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Abstract

A bifurcation occurs in a dynamic system when the
structure of the system itself and therefore also its qual-
itative behavior change as a result of changes in one of
the system’s parameters. In most cases, an infinites-
imal change in one of the parameters make the dy-
namic system exhibit dramatic changes. In this paper,
we present a framework (QRBD) for performing qual-
itative analysis of dynamic systems exhibiting bifurca-
tions. QRBD performs a simulation of the system with
bifurcations, in the presence of perturbations, produc-
ing accounts for all events in the system, given a quali-
tative description of the changes it undergoes. In such
a sequence of events, we include catastrophic changes
due to perturbations and bifurcations, and hysteresis.
QRBD currently works with first-order systems with
only one varying parameter. We propose the qualita-
tive representations and algorithm that enable us to
reason about the changes a dynamic system undergoes
when exhibiting bifurcations, in the presence of pertur-
bations.

Introduction

When we think of dynamic systems, we think of Or-
dinary (perhaps Partial) Differential Equations, and
their solutions with time. They may be linear or non-
linear. By system dynamics we understand the set
of qualitative features a system exhibits when excited
properly. Several works define qualitative descriptions
and algorithms that solve dynamic systems, and pro-
vide those solutions in qualitative terms (Kuipers 1986;
Forbus 1984; de Kleer & Brown 1984).

Those works consider a non-changing dynamic sys-
tem and provide solutions to its transient response with
time. But dynamic systems depend not only on state
variables and their derivatives, but on parameters, and
those parameters may be functions of time. For in-
stance, the mass of a rocket changes as it burns fuel,
the characteristics of an electrical machine change as
it ages, the load of an electrical power system changes
during the day, etc.

Changes in the parameters, even if they are infinites-
imal, may cause a dynamic system to exhibit totally
different qualitative properties. For instance, a damped
mass-spring system may stop oscillating if the damping

increases. Those changes in the topology of the phase
space representation of the dynamic system are known
as bifurcations, and the values of the parameters for
which a bifurcation occurs are called bifurcation points.

The work presented in this paper concerns the deter-
mination of the behavior of a dynamic system exhibit-
ing bifurcations. The analysis will take into account
changes in parameters and perturbations to the system
and will derive a sequence of events the system exhibits
under those circumstances. All the analysis is accom-
plished at a qualitative level.

The paper is organized as follows: The following sec-
tion provides a gentle introduction to dynamic systems,
ordinary differential equations, solutions, phase por-
traits, and bifurcation diagrams; next, we define the
problem to be solved; next section defines the quali-
tative representation for the different components in-
volved in the process; after that, we propose a repre-
sentation for events and the dynamics exhibited by the
system under analysis; once we have defined the repre-
sentation, we present a simulation algorithm that allows
us to reason about dynamic systems and bifurcation
diagrams; following that, we show some results, where
simulations include qualitative plots and accounts for
the different events present in a given scenario; we then
propose directions that need to be explored; the final
section summarizes our findings.

Dynamic Systems
The main tool for modeling dynamic systems is the dif-
ferential calculus. Differential equations can roughly
be divided in two types: ordinary and partial differen-
tial equations. This paper deals with dynamic systems
that can be modeled by ordinary differential equations
(ODEs).

An ODE is an equation of the form

F (t, x,
dx

dt
, · · · ,

dnx

dnt
) = 0 (1)

Function f(t) is a solution to Equation (1) if

F (t, f(t),
df(t)

dt
, · · · ,

dnf(t)

dnt
) = 0 (2)

For some ODEs, the solution can be obtained ana-
lytically, in a closed form; for others (mainly non-linear



ODEs) there is no analytical solution and we need to
resort to numerical integration to obtain a numeric ex-
pression of the behavior of a system under given initial
conditions.

Whether analytical or numerical, a solution is a func-
tion of time. If we plot the solution and its first deriva-
tive, abstracting away the parameter time t, we obtain
a trajectory on the so-called phase plane. A representa-
tive set of possible trajectories forms a phase portrait.
A phase portrait includes all qualitative features that
distinguish a dynamic system. Such characteristics in-
clude fixed points (attractors and repellers), nullclines,
limit cycles, and for more complex (chaotic) systems,
even strange attractors.

The reader is probably familiar with two-dimensional
phase portraits, even with qualitative phase por-
traits (Lee & Kuipers 1993) and works like the non-
intersecting trajectories filters for QSIM (Lee & Kuipers
1988). For first-order systems, phase portraits are uni-
dimensional, and do not show as many features as in
higher order systems.

Let us consider the nonlinear system represented by
ẋ = sin(x). If we plot x against ẋ, we get a plot like
that of Figure 1, where trajectories in the phase portrait
flow or lie on the x axis. On the phase diagram, flow
is to the right when ẋ > 0, and to the left when ẋ < 0,
as indicated by the arrows. When ẋ = 0 there is no
flow; the places x∗ where ẋ = 0 are called fixed points.
There are three kinds of fixed points: stable attractors
(solid black dots), unstable repellers (open circles), and
semistable1 (half is open circle and half is solid).

Figure 1: Unidimensional flow for first-order system

In all fixed points the derivative is zero, but there is
a difference between stable and unstable equilibrium.
We say that x∗ is a stable fixed point if all trajectories
that start near x∗ approach it as t → ∞. Think of
a bowl and a marble inside it; if the marble is at rest
and we push it a little, the marble will come back to
its original equilibrium state (the bottom of the bowl).
On the other hand, a fixed point x∗ is unstable, if all
trajectories that start near it are driven away from it.
Now think of an upside-down bowl with a marble on
top; if the marble is at rest and we push it a little, the
marble will not come back to the equilibrium point, but
will be driven away from it (by gravity, in this case).

1not shown in Figure 1. Figure 6 shows some cases of
semistable fixed points

First-order systems are very simple systems, but
they exhibit interesting features when their parame-
ters change with time. The qualitative structure of the
phase portraits can change when we allow parameters
to vary. Fixed points can be created or destroyed, or
their stability can change. The qualitative changes in
the topology of a phase portrait, due to the change in
parameters are called bifurcations, and the value of the
parameters where a bifurcation occurs are called bifur-
cation points.

Figure 2 shows the phase portraits for equation
ẋ = rx + x3 − x5, for different values of parameter r,
and Figure 3 shows its respective Bifurcation Diagram
(BD). Note that arrows, indicating flow, have been re-
moved from diagrams in Figure 2 for clarity. Also note
that there is a region where the values of r make the lin-
ear and cubic terms dominate over the quintic term. For
larger values of r, the quintic term dominates, yielding
an interesting region where three fixed points coalesce
into one, and the stable fixed point at the origin changes
stability.

Bifurcation analysis has a large number of appli-
cations in science and engineering. Those applica-
tions range from radiation in lasers, outbreaks in insect
populations, electronics, electrical power systems, etc.,
see (Strogatz 1994).

Problem Definition

We have defined bifurcations, bifurcation points, and
bifurcation diagrams. The problem we address in this
work is the following:

Given a qualitative description of a bifurcation di-
agram and the dynamics of the system with state
x, determine the behavior of x as a result of per-
turbations as parameter r changes.

To address this problem, we rely in the following as-
sumptions:

Continuity. All variables and functions involved in
the process are continuous and continuously differen-
tiable.

Two Time–Scales. In the process of simulation, two
time scales will be considered. The variation of the
system’s parameters is much slower than the tran-
sient time to stabilize the system after a perturba-
tion. That is, t(variation of r) � t(transients of x).

Perturbations at Landmarks. Perturbations always oc-
cur at landmarks of r. (See the definition of land-
marks in next section.) If we need a perturbation
to occur in between two landmarks, we simply create
another landmark between the two original ones, and
let the perturbation occur at the new landmark.

Small Perturbations. Perturbations are small enough
so not to cross other fixed points. If we do not make
this assumption, the behavior of the system would de-
pend on the relative magnitude of the perturbation,
with respect to the distance to the next fixed point in



(a) r = −1

(b) r = −0.2

(c) r = 0

(d) r = 1

Figure 2: Behavior of ẋ = rx + x3 − x5 for different
values of r

Figure 3: Bifurcation diagram for ẋ = rx + x3 − x5

the direction of the perturbation. This last assump-
tion may not hold if a perturbation occurs infinites-
imally close to a bifurcation point. Implementation
of the system without this assumption, would lead to
branching in the prediction of behavior. I.e. at any
perturbation, we would need to consider cases where
its magnitude would not reach, exactly meet, or pass
each landmark in the direction of the perturbation.

Qualitative Representation

This section proposes the representations needed to ac-
complish the reasoning tasks we have in mind.

To reason about the dynamics of systems exhibiting
bifurcations and under the influence of small perturba-
tions, we need to start by computing the bifurcation
diagram for such a system. Once we have a numeri-
cal description of the bifurcation diagram, we proceed
to qualitativize it. (Keller 1987) presents several nu-
merical methods to compute a Bifurcation Diagram. A
good method for producing a qualitative description of
a noisy signal is presented by Kay et al. in (Kay, Rin-
ner, & Kuipers 2000). This reduction to a qualitative
description is outside the scope of this paper, so we
assume that such description has been produced.

We start with the main components of a qualita-
tive description of a bifurcation diagram, and then de-
fine the representation for varying parameters and for
perturbations. We borrow most of the notation from
already developed representation schemes in the area
of qualitative reasoning, mainly from QSIM (Kuipers
1994).

The main components of a dynamic system are vari-
ables, parameters, and constraints. Since we are start-
ing from a bifurcation diagram, we do not need to rep-
resent the structure of the system (the constraints). A
bifurcation diagram can thus be described in terms of
the values of its state variables and parameters at dif-
ferent points in time.

At any point in time, the value of each variable and
parameter is specified in terms of its relationship with
a totally ordered set of landmark values and its direc-



tion of change. The set of landmark values is called
the quantity space. Quantity spaces typically include
−∞, 0, and ∞.

The qualitative value (or magnitude) of a variable can
be a landmark or an open interval between two land-
marks. In the latter case, we do not know anything
about where in that interval the value of the variable
lies; we just know it is within the interval. The qualita-
tive direction of a variable is the sign of its derivative,
in this case, the sign of the rate of change of x with re-
spect to r. As opposed to Kuipers’ representation, we
decided to include ∞ as a possible value for qualitative
direction. That is because at some points in a bifurca-
tion diagram the rate of change of x wrt. r becomes
∞.

In a bifurcation diagram, we plot x versus r, where
neither r is a function of x nor vice versa. So we need
to represent the bifurcation diagram as a relation (in
the mathematical sense, a relation is a subset of the
Cartesian product). In a BD representation, we need
to include the qualitative states of the variable and the
parameter, and the type of stability presented in the
segment. So, a Bifurcation Diagram Segment (BDS)
is a triple of the form 〈qval(r), qstate(x), nature〉,
where nature can be any of {st, us, ls, rs} (st =stable,
us =unstable, ls =left-stable, rs =right-stable.) In this
representation, a BDS is a subset of the bifurcation di-
agram where the qualitative values of x and r, and its
stability remain unchanged in all that subset.

As an example, the variables involved, their quanti-
tative spaces, and the qualitative representation of the
bifurcation diagram of Figure 3 are shown in Figure 4.

Variables:
{r, x}

Quantity Spaces:
QS(x) = (−∞, x4, x3, 0, x2, x1,∞)
QS(r) = (−∞, r0, r1, 0, r2,∞)

BD Representation:
x R r
R = {〈(−∞, 0), (0, 0), s〉 ,

〈(0,∞), (0, 0), us〉 ,
〈(r1,∞), ((x2, x1), +), s〉 ,
〈r1, (x2,∞), rs〉 ,
〈(r1, 0), ((0, x2),−), us〉 ,
〈0, (0,∞), us〉 ,
〈(r1, 0), ((x3, 0), +), us〉 ,
〈r1, (x3,∞), ls〉 ,
〈(r1,∞), ((x4, x3),−), s〉}

Figure 4: Qualitative representation of bifurcation dia-
gram in Figure 3

Note that the qualitative representation of the bifur-
cation diagram does not provide enough information
to draw curved lines like those of Figure 3. Figure 5
shows the qualitative representation of that bifurcation
diagram. You can see that a BDS is a region where

the form of growth of x wrt r does not change, but the
shape of that growth is unspecified. We decided to rep-
resent that growth as a straight line; the resulting BDS
expresses our knowledge of the landmarks of x and r at
the ends of the BDSs.
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Figure 5: Qualitative bifurcation diagram for Figure 3

Dynamics and Events

According to SectionProblem Definition, we need to
provide a suitable representation for the dynamics of
the system.

Since we are dealing with two time–scales, transient
responses of the system (in other contexts referred to
as the system’s dynamics) are considered instantaneous
when compared with the time taken for a parameter to
change. On the other hand, when observing the tran-
sient responses of the system can be observed (from the
same perspective in which QSIM predicts behavior, for
example), we consider the parameters as constant.

With those considerations in mind, when we talk
about system’s dynamics, we are referring to the set
of changes in parameters and perturbations present
throughout the analysis of the system. We also con-
sider as a part of the system’s dynamics the changes of
state variables of the system.

Parameter Changes

The changes in the parameters are represented as a se-
quence of qualitative states of each parameter. For the
scope of the work reported in this paper, we are dealing
only with one changing parameter, so the changes will
be a list of qualitative states of parameter r. This list of
changes may represent any qualitative continuous func-
tion of r with respect to time. Such function does not
have to be monotonic, and may have as many extrema
as necessary. Turning points of r in time (values for r
where dr/dt is zero) establish landmarks for r.

Perturbations

The perturbations induced to the system can be repre-
sented as a list of single perturbations; a perturbation
is a pair formed by the qualitative value of r where the



perturbation occurs, and the qualitative direction of the
perturbation itself. The domain of the qualitative di-
rection of a perturbation is limited to {+,−}.

Now, perturbations occur at a given instant of time,
so we cannot associate them to a given value of r, but
to a value of r at a point in time. In order to avoid the
explicit introduction of time in our representation, we
include perturbations in the description of the behavior
of r, which implicitly contains time.

Parameter Changes

Our simulation will be performed at the slow time–scale
(i.e. the time–scale when parameter r changes). In that
time–scale, we need to specify the changes occurring
to r. This description will not include time explicitly;
we are not interested in the value of time when events
happen, but in the order they happen.

Behavior of r, B(r), is a qualitative description of
how r changes with time; it is a sequence of qualita-
tive states of r. A qualitative state contains qualitative
magnitude and qualitative direction. The qualitative
magnitude can be a point (landmark), or an interval, of
two landmarks, not necessarily consecutive. The qual-
itative direction of r can be any of {−, 0, +}. States
alternate between point and interval states.

Combining the behavior of r with the perturbations
in x, we obtain a single descriptor of D. D is a list
of pairs (qstater, dirx), indicating that at state qstater

there will be a perturbation to x with direction dirx.
The domain of the qualitative direction of a perturba-
tion is limited to {+,−}.

Dynamics

In terms of the system’s dynamics, a first-order system
may exhibit a limited set of features. If the system
starts at a stable fixed point, and a perturbation is in-
duced, the system will return to the same stable fixed
point (an attractor).

On the other hand, if the system starts at an un-
stable fixed point and a perturbation is produced, the
system will be driven away from the fixed point, either
to another stable fixed point or to infinity.

In order to establish a limited set of precise rules for
predicting behavior of the system under the presence of
perturbations, we need to state the following theorem.

Theorem 1 (Alternation of Fixed Points)
Consider the first-order ODE ẋ = f(x, r), where f
is a continuously differentiable function, and r is a
parameter. For a given value of r, the nature of the
corresponding fixed points alternate.

Proof: The proof is based on the continuity of f and
on the nature of the roots of f , which are the fixed points
of x.

Case 1. The nature of two consecutive roots of f(x)
can only be (st, us), or (us, st). See Figure 6(a).

Case 2. If f touches 0 at x∗, and f has no more
roots, the nature of the fixed point can be determined by

the magnitude of f(x∗ − ε) and f(x∗ + ε). It is either
ls or rs. See Figure 6(b).

Case 3. If f(x) only touches 0, it may have one root
on the left and/or one on the right. Let us consider the
case where there exists a stable fixed point x∗

l to the left
of x∗. Linear stability analysis indicates that f ′(x∗

l ) < 0
for stable fixed points (Strogatz 1994). This fact implies
that f(x∗−ε) < 0 and f(x∗+ε) < 0 for any infinitesimal
ε. Therefore, the fixed point at the touch will be right
stable. See Figure 6(c). In the case where there exists
an unstable fixed point to the left of x∗, f ′(x∗

l ) > 0,
and f(x∗ − ε) > 0 and f(x∗ + ε) < 0. Therefore, the
fixed point at the touch will be right stable. A similar
argument applies if there exists a fixed point to the right
of x∗.

Case 4. For consecutive touches (highly unlikely), all
consecutive fixed points will be of the same nature: rs if
there is an us fixed point at the right of the touches, ls
otherwise. See Figure 6(d).

In all cases we observe an alternation on the nature
of fixed points.

(a) (b)

(c) (d)

Figure 6: Cases for Theorem 1.

Based on Theorem 1, we can define the following
cases for prediction of behavior in the presence of a per-
turbation. If the system is at an unstable fixed point, a
positive perturbation occurs, and there is a stable fixed
point above it, the system will stabilize at that fixed
point; see Figure 7(a). If the system is at an unstable
fixed point, a positive perturbation occurs, and there is
no fixed point above it, the system will “blow up” (i.e.
it will tend to infinity); see Figure 7(b). If the system
is at a stable fixed point, and a positive perturbation
occurs, the system will return to the same attracting
fixed point no matter whether there is or there is not a
fixed point above it; see Figures 7(c) and 7(d). Similar
cases occur for negative perturbations. Sub-figures of
Figure 7 show the state of the system before and after



the perturbation, and the symbols we will use for each
event in graphical displays of the simulation.
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Figure 7: Predicting behavior caused by a perturbation

Other types of events that may occur are what we call
falling off on a bifurcation diagram. When the system
is at a stable fixed point, and parameter r varies, the
system will travel along the BDS it is lying on at that
point. If the BDS ends and there is no other BDS that
places a fixed point at that state of the system, the
system will be attracted by the nearest attracting fixed
point.

Theorem 2 allows us to constrain the number of cases
present in our simulation, and provides a more solid
background for the development of the algorithm.

Theorem 2 (No ambiguity on fall-offs) If a dy-
namic system is found in the conditions described as
fall-off, then the system will transit into exactly one
stable fixed point.

Proof. Theorem 2 is a consequence of the prop-
erty of determinism on dynamic systems, see (Stro-
gatz 1994), chapter 4. If there were more than one
(in which case it would be two for first-order systems;
one above and one below), there would be two possible
next states for the system, which would make the system
non-deterministic.

Given Theorem 2, Figure 8 shows the possible cases
for decreasing r. Other two mirror cases are possible

for increasing r. The thick line represents the behavior
of x through time, moving along with r.

(a) (b)

Figure 8: Predicting behavior caused by fall-offs

If the system undergoes perturbations while at an un-
stable state, or finds itself in a fall-off situation, the re-
sulting changes in magnitude may be dramatic. Those
are called catastrophes, since such changes in magni-
tude may take the system to states outside the oper-
ating region of the device. A catastrophe may make
the device blow up, or if it is protected, to switch off.
An example of such situation can be found in electrical
systems, where changes (typically increases) in the load
of a power system, may take it to a state that makes
the voltage drop, currents increase, and protections op-
erate, producing the well known black-outs.

There is another characteristic exhibited by dynamic
systems near bifurcation points (specially nonlinear
systems), known as hysteresis. When a catastrophic
change occurres, the system moves to another stable
state, and therefore is lying on a different BDS; this
change is typically produced by a change in a param-
eter. After the catastrophe, reverting the changes in
the parameter does not restore the system to its orig-
inal state. This lack of reversibility as a result of the
variation of a parameter is called hysteresis.

Section Results provides examples of all the events
mentioned in this section.

Simulation Algorithm

Now that all the necessary representation has been de-
fined, and all possible events and cases were presented,
we are in possibility to present and explain the simula-
tion algorithm.

The algorithm (see Figure 9) starts at initial state
given by x0, and visits all landmarks in r’s trajectory,
specified in D. At each landmark, if there exists a
perturbation it computes the next state of the system.
Also, at each landmark, it verifies if the BDS ends, pro-
ducing a fall-off situation. If there is a fall-off, the next
state is computed.

There are a few places in the algorithm that deserve
more attention, specially at the time of implementa-
tion. function pert takes a state in the description of
the changes of the system, and returns the sign of a per-
turbation, if one exists. In line 2, pert determines if the
dynamics of the system include a perturbation at sr. In



Simulation(x0, BD, D)

1: for all states sr in D do
2: if ∃ pert(sr) then
3: x = nextFP(x0, pert(sr), sr)
4: record(x0, x, sr, BDS(sr))
5: end if
6: if fallOff(x, sr) then
7: x = nextFP(x0, sr)
8: record(x0, x, sr, BDS(sr))
9: end if

10: x0 = x
11: end for

Figure 9: Simulation algorithm

line 3, the algorithm needs to determine the next state
after a perturbation occurs. This is the part where the
cases of Figure 7 come to play. In order to determine
what case applies to a given situation, we first need to
search the BDS list for another BDS that coincide with
the actual BDS at the present landmark, in the direc-
tion indicated by the perturbation. That landmark or
interval is the new state. In line 6, it is necessary to de-
termine if the current BDS, in the direction of change
of r, ends at the present landmark. If that is the case,
we need to determine if another BDS continues where
the current one ends. If that is not the case, then we
need to determine which BDS contains an attracting
fixed point, either above or below the fall-off. In line 7,
the implementation needs to determine where the sys-
tem will continue after a fall-off. Function nextFP is
being overloaded to determine the next fixed point in
the simulation, produced by a perturbation or a fall-off.

For each perturbation or fall-off in the simulation,
we record (xi, xj , sr, BDS(sr)); that is, the initial and
final states, where the event occurred, the state of r
when that happened, and the BD segment the system
was at when the event occured. (Lines 4 and 8 of the
code.)

Line 10 updates the state of the system at each iter-
ation on the simulation.

Results

This section presents one example of a simulation of a
first-order system exhibiting bifurcations. This exam-
ple contains all features and events, so it is representa-
tive of QRBD’s capabilities.

The bifurcation diagram of Figure 3 can be repre-
sented in qualitative terms, as presented on Figure 4,
on SectionQualitative Representation.

Let us assume that the system starts in state (x(0) =
0, r(0) = r0), with r changing according to B(r) =
((r0, +), ((r0, r3), +), (r3, 0), ((0, r3),−), (r0, 0)). Let
us also assume that the following perturbations will
be induced to the system: P (x) = ((0,−), (r3, +)).
These two components of the dynamics of the
system are combined into a single descriptor

D = {((r0, +), {}), (((r0, r1), +), {}), ((r1, +), {−}),
(((r1, r2), +), {}), ((r2, 0), {+}), (((r2, r0),−), {}),
((r0, 0), {})}.

The algorithm traverses all landmarks in r’s trajec-
tory. When it is analyzing landmark r = 0, it finds
a negative perturbation. Since the system is at a sta-
ble fixed point, the system will be attracted back to the
fixed point at 0, and remain in the same BDS. When r is
in qualitative state (0, +), the BDS ends. Since there is
another BDS starting at the same point, the algorithm
does not detect any fall-off event. When the algorithm
reaches landmark r = r2, it finds another perturbation,
a positive one this time. Since at that point the system
was in an unstable fixed point, the perturbation drives
the system away from it. The next fixed point in the
direction of the perturbation is the one that belongs
to the BDS 〈(r1,∞), ((x2, x1), +), s〉. The system has
moved from an unstable fixed point at 0, to a stable
fixed point somewhere in the interval (x2, x1). At that
point, r starts decreasing. When r reaches r1, the BDS
ends; this time there is no BDS at the end of it, so
the algorithm has detected a fall-off event. The clos-
est attracting fixed point at that landmark is the one
that belongs to the BDS 〈(−∞, 0), (0, 0), s〉. The sys-
tem has moved back to the stable fixed point at 0. The
system continues at 0 with no change until the end of
the simulation.

In the results derived from the simulation, we find two
catastrophic events: an increase in magnitude at r3 due
to an external perturbation and a restoration to its orig-
inal position at 0, due to a bifurcation point. The fact
that the system is taking a trajectory when r increases
and returning on a different one, when the parameter
r decreases, indicates the system is an irreversible one,
exhibiting a hysteretical behavior. Figure 10 shows a
qualitative plot of the results of the simulation. Note
that, for clarity, we have drawn the return to 0 slightly
off place, so that it does not meet with the previous tra-
jectory. Also note that we are totally disregarding the
transient behavior of the system when it moves from
fixed point to fixed point.
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Figure 10: Results of the simulation in graphical form

QRBD was capable of producing all events found in



the simulation, but does not intend to produce the nat-
ural language explanations provided in the previous
paragraphs. Those explanations are interpretations,
provided by the authors of this paper, of the actual
simulation outputs. The actual output of the simula-
tion is presented in Figure 11.

QStates of r and x, and events present during simulation:
x = 0.
r = (r0, +).
r = (r1, +), - pert., stable FP, x = 0.
r = (0, +).
r = (r2, 0), + pert., unstable FP, x = (x2, x1).
r=(0,−)
r=(r1,−), Fall off, x = 0.
r=(r0, 0).

Figure 11: Output of the simulation

Future Work
There are several directions to continue the work re-
ported here. Among others, we have the following.
The current algorithms and implementation only work
with first-order systems; to broaden the applicability of
the system, we need to deal with higher-order systems.
There are some complications that need to be solved
to go to higher-order systems; the first one is that bi-
furcation diagrams are no longer unidimensional, they
are multidimensional. Since bifurcation diagrams rep-
resent all phase diagrams for a given range of r, they
have one dimension more than the system itself. In
that case, what were lines in a bifurcation diagram for
first-order systems, become hypersurfaces for the gen-
eral case, fixed points could become fixed regions, and
so on. Also, starting in second order systems, new ele-
ments of a phase diagram appear (mainly saddles and
limit cycles). Saddles are semi-stable fixed points, so
they do not really introduce any novelties to the rep-
resentation. A limit cycle is a closed path on a phase
portrait for a second-order system; under changes of pa-
rameter r, the limit cycle shrinks and finally collapses
to a fixed point. That would produce a funnel like ele-
ment on a 3D bifurcation diagram.

Another direction to work on is on allowing more
than one parameter to vary. For the general case (an
n-th order system) with k changing parameters, the bi-
furcation diagram lies in a n + k-th dimensional space.
Again, representation needs to be enhanced to accom-
modate all possible elements in more general diagrams.

The last two directions of work deal with applica-
tions. The authors are seeking interaction with people
from different areas, looking for potential applications,
specially in the area of electrical engineering, where a
number of people are working on bifurcation analysis for
electrical power systems (for an example, see (Garcia-
Kasusky, Fuerte-Esquivel, & Torres-Lucio 2003)).

Now, if we are to apply this framework to an en-
gineering domain, we definitely need to produce not

only qualitative, but semiquantitative, or quantitative
results. Otherwise, our results are of limited interest
to engineers. For instance, if we know the system will
undergo a catastrophic change, an engineer would like
to know the order of magnitude of the change in the
state variables.

Conclusions

This paper presents the representation and algorithms
necessary to perform simulation of dynamic systems ex-
hibiting bifurcations, on the presence of perturbations.
Those simulations take place at a qualitative level, pro-
ducing accounts of the different phenomena taking place
in the dynamic system.

The system, QRBD, produces qualitative descrip-
tions and qualitative plots of the results of the simu-
lation. Those results include accounts of catastrophic
events and hysteresis. Those two phenomena put to-
gether are of large importance to areas like electrical
systems, biology, electronics, etc.

We propose several extensions to the work, and are
committed to working on them.

The system QRBD has been implemented entirely
on Mathematica (Wolfram 2003). The Mathemat-
ica notebooks and programs can be downloaded from
(http://lsc.fie.umich.mx/∼juan/qrbd).
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