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Abstract 
Diagrammatic problem solving in domains such as 
architecture and design often involves continual redrawing 
of existing figures. Drawing programs, such as Visio and 
CorelDraw, accommodate redrawing using secondary 
correction techniques. These techniques act when a visual 
element is moved or changed, making additional changes to 
the drawing that maintain key preexisting visual 
relationships. These techniques include low-level 
constraints, such as snap and glue, and domain-specific 
glyphs with built-in constraints. As useful as these 
secondary correction techniques are, they sometimes 
operate in unintuitive ways, interfering with the flow of 
problem-solving. Here, we describe our plans to increase 
the effectiveness of secondary correction by making such 
constraints congruent with the place vocabulary of the 
domain in question. We introduce the idea of place 
vocabulary constraints (PVCs) that translate a particular 
place vocabulary into a set of geometric constraints. We 
argue that PVCs may provide a better mechanism for 
secondary correction during redrawing because multiple 
geometric constraints can be handled by a single place 
vocabulary constraint, because place vocabulary constraints 
are more congruent with users’ expectations, and because 
they provide a better mechanism for explaining such 
constraints to the user. 

Introduction 
As part of our research on diagrammatic reasoning systems 
that dynamically interact with human problem solvers, we 
are studying how drawing systems may conserve particular 
visual relations during redrawing. Problem solving with 
diagrams often require continual redrawing, and so it is 
useful to think about the ways in which redrawing aids or 
inhibits problem solving. One clear problem is that while 
the changes the user is attempting to make to the diagram 
are often based on the problem domain, he or she must 
often make the changes at the purely geometric level, 
which can introduce problem-solving disfluencies.  

One way to get around this difficulty may be to assume 
that all modifications are congruent with the domain’s 
place vocabulary (Forbus, 1983). A place vocabulary is a 
set of related qualitative spatial relations for a particular 
problem-solving domain. For example, for a clock domain, 
the “meshing” and direction of gears is a crucial 
relationship (Forbus, Nielsen, & Faltings, 1991).The 
advantage of using place vocabularies to guide diagram 
redrawing is that each relationship in the place vocabulary 

may encapsulate any number of low-level geometric 
relations. For example, the meshing of single gear tooth 
and gap may involve a number of line segments and angles 
that must be of equivalent dimensions.  

In the research described here, place vocabularies are 
integrated into a drawing system by reusing existing 
diagrammatic inferencing rules. We start with the rules 
used by our diagrammatic reasoning engine, GeoRep 
(Ferguson & Forbus, 2000), which infer place vocabulary 
relations from line drawings. We then capture critical low-
level visual relations given as triggers in those rules, and 
enforce them in the current drawing. In the completed 
version of the project, the constraints will be integrated 
into GeoRep’s truth-maintenance system, allowing place 
vocabulary constraints to be assumed and retracted based 
on the current diagram context. We believe that place 
vocabulary constraints will be easier for users to work with 
when they redraw diagrams. Because the constraints are 
derived from existing GeoRep rules, we also believe that 
they will be easy to develop and extend. 

 
Diagram Redrawing in Problem Solving  
Visual problem solving with diagrams often involves 
continual redrawing. For example, a software engineer 
may redraw a system diagram to take account of new 
inputs or outputs, or to break out the design of a particular 
module. Alternatively, an architect may expand and re-
orient the shape of a family room in a floor plan, 
interactively reasoning about how expanding the room 
changes the character of the adjacent kitchen. Redrawing 
can occur for several reasons – it may involve changes to 
make the diagram more aesthetically pleasing, but also 
may involve changing the diagram to work though a set of 
alternatives, or to create a new diagram from a similar 
older diagram.  

For many drawing systems, however, the process of 
redrawing introduces disfluencies. One problem in 
redrawing is that a single change at the conceptual level 
may require many low-level geometric modifications, each 
of which must be done separately. Widening a door in an 
architectural plan, for example, might involve lengthening 
the top and bottom of the door and moving the left and 
right sides. Although a linear stretching of the door might 
work in some cases, not all horizontal dimensions would 
be affected in the same way. For example, if the door 
contains a doorknob, the door could be widened, but the 
doorknob would not change dimensions, and might remain 



a fixed distance from one side of the door, rather than a 
proportional distance from the side of the door. In the 
process of making these changes, however, the process of 
redrawing should avoid engaging the problem solver in 
unrelated subsidiary tasks. 

Drawing programs attempt to reduce these disfluencies 
with mechanisms that make secondary corrections based 
on the user’s direct modifications. Secondary corrections 
are geometric changes that are not directly manipulated by 
the user, but which make the rest of the diagram congruent 
with the changed elements. In general, these techniques are 
either low-level geometric constraints that are applied 
universally, or domain-dependent glyph-based constraints. 

Low-level geometric constraints, such as “snap and 
glue,” impose simple geometric constraints on new or 
modified visual elements in a global fashion. By imposing 
these constraints universally, it is more likely that the 
diagram as a whole will have a consistent style. For 
example, by restricting a line segment’s orientation to one 
of several preset angles, or its endpoints to particular 
points on a grid, the eventual appearance of the whole 
diagram will be more consistent. Similarly, if one end of a 
line segment is “glued” to a polygon, the line segment can 
follow the polygon as it is moved around, eliminating the 
need for users to perform the correction themselves. Low-
level constraints have been available since the time of the 
very first computer-based drawing systems (Sutherland, 
1963). 

Low-level geometric constraints have several 
advantages. First, they do not depend on the domain of the 
drawing, but can be applied universally. In addition, they 
are easily understood by the user, or can be made 
understandable with forms of passive feedback that do not 
interfere with the drawing process. For example, the grid 
used for snapping endpoints can be shown in the 
background, or the point of attachment can be briefly 
highlighted when a line segment is attached to a polygon. 
Additional audio cues may also be given. Finally, because 
they are relatively simple, when these constraints are 
inappropriate for the diagram domain, the user can usually 
turn them off. 

The central problem with low-level constraints is their 
universal application across the figure. In many diagrams, 
different constraints may be needed for different parts of 
the same figure. For example, when block shapes 
represents a pair of software modules and a connecting 
arrow represents a communication link between them, it 
makes sense that the arrow should be stretched to follow 
the block shapes as it is moved. However, if a polygon 
represents a block mass and an attached arrow represents a 
force on that mass, stretching the arrow may imply a 
change in the amount of force, and so the arrow should be 
moved, but not stretched.  For this reason, globally-
enforced low-level constraints may increase the 
disfluencies in problem-solving when they act against the 
intent of the user. 

One technique for handling the contextual nature of 
these constraints is to handle secondary corrections with 
custom glyphs, which are pre-built shapes that have 

domain-specific constraints on how they may be modified. 
These constraints are specifically tied to the domain. For 
example, the glyphs for logic circuits may allow gate 
glyphs to be rescaled, but not stretched along a single 
dimension.  

In practice, custom glyphs can be difficult to create and 
extend. In systems such as Microsoft Visio, the constraints 
on such glyphs must be programmed in Visual Basic, 
although some general constraints (such as maintaining the 
same size aspect along vertical and horizontal dimensions) 
can be handled through dialogues. Because the constraints 
are often specified in terms of a set of low-level geometric 
constraints attached to a particular glyph, there is 
insufficient domain knowledge attached to the glyph to 
either extend the constraints to similar glyphs or to explain, 
in domain-specific terms, why particular constraints are 
being enforced for the glyph. 

In this context, it is useful to consider an intermediate 
form of secondary correction, one that is more context 
sensitive than low-level geometric constraints, and is less 
brittle and more extensible than custom glyphs. 

Place Vocabulary Constraints 
We are currently building a drawing system that can 
perform secondary corrections using place vocabulary 
constraints (PVCs). These constraints perform secondary 
corrections on the diagram, but base these corrections on 
the place vocabulary of the diagram domain. For example, 
a line segment that is connected to the midpoint of second 
segment will not change if the second segment is moved. 
If, however, the first segment is identified as a wire, and 
the second as part of a logic gate, we extend the segment to 
preserve the connected relationship between the wire and 
the gate. PVCs attempt to preserve the visual relationships 
that support the current diagram interpretation. 

PVCs are implemented on top of the GeoRep 
diagrammatic reasoning engine (Ferguson & Forbus, 
2000), a system that produces a diagram representation 
from a set of low-level visual elements. For example, given 
the SR flip-flop logic circuit in Figure 1, GeoRep produces 
the representation in Figure 2. GeoRep is designed to 
explore the relationship between early visual perception 
(which detects a set of qualitative visual relationships, such 
as parallel relations) and visually-driven reasoning tasks, 
such as circuit design. GeoRep has been applied to several 
domains, including logic circuits, military planning 
diagrams (Ferguson, Rasch, Turmel, & Forbus, 2000), 
abstract psychological stimuli (Ferguson, 2000), and 
simple juxtaposition-based physics diagrams (Ferguson & 
Forbus, 1998).  

GeoRep has a two-level architecture (Figure 3).The first 
level represents domain-independent visual structure, 
white the second represents high-level visual relations. 

The first level, the low-level relational describer 
(LLRD), creates a description of the low-level visual 
relations shown to be used in early qualitative perception. 
These relations include such relations as connectivity, 



parallelism, and boundary descriptions. These relations are 
based on those known to be found in early vision. 

The second level, the high-level relational describer 
(HLRD), uses the low-level description as the basis for a 
high-level, domain dependent place vocabulary.  

GeoRep uses a set of rules, called a visual domain 
theory, to represent the relationships between a set of low-
level visual relations derived from human perception and 
the higher-level place vocabulary for the domain. A 
particular rule in the visual domain theory will collect a set 
of low-level relations, perhaps also making additional 
visual tests, and use them to infer a particular spatial 
relationship. 

How PVCs work with GeoRep 
The architecture of the GeoRep-PVC system is given in 
Figure 4. Here, the place vocabulary constraints are 
enforced by a new geometric constraint engine that 
interacts with the HLRD and the drawing interface. 

As can be seen in the figure, the PVC system mediates 
between the low-level and high-level relational description 
in GeoRep, capturing visual relations as they are used by 
the HLRD to recognize place vocabulary relations, and 
then enforcing those relations using a constraint engine. 
For each rule, the PVC system determines which triggering 
visual relations can be enforced (such as corner or 
parallel), so that when a rule fires, constraints are set up 

based on those used to identify the glyph or the place 
vocabulary.  

An example of how constraints are derived from a 
GeoRep rule is shown in Figure 5. This example shows a 
simple rule that is used to recognize a particular kind of 
NAND gate. This rule checks two attachment relations 
between an arc and a segment, one parallel relationship, 
one corner relationship, a polyline relationship, and one 
abuts relationship between a circle and arc. When the rule 
fires, GeoRep-PVC automatically creates new constraints 
based on those relations. The set of constrainable relations 
are defined in advance, and instances of constrainable 
relations are detected in each rule during rule compilation. 
A similar set of constraints (not shown) are created for the 
wire connected to the output of the NAND gate, enforcing 
the radial connection between the circle and the segment 
representing the output wire. 

The effect of these constraints on drawing is 
demonstrated in Figure 6. When the bottom segment of the 
NAND gate is moved, the set of constraints modify the 
drawing to ensure that the result is still a NAND gate, and 
that the wire is still attached to the output of the gate. 

The constraints themselves are handled via a constraint 

 

Figure 1: SRFF logic circuit diagram. 

   
  (SYSTEM-OUTPUT WIRE-S11) 
 (SYSTEM-OUTPUT WIRE-S15) 
 (INPUT-LABEL <POSITIONED-TEXT-3> WIRE-S1 "S") 
 (INPUT-LABEL <POSITIONED-TEXT-4> WIRE-S10 "R") 
 (INTERNAL-CONNECTION WIRE-12) 
 (INTERNAL-CONNECTION WIRE-11) 
 (SYSTEM-INPUT WIRE-S10) 
 (SYSTEM-INPUT WIRE-S1) 
 (NAND-GATE NAND-GATE-2) 
 (NAND-GATE NAND-GATE-1) 
 (OUTPUT-LABEL <POSITIONED-TEXT-1> WIRE-S11 "~Q") 
 (OUTPUT-LABEL <POSITIONED-TEXT-2> WIRE-S15 "Q") 

Figure 2: Representation produced by GeoRep 
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Figure 3: A simplified schematic of GeoRep's 
architecture. 
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Figure 4: The PVC version of GeoRep adds an interactive 
drawing interface and a TCON-based constraint engine to 
the GeoRep architecture. The HLRD rules create the place 
vocabulary constraints, which are then dynamically 
enforced by the TCON constraint engine. 



engine based on CONLAN (Forbus, 1981), called TCON 
(Forbus & de Kleer, 1993). TCON has a number of useful 
characteristics that it inherits from CONLAN. First, 
individual constraint templates can be reused as needed 
and new constraint templates can be created by 
aggregating previously-defined templates. TCON, like 
many constraint languages, is based on the insights of an 
earlier constraint system which was also used for 
geometric constraint processing and simulation, ThingLab 
(Borning, 1981). 

We have extended TCON by interfacing it with the 
HLRD in GeoRep, and by enhancing its conflict-handling 
mechanism. In the original TCON, conflicts between 
constraints are handled by an individual handler. In the 
TCON version used in GeoRep-PVC, contradiction 
handlers depend on the set of constraints being used, and 
there are “handler stacks” for each constraint that allow 
multiple resolution methods to be tried for any particular 
set of conflicting constraints. For example, in the 
correction methods we currently use, we prefer to retain 
corner constraints over perpendicular constraints. 

In the full version of GeoRep-PVC, we expect there will 
be two more critical additions. First, the rules used by the 
HLRD and the constraint system will be richer than those 
in the original GeoRep. Second, the constraints will be 
attached to the dependency network created by the HLRD.  

The reason for the richer rules is that most of the rules 
used for glyph recognition by GeoRep are not specific 
enough. While they are sufficient for recognizing 
particular glyphs in situations where near-misses are not 
available, they do not fully test the set of relations that a 
human would in recognizing a particular glyph. For 
example, in recognizing a NAND gate, the output circle 
should be much smaller than the arc it abuts. However, that 
is not currently checked. This results in potential false 

positives for recognition, and also means that the NAND 
gate in underconstrained for some types of redrawing.  

GeoRep used sparse rules, in part, because glyph 
recognition in GeoRep was brittle. However, recent work 
in our lab by Bokor & Ferguson (2004) has shown that 
relatively rich rules can be used if combined with a 
probabilistic weighting mechanism. When this system is 
integrated into GeoRep-PVC, it should be possible to have 
rich rules that are neither brittle, nor are underconstrained 
in the drawing interface.  

The second addition, attaching PVC constraints to 
dependency network nodes, will allow the system to 
assume or retract PVCs based on the diagram context. If 
changes to the diagram change the glyph interpretations, 
constraints attached to those interpretations will no longer 
be enforced. For example, if a segment in a NAND gate is 
removed, the system will retract the NAND gate 
interpretation for the figure. When the NAND gate 
interpretation is retracted, all constraints based on that 
interpretation will also be retracted. The result of this will 
be that when a figure is changed in a way that eliminates 
its previous interpretation, it will be possible to manipulate 
it in a way that would have violated the previous 
constraints. 

Finally, attaching PVC constraints to the dependency 
network will allow the system to explain the constraints it 
is enforcing in terms of the domain, not simply in terms of 
the geometric constraints themselves.  For example, if the 
user asks why a wire’s position was changed, the 
geometric explanation might be “because this circle was 
moved, and because this segment must stay connected to 
this circle, we stretched the segment.” With a link to the 
knowledge-rich dependency network, it should be possible 
to say instead something like “because the NAND gate 

(a)

(grule ((attached ?line1 ?arc)
        (attached ?line3 ?arc)
        (:different ?line1 ?line3) 
        (:test parallel? ?line1 ?line3)
        (polyline-member ?line1 ?polyline)
        (polyline-member ?line3 ?polyline)
        (number-of-segments ?polyline 3)
        (polyline-member ?line2 ?polyline)
        (:different ?line1 ?line2)
        (corner ?line1 ?line2)
        (:different ?line3 ?line2)
        (abuts ?circle ?arc)
        (:gentemp ?gate-name "NAND-GATE-"))
       (:assume-with-implications
        (represents (composite ?polyline ?arc ?circle) 
                    (nand-gate ?gate-name))
         ((represents-specific-part ?line2 
                    (input-plate ?gate-name))
          (represents-specific-part ?circle 
                    (output-circle ?gate-name)))))

attached

attached

parallel

corner

abuts

(b)

 
Figure 5: How PVC constraints are derived from existing GeoRep visual domain 
rules. Figure (a) shows an unmodified GeoRep rule for recognizing a NAND gate. 
When this rule is run with the PVC system, it automatically creates a set of constraints 
(b) based on those in the rule. 



moved, we stretched the wire to ensure that it was still 
connected the GATE’s output.” 

Related Work and Discussion 
GeoRep is only one in a series of recent diagrammatic 
reasoning systems that integrate knowledge-based 
reasoning with geometric or spatial reasoning. These 
systems include the Electronic Cocktail Napkin (Gross, 
1996), Quickset (Cohen et al., 1997), several systems by 
Davis (2002), and sKEA (Forbus & Usher, 2002).  

GeoRep-PVC owes a great debt to many constraint-
based systems that have gone before, starting with 
ThingLab (Borning, 1981). Systems such as Sketchpad 
(Sutherland, 1963) demonstrated the general utility of low-
level constraints in drawing systems, while others such as 
Geometer’s Sketchpad (Scher, 2000) demonstrated the use 
of knowledge-based constraints in a particular domain. 

The difference between GeoRep-PVC and previous 
systems are 1) that it is part of an attempt to link place 
vocabularies, as defined in qualitative spatial reasoning, 
with user interfaces; and 2) that the system integrates the 
constraint system with a symbolic reasoning system, in 
part to provide better explanations about the constraints to 
users. 

This work is part of a much larger effect to create an 
advanced diagrammatic reasoning architecture (ADRA). 
As part of this new architecture, we have developed an 
incremental spatial reasoning mechanism that allows 
dynamically changing input (Ferguson, Bokor, Mappus, & 
Feldman, 2003), and a mechanism for probabilistic 
recognition of glyphs (Bokor & Ferguson, 2004). 
Additional work is underway on an attention model for the 
system, and on integration of the spatial reasoner with our 
regularity-detection module, MAGI (Ferguson, 1994). 

(a)

(b) (c)  
Figure 6: Example of PVCs in action. In (a), the user draws a NAND gate and an output 
wire using the built-in drawing tools. The system recognizes the NAND gates and 
automatically creates a set of constraints based on the relations that contributed to the 
recognized glyph. In (b), the user grabs and drags a single line segment to the bottom of 
the screen. In (c), the system uses constraints derived from the original recognition rule 
to change the other visual elements to retain the NAND gate and output wire 
interpretation. 



Continued development should lead to an effective 
system that can be used in a variety of domains. Our initial 
prototype of the system (as demonstrated here) is 
complete, and we are expanding the set of figures it 
handles. Once this is done, we will test it with users to 
refine its capabilities.  
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