-
ent in in-situ data, but it enabled simple comparison. Table
2 shows the results. In the vast majority of turbulence events
captured by in-situ data, the pilot made no turbulence report
within the comparison radius. When a report was made, a
slight positive correlation can be seen between PIREPs and

* i.e., the report(s) made by a pilot near the time that the in-
situ software onboard was automatically recording elevated EDR
values: within 40km, five minutes and 1000 ft.



Figure 1: An example of the in-situ data currently availablefrom United 757 aircraft over 24 hours (top) and from one mid-day
hour (bottom). The dots are reports of null turbulence. Squares represent high turbulence levels.



Figure 2: Taken from Sharmanet al. (2006). This figure shows the probability distribution function (PDF) of observed EDR
values (ǫ

1

3 ) in each in-situ bin, both median (lower bar) and 95th percentile (upper bar). This distribution was created from
United Airlines 757 aircraft over a three-month time periodusing the accelerometer-based method described fully in Cornman
(1995; 2004). The open circles are estimates of the true lognormal distribution of turbulence in the atmosphere based onthe
RUC20 weather model (Frehlich & Sharman 2004). The fact thatthe observed EDR distribution is different than the estimated
true distribution of turbulence for upper bins may reflect the ability of commercial air carriers to avoid turbulence during flight.

Table 2: PIREPs and in-situ data recorded concurrently on the same flights from August 2004 - November 2005. There were
not enough severe, severe/extreme and extreme PIREPs to make a comparison. No light PIREPs matched any turbulent events
captured in in-situ data.

In-Situ Value Null PIREP Light PIREP Light/Moderate PIREP Moderate PIREP Moderate/Severe PIREP
0.15 35(12.7%) 0 154 (55.8%) 71 (25.7%) 16 (5.8%)
0.25 3(8.1%) 0 13 (35.1%) 16 (43.2%) 5 (13.5%)
0.35 0 0 3 (25%) 6 (50%) 3 (25%)
0.45 0 0 1 (33.3%) 2 (66.7%) 0

in-situ data. Binning of the in-situ data may be obscuring
some of the correlation. We found more of a correlation
than did (Takacset al. 2005), primarily because more data
was available for our comparison.

As the base of in-situ data grows and we explore other
methods of comparison, we may be able to show more
definitive correlations between the two data sets.

Using In-Situ Data to Understand PIREP Errors
The in-situ data also allowed us to begin quantifying the er-
rors in PIREPs. To do this, we looked only at time and lo-
cation, since the intensity comparisons above yielded such
vague results. We compared PIREPs and in-situ data from
the same flights, as above, and found that the median error
in a PIREP-reported location was 50km and the median er-
ror in report time was three minutes. This discrepancy is
over twice the resolution of the NWP model (20km) used

to compute diagnostics. This new result calls the whole
PIREP-based forecasting framework into question, and re-
inforces our intuition that effectively integrating in-situ data
into GTG should improve turbulence forecasts.

Compared to PIREPs, in-situ data is more objective, more
accurate, more plentiful, and more representative of turbu-
lence distribution. It is clearly a much better set of observa-
tion data for use in turbulence research and forecasting. We
believe that in-situ data not only allows for more-accurate
forecasting, but also expands the options for forecasting al-
gorithms. In the next sections, we describe the currently
deployed version of the GTG forecasting system, which was
designed and tuned to the PIREP data set, and its attendant
limitations. We then discuss how to integrate in-situ data
into that framework.



THE GTG ALGORITHM

Under sponsorship from the FAA/AWRP, NCAR/RAL and
NOAA/GSD, together forming the Turbulence Product De-
velopment Team (TPDT), developed the Graphical Turbu-
lence Guidance (GTG) forecasting product, a completely
automated CAT forecasting system currently running oper-
ationally at the NOAA/AWC and available on the web at
NOAA’s Aviation Digital Data Service (ADDS) website(?;
Sharman, Wiener, & Brown 2000; Sharmanet al. 2002b;
2004; 2006). GTG forecasts CAT at both mid (10000ft-
20000ft) and upper levels (20000ft-45000ft) in order to pro-
vide guidance for both large aircraft and short, regional
flights that do not reach upper levels.

GTG is a qualitative forecasting system that compares di-
agnostic values to observation values and uses that informa-
tion to produce a turbulence forecast. GTG weights each
diagnostic based on its binary classification agreement with
the current observation data and combines the weighted di-
agnostics using fuzzy logic to produce the forecasted tur-
bulence intensity. For the final output display, each fore-
casted intensity value is binned into one of five qualitative
bins representing null, light, moderate, severe and extreme
turbulence. An example of the output is shown in Figure 3.

GTG uses multiple diagnostics because each has imper-
fect performance in predicting CAT, and together they can
better account for the multiple causes of CAT in the atmo-
sphere. While GTG is not the only forecasting system to
use multiple diagnostics together, it is the only one to com-
bine them dynamically at forecast time. This combination
makes GTG the most accurate CAT forecasting system to
date (Sharmanet al. 2006).

The core GTG algorithm is detailed in Sharmanet al.
(2006), but briefly works as follows. Every hour, GTG re-
ceives weather model data files (National Center for Envi-
ronmental Prediction’s Rapid Update Cycle (RUC) model at
20km resolution) and PIREP data. From the model output
variables in the analysis-time (current conditions for a cer-
tain hour) file, GTG calculates values forn diagnostics for
upper-levels and mid-levels. Currently,n = 10. Each diag-
nostic valueDi is calculated for each RUC model grid point.

The diagnostic values and observation data (PIREPs, in
the case of the current GTG) both must be mapped to a
common value range for comparison. As mentioned ear-
lier, the value range for each diagnosticDi is mapped to a
0 ≤ D∗

i ≤ 1 scale using a set of established thresholds
for the diagnostic, corresponding to major PIREP categories.
Usually, thresholding is not linear; for instance, some diag-
nostic values increase exponentially as turbulence increases,
or 90% of the value range indicates null turbulence with the
remaining 10% split among higher intensities.

PIREPs are mapped linearly from a range of0 ≤ p ≤ 7
(Table 1) to a range of0 ≤ p∗ ≤ 1 to enable direct com-
parison toD∗

i values. PIREPs coincident to lightning re-
ports from the National Lightning Detection Network* are
ignored in order to isolate CAT reports from reports of tur-
bulence related to thunderstorms.

* Currently, within 20 minutes and 50km

Each remaining PIREP is matched by grid point location
with the ten diagnostic values. Here, turbulence is divided
into two categories: null and moderate-or-greater (MOG).
The dividing threshold corresponds to the scaled value of
a moderate PIREP turbulence intensity report. Counts of
observation and diagnostic agreement—correct and incor-
rect classifications by each diagnostic—are tallied in a con-
tingency table for each diagnostic. The Probability of De-
tection (POD) of a MOG event, POD-Yes (PODY) is the
fraction of correct MOG classifications out of all MOG
observations. Likewise, POD-No (PODN) is the fraction
of correct null classifications out of all null observations.
¿From PODN and PODY counts, a diagnostic’s True Skill
Score(TSS) is calculated:

TSS = PODY + PODN − 1 (1)

Low levels of atmospheric turbulence are expected at any
given time. Therefore, it is important to measure the volume
of forecasted MOG turbulence (fMOG) for each diagnostic
and penalize those that forecast large amounts of MOG tur-
bulence. BothfMOG and TSS are used to calculate the score
for each diagnostic:

φi =

(

TSS + 1.1

1 + Cf0.25
MOG

)

(2)

Currently, the constantC is equal to 1. C and the exponent
0.25 are fudge factors used for tuning. From then scores for
the setD of n diagnostics, weights are formed as follows:

Wi =
φi

∑n
m=1 φm

(3)

subject to
∑n

m=1 Wm = 1 . The diagnostics are combined
into a weighted sum to form the GTG combination. This is
done for every grid point (i,j,k) using the weights derived in
(3).

GTG (i, j, k) =

n
∑

m=1

WmD∗

m,i,j,k (4)

This sum is GTG’s turbulence “nowcast” for the analysis
time. This weight vector is then applied to each RUC model
forecast output (3,6,9,12 hour forecasts) to produce turbu-
lence forecasts for each forecast time.

GTG can produce a forecast in less than seven minutes,
which makes it usable in a real-time operational forecast set-
ting. However, it has two main limitations. First, it produces
only one forecast over the whole U.S., ignoring regional
variations in turbulence conditions and therefore diagnostic
performance. Second, GTG was developed using PIREPs
for verification. Not only was the algorithm’s performance
tuned with PIREP data, but the diagnostics and their thresh-
olds were also developed using PIREPs for verification. We
believe that turbulence forecasting can be improved by the
careful incorporation of in-situ data. The following sections
describe our first attempts at exploiting this better data set to
improve aviation turbulence forecasting.



Figure 3: A sample of the GTG 6-hour forecast available on theAviation Digital Data Service site,
http://adds.aviationweather.gov/turbulence. Turbulence levels are color-coded by category: light, moderate, severe and
extreme.

THE USE OF IN-SITU DATA IN GTG
We began by producing GTG forecasts using as observation
data inputs a) PIREPs, b) in-situ data, or c) both, and ver-
ifying the forecasts’ accuracies with one or both data sets.
We then examined mechanisms in GTG that explained the
verification results. Our method of forecast verification is
described in the next section.

Performance metrics
It is not trivial to assess the accuracy of a forecast because
we do not know the ‘truth;’ we must use available obser-
vation data, however flawed or irregular. To assess fore-
cast performance, we followed the verification practices of
the TPDT team, covered in Takacset al. (2004), Brown &
Young (2000), and Brownet al. (1997), which are explained
briefly here. A 6-hour forecast initialized at 12 UTC, for
instance, has a valid time of 18 UTC and would be veri-
fied against observations from 18 UTC. Forecast points are
matched with observations by location, as described in the
previous section. As the primary verification metric, we use
the Receiver Operating Characteristic Curve (ROC) curve.
To construct a ROC curve, we vary the value or threshold
at which the null and MOG turbulence classes are separated
over a range of 0 to 1, producing a curve of PODY/PODN

pairs for the GTG forecast. Each point on the curve is
the forecast’s classification accuracy for a certain threshold.
Figure 4 is an example of a ROC curve. The curve mea-
sures how well a forecast algorithm discriminates between
MOG and null turbulence observations. Higher PODY-
PODN combinations over the range of thresholds – produc-
ing a larger area under the ROC curve – implies greater clas-
sification accuracy. An area under the curve (AUC) of .5
implies an accuracy no greater than chance. Background on
the use of the ROC curve and AUC as a discrimination met-
ric can be found in (Mason 1982; Hanley & McNeil 1982;
Marzban 2004; Kharin & Zwiers 2003).

Forecasts Using Only In-situ Data

Our first attempt at incorporating in-situ data into GTG
strived for simplicity: we used in-situ data as an observa-
tional data source, replacing PIREPs, but left the GTG algo-
rithm unchanged. Peak (95%) in-situ turbulence intensities
were used, instead of median intensities, in order to have
more non-null turbulence data points available for the GTG
forecast.

Since GTG scoring amounts to simple binary classifica-
tion agreement, the issue of scaling (really, intepreting)in-
situ bin values became one of choosing the bin value that



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PODN

P
O

D
Y

PIREPs
Insitu

Figure 4: This ROC curve plots the probability of correctly detecting MOG turbulence against the probability of correctly
detecting null turbulence for a range of MOG thresholds. Thedata is from four winter months (2004-2005) of mid-day 6-hour
forecasts made with PIREPs only (blue, lower curve) and in-situ data only (green, upper curve), including ‘light’ reports. Note
that the area under the in-situ forecast curve is larger, indicating higher forecast accuracy. The AUCs for the PIREP forecast
and in-situ forecasts were 0.753 and 0.821, respectively. The large point on each curve marks the highest (PODN,PODY) pair
and can help identify the optimal threshold.
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Figure 5: Probability density curves of GTG forecast (diagnostic combination) values coincident with null reports (green,
leftmost curve in each figure), and those values coincident with MOG reports (red, rightmost curve in each figure), from
forecasts made with each data source. The medians are markedwith vertical lines. The forecasts using in-situ data have alarger
difference in medians between the two distributions, indicating better discrimination ability.



separated the classes. Currently in GTG, a PIREP of in-
tensity 3 or higher (scaled to0.375 in GTG) is classified
as MOG and less than 3 is classified as non-MOG (null).
Substituting in-situ data as the observational data input into
GTG, we found interesting results whenMOG ≥ 0.25, the
third bin, and whenMOG ≥ 0.45, the fifth bin. Fore-
casts showed improvement in both cases (AUC of 0.821 and
0.839, respectively) over the same time-period forecasts us-
ing PIREPs (AUC 0.753). Figure 4 shows the ROC curve
for theMOG ≥ 0.25 trial. PIREP forecast accuracy is sensi-
tive to the inclusion of ‘light’ observations (PIREP intensity
1) in the verification data set because pilots differ in their
assessments of light turbulence more than in any other cat-
egory (Shwartz 1996); in these trials, the PIREP AUC im-
proved to 0.801 when excluding ‘lights’. To see if in-situ
forecasts had the same sensitivity, we did additional verifi-
cation on in-situ forecasts by excluding ‘light’ observations:
in the former case, excluding all second-bin in-situ obser-
vations and in the latter case, excluding all second, third
and fourth bin observations. We found that the in-situ fore-
cast accuracy only varied in the former case (AUC lowered
to near that of PIREP forecast’s 0.801). The former case’s
variability shows that the second bin observations buoyed
the overall score, since the third and fourth bin observations
were probably misclassified as MOG (as indicated by the
latter case).

For further comparison, we validated each type of forecast
with the other type of observation data. The PIREP fore-
cast had an AUC ranging from 0.755 to 0.810 depending on
the in-situ class separation threshold, which is comparable
to its forecast accuracy verified by PIREPs (with and with-
out ‘lights’). The in-situ forecast verified by PIREPs had
an AUC of 0.786, indicating disagreement between the data
sets and reflecting the far lower number of null observations
in the PIREP data set.

Another way to assess a forecast’s accuracy is to measure
its ability to correctly discriminate between MOG and null
turbulence. Figure 5 plots the probability density functions
of the GTG forecasted intensities at points of observed null
and MOG turbulence for forecasts using only PIREPs and
for forecasts using only in-situ data. The medians of each
curve are marked with vertical lines. The forecasts using in-
situ data have a larger difference between the medians of the
two categories than does the PIREP forecast (0.27 vs. 0.22 ,
respectively), indicating a better discrimination ability. This
confirms our intuition that in-situ data improves forecasts.

Combining Semi-Quantitative and Qualitative
Data
Our next step was to combine the two types of observation
data for both forecasting and verification. Using the class
separation ofMOG ≥ 0.45 for in-situ data andMOG ≥ 3
for PIREPs, the forecast AUC was 0.7845 when verified by
both data sets. However, the AUC rose to 0.847 when veri-
fied by in-situ only and 0.803 when verified only by PIREPs.
We believe the lower AUC for the combined verification is
due to the contradictions in the data sets; the diagnostics typ-
ically are smooth both horizontally and vertically (Sharman
et al. 2006), so contradictory observations in neighboring

RUC grid cells can cancel out a diagnostic’s positive fore-
cast accuracy score. Additionally, the GTG algorithm gives
equal weight to both the MOG and null forecasting accura-
cies of each diagnostic, regardless of the number of obser-
vations available in each category. PIREPs tend to dominate
the MOG category while in-situ data dominates the null cat-
egory. Thus, the effect of adding a much higher-resolution
and more-accurate data source is tempered by the way GTG
computes a forecast. The majority of the in-situ-only fore-
cast trial improvement shown above probably came from an
improvement in the PODN scores of the diagnostics.

CONCLUSION
Turbulence is both a financial and human safety issue for
aviation, but the scale of turbulence that affects aircraftcan-
not be resolved by current NWP models. Thus, forecasters
have long had to predict turbulence qualitatively: using qual-
itative observation data (PIREPs), understanding the effects
of large-scale conditions on turbulence formation, and in-
terpreting a forecast as qualitative levels of turbulence.The
most accurate turbulence forecasting system to date, GTG,
automates this forecasting process by thresholding quantita-
tive data and scoring its classification accuracy with quali-
tative observation data. With fuzzy logic those scores are
translated into weights that are then used in a weighted sum
of the diagnostics to produce a turbulence forecast.

In this paper we presented new results on the comparison
of in-situ and PIREP data and the improvement of turbulence
forecasts using in-situ data. Our comparison showed a pos-
itive relationship between PIREP and in-situ turbulence in-
tensities, and we found the average location error of PIREPs
to be 50km. We improved the forecasting accuracy of GTG
by using in-situ data as an observation data source. Fore-
casts using in-situ data showed more forecasting skill and
better categorical discrimination ability than did traditional
GTG forecasts using PIREPs. PIREPs and in-situ data have
complementary distributions but still contradict each other
enough to negate any advantage of combining them for fore-
casting or verification. Further improvements in forecast ac-
curacy are expected when the algorithm is adapted to reason
with all the information that is available in in-situ data.
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