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Abstract

Fast and accurate numerical models are critical for the mod-
elling, prediction, and control of fluid flows. Direct numer-
ical simulation (DNS) methods, though accurate, are often
too slow for these purposes. So-called reduced-order models
are faster because they use fewer state variables to approxi-
mate the flow physics. Different tactics are used for this di-
mensional reduction. Some approaches simply coarsen the
numerical grain of the approximation. Others take a more-
qualitative approach, decomposing the flow into abstract
features—coherent structures like vortices, for instance—and
modelling the dynamics of those features. Regardless of the
tactics involved, the inherent approximations make reduced-
order models inaccurate. The premise of this paper is that
periodically correcting such a model with observations of the
fluid—a process known as data assimilation—can produce a
“data-adaptive” model that is both fast and accurate. This
idea has been explored in depth by the numerical weather pre-
diction community in the context of DNS models. The goal
of this paper is to explore data assimilation in the context of a
model that treats a fluid flow as a collection of vortices. There
are two challenges in assimilating data into such a model:
correction dynamics and computational cost. The strategy
described here solves both of those problems using knowl-
edge about the flow dynamics to intelligently select when and
where to apply the correction.

Introduction

Due to the complexity and sensitivity of fluid flows, numeri-
cal models that accurately track their evolution are currently
too slow for many applications. The ability to model these
flows accurately and quickly is of great practical importance,
however, as they are common in natural and man-made sys-
tems. Traditional approaches to numerical modelling, re-
viewed in the next section, use so-called direct numerical
schemes to solve the complex partial differential equations
that govern flow dynamics. While these techniques can be
highly accurate, they are also very slow because they model
the dynamics at all points on a fine mesh. Our approach
to solving this problem is to use a more-abstract model
that tracks only the coherent structures in the flow and self-
corrects using physical data measured from that flow. This
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combination of qualitative modelling and quantitative obser-
vations results in a data-adaptive simulation that is both fast
and accurate.

The point-vortex model tracks only the vortices in a flow,
ignoring all other dynamics. In comparison to direct numer-
ical simulation techniques, this is a reduced-order model:
its state variables are the positions and strengths of the vor-
tices rather than gridded velocity fields. This abstraction of
the flow—as a collection of interacting coherent structures,
rather than a physical continuum of velocities and pressures,
or a gridded approximation thereof—has a variety of advan-
tages. Reasoning in terms of the vortices in a flow is much
simpler, and hence numerical models that encapsulate such
reasoning are significantly faster. And, this abstract reason-
ing is justified from a physical standpoint, as it is the coher-
ent regions in a fluid flow that are responsible for the qualita-
tive flow behavior(Roshko 1976). Vortices, in particular, are
good coherent structures to track, as fluid physics enables us
to compute the velocity at any point in the flow if we know
the positions and strengths of its vortices. Vortices may also
be useful in helping humans to reason about turbulent flows
(Yip 1995). The mathematical details of the point-vortex
model are provided in the next section.

There is a drawback to using reduced-order models: the
approximations that make them fast also introduce inaccu-
racies. Our solution to this problem is to correct the model
variables on the fly using data from the target system. This
process, known as data assimilation, was developed by me-
teorologists in the 1950s for integrating weather observa-
tions into numerical prediction models. The thesis of our
work is that correcting a reduced-order model—one that is
based upon qualitative features of the flow—with quanti-
tative information is a good way to improve accuracy, and
that the resulting data-adaptive reduced-order model can be
both fast and accurate. Data assimilation presents its own
set of challenges, however, as it can potentially destabilize
an otherwise-stable numerical scheme. And, the computa-
tional costs of a naive assimilation strategy could negate the
increase in speed obtained by using a reduced-order model.
The data-assimilation community has explored these issues
in great depth in regard to DNS models, but there has been
almost no work on how to use data to correct reduced-order
models, nor has anyone investigated the use of real data in
this context, let alone addressed the computational cost issue



in any systematic way.

In this paper, we present an intelligent data-assimilation
strategy that exploits knowledge about the flow dynamics to
correct the point-vortex model only when necessary. This is
in contrast to traditional data assimilation approaches, which
correct the model whenever observations are available, ig-
nore the dynamics of the underlying system, and use statis-
tical approaches to handle noise. We believe that a thorough
grasp of the dynamics of the system can be used not only
to inform the assimilation process, but also to understand
the scenarios in which noise—an inescapable feature of any
real application—may enhance or destroy its benefits.

Many of the themes in this work are familiar ones to the
QR community. We are interested in abstraction as a way to
simplify simulation (e.g., (Clancy & Kuipers 1993)), but we
are working with a spatiotemporally extended system whose
behavior cannot be envisioned or enumerated. In contrast
to (ky Ringo Ling & Steinberg 1993), we are not lumping
control volumes to transform the system into an ODE, nor
is our goal diagnosis, as in (Sachenbacher & Struss 2001;
Struss 2002; Yan 2003). To simplify our simulations, we
are using a reduced-order model that tracks the coherent
structures in a fluid. The goal in the current paper, how-
ever, is not to find or understand those structures (Bailey-
Kellog & Zhao 1997; Bailey-Kellog, Zhao, & Yip 1996;
Ordéiiez & Zhao 2000; Nishida 1993; Yip 1995; 1997),
but simply to use data about them to correct a simula-
tion of their dynamics. Like Lundell (Lundell 1994; 1995;
1996), we are building a qualitative model of a physical
field; the form of the model is very different, though, and
we are using data assimilation to improve its accuracy. Like
Zhao (Zhao 1994), we are exploiting knowledge about dy-
namical systems to improve simulations; our application
area, however, is fluid dynamics as opposed to ordinary dif-
ferential equations, and our goal is to correct the simulation
not understand the state space. Lastly, one of our fundamen-
tal issues is the integration of qualitative and quantitative in-
formation, which is a prevalent research issue in the QR lit-
erature. In the next few sections, we describe the qualitative
model we that are working with and explain how data assim-
ilation can be used to incorporate quantitative observations.

The Point-Vortex Method

Real-world fluids problems do not admit analytical solu-
tions, so one has to model them numerically, and their in-
herent spatiotemporal complexity makes this very hard. The
traditional solution to this, termed direct numerical simu-
lation or DNS, involves discretizing the flow quantities us-
ing finite-order approximations of time and space. To get
the flow details right in face of this discretization, the grids
involved may need to be very fine, which translates to an
extremely large state vector in a simulation of a compli-
cated flow. The algorithmic methods used in many codes to
address this issue—e.g., sparse matrix solvers—often have
sensitive numerical dynamics, making it hard to get them to
converge. For all of these reasons, DNS simulations of even
fairly simple fluids problems require hours—or even days
or weeks—of CPU time on powerful machines with large
memories.

If a coarser but still meaningful representation could
be used to model the dynamics of the system, the result-
ing numerical solver would be simpler, and hence much
faster, than DNS models. There are many examples of
such reduced-order representations (Canuto et al. 1988;
Berkooz, Holmes, & Lumley 1993; Farge, Schneider, &
Kevlahan 1999; Farge ef al. 2003; Germano et al. 1991;
Lesieur & Metais 1996; Moin 1997; Sethian 1991). Many of
these are obtained via various approximations to the Navier-
Stokes equations or a coarsening of the grid employed by
the DNS models. It is important to note that the majority
of these solutions provide abstract descriptions of the flow,
but no mechanism for modelling the dynamics in terms of
these descriptions. The point-vortex model(Sethian 1991),
in contrast, is an abstraction that is based on the qualitative
features in the flow. This method is inherently grid-free, and
the state variables are meaningful flow quantities—positions
and strengths of vortices—that are helpful in understanding
its dynamics. The result is a huge reduction in the number
of state variables required in the simulation.

The point-vortex model’s dynamics are straightforward.
It tracks the vortices in a flow, assuming that that flow is
inviscid. Vorticity is a field vector quantity defined as the
curl of the velocity; it represents the angular momentum of
the fluid. A vortex is a local peak or concentration in the
vorticity; circulation is the integral of vorticity over an area.
In the point-vortex model, all vorticity is idealized as be-
ing contained at specific points, which are assumed to move
with the flow field. As mentioned above, state variables in
the point-vortex model are the positions (z, y) and strengths
I" of these idealized point vortices. This model’s dynam-
ics are the fluid-mechanical analog of point masses evolving
under the mutual interaction of Newtonian gravity: a vor-
tex is treated as generating a swirling velocity field around
itself, and other entities—vortices, passive tracer particles—
move or “advect” with that velocity. The magnitude of the
induced velocity falls off as 1/r? with the distance r from
the corresponding vortex core. The point-vortex equations
use superposition to combine the effects of multiple point
vortices. In schematic form, the equations for the evolution
of the state of the ith point vortex are:
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where X; = (x;,y:)T, the 2D position of the ith vortex,
and f is a vector-valued function whose ith component com-

putes the distances || X; — X ;||2 from the ith vortex to each
of the j others, computes their influence at that distance (via
the 1/r% law, scaled by the strength I';), rotates to the tan-
gential direction, and does a vector sum of the results. One
can solve the system (1) with any ordinary differential equa-
tion (ODE) solver.

The point-vortex model is highly idealized. That is what
makes it fast, but idealization also introduces inaccuracy.
Real vortices are not concentrated at a single point, and
only higher Reynolds number flows can be treated as invis-
cid. More typically, vorticity is distributed throughout the
flow, and it is created and destroyed as the flow evolves.



Nonetheless, the point-vortex method works remarkably
well (Boyland, Stremler, & Aref 2003) if the flow is dom-
inated by isolated regions of high vorticity, the fluid sur-
rounding those regions is basically irrotational, and viscos-
ity is small—assumptions that are valid for many engineer-
ing flows. There are many ways to extend the point-vortex
model to handle cases where these assumptions are not valid
(Airapetov 1990; Basu, Narasimha, & Prabhu 1995; Chava-
nis 2001; Cortelezzi, Chen, & Chang 1997; Funakoshi 1995;
Huber & Alstrom 1993; Riccardi & Piva 2000). These im-
provements will not play roles in our research, since the
solver itself is not our focus. Our goal is to figure out how
to use data assimilation to improve the accuracy of the orig-
inal point-vortex algorithm and present a proof-of-concept
example that it works.

Data Assimilation Overview

In order to combat the small- and large-scale errors intro-
duced by the point-vortex approximation, we correct the
solver with experimental measurements of the fluid under
investigation—a process known as data assimilation (see
(Daley 1991; Tarantola 1987) for an overview). Figure 1
shows a schematic of the correction process, and depicts
what is typically referred to as a data assimilation cycle.
The steps in the process are as follows. In the first cy-
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Figure 1: Data assimilation cycle. A numerical model is
used to generate a forecast or “background state” from a
best-guess initial condition. Data assimilation is then used
to combine the background state with the available obser-
vations, each weighted according to its expected accuracy.
The result is an “analysis state,” which is used as the initial
condition for the next assimilation cycle.

Analysis

Observations

cle, one must specify the initial conditions for the model
integration—this is known as the initialization problem in
the data assimilation community. Once initial conditions
have been specified, the model is run for a specified time
interval (cycle length) to produce a forecast or background
state. This forecast step is represented by

x (tiy1) = My[x" ()],

where M; is the model dynamics operator and xf(¢;) is its
state vector at time ¢;. Finally, observations of the dynamical
system are combined with this background state to produce

a new model state known as the analysis. Depending on
the analysis algorithm and the model, it may be necessary
to apply initialization techniques to the analysis to ensure
that it satisfies certain dynamic balance conditions. The an-
alyzed/initialized state is then used as the initial condition to
start the model forecast for the next data assimilation cycle.

This seemingly simple data assimilation cycle is rich with
interesting and challenging problems. Much of the research
in this field is devoted to the analysis step, i.e., determin-
ing what algorithm should be used to update the model vari-
ables, based on the available observations. One naive ap-
proach to this is to simply throw out the simulated variable
values and replace them with the measured ones (where they
exist). We will refer to this method as “direct replacement.”
There are a variety of major problems with this. To begin
with, it can deliver a numerical shock to the solver, and
numerical algorithms are notoriously sensitive and prone
to diverge when subjected to this kind of insult. Simple
control-theoretic ideas can soften this shock. The meteo-
rology community has been using the obvious proportional
control strategy to do so for thirty years (though they term
it “Newtonian nudging” (Davies & Turner 1977)). Direct
techniques like this are all very well if the data are plentiful,
noise-free, and an exact match to the variables used in the
simulator, but that is rarely the case in practice, and the bulk
of the data assimilation literature is devoted to techniques
for dealing with the sparseness, noise, and heterogeneity of
real data.

Atmospheric and oceanic assimilation systems typically
deal with these issues by working with an observation grid
and a model grid and interpolating simulated and measured
data back and forth between the two in order to perform the
correction. This interpolation, in the face of noise and sparse
data, is the main challenge of data assimilation. Early solu-
tions used simple linear methods to solve this problem, but
these did not take into account that noise and significance
levels differ across data sets. The next generation of data-
assimilation approaches used statistical interpolation tech-
niques involving covariance matrices to transform between
the two grids in a manner that weights different observa-
tions appropriately (Daley 1991, chapter 4). Kalman filters,
a conceptually neater but much more computationally ex-
pensive way to solve this problem, came into use in this
community in the 1990s, along with an ensemble method
that uses Monte Carlo techniques to estimate the sensitivity
of the model to different kinds of corrections and then tai-
lors its actions accordingly (Anderson 2003; Evensen 1994).
Another elegant approach uses techniques from variational
calculus to find the model trajectory that most closely fits the
observations (Dimet & Talagrand 1986). Note that none of
these techniques use knowledge about the dynamics of the
system to guide the design of the correction strategy. And,
no one has thoroughly examined how the success of these
statistical strategies might depend on the state of that sys-
tem.

All of the aforementioned data assimilation techniques
have been developed in the context of DNS simulations of
large-scale atmospheric and oceanic systems; data assimila-
tion into point-vortex models has received much less atten-



tion. Kayo Ide et al. (Ide & Ghil 1997; Ide, Kuznetsov, &
Jones 2002) have done some interesting work in this field.
This algorithm deduces the vortex positions by inverting
the velocity superposition arguments that are built into the
point-vortex equations and then assimilates that data into
point-vortex models using Kalman filters. They have tested
this strategy extensively in numerical simulations. They also
developed a hybrid assimilation method that assimilates data
about both the positions and strengths of vortices and the
paths that tracer particles take through a flow. The basic idea
is to augment the point-vortex equations (1) with a set of
tracer advection equations that model the dynamics of par-
ticle movement(Ide, Kuznetsov, & Jones 2002). The key
here is that the fundamental link between velocity and vor-
ticity couples these equations, so corrections made to one
will “percolate” into the other. That is, one can assimi-
late tracer particle data into the advection equations and the
cross-coupling term will naturally carry those corrections
into the point-vortex equations. Ide et al. have studied this
approach in simulations, but it has not yet been implemented
with experimental data.

Dynamics-Informed Assimilation: Methods
and Results

Our goal, and the novelty of our work, is to develop effec-
tive strategies for timing the assimilation of data into the
point vortex model. We are using the dynamics of the sys-
tem to determine when and where model corrections will
have the most impact, enabling us to decide whether or not
the computational cost of gathering and processing system
observations is worth the effort. This paper presents a se-
ries of numerical experiments that provide a solid proof-of-
concept demonstration of our strategy, which is based on
the observation that solvers make mistakes when the spa-
tial gradients of the equations that they are solving are high.
Our ultimate goal, of course, is to apply this to a real-world
fluid flow: a laboratory air jet that is described in the fol-
lowing paragraph. While this is a much simpler flow that
those that geophysicists work with, it calls many of the im-
portant questions—noise, computational cost, etc.—that are
ignored by all of the existing assimilation work on reduced-
order models. The laboratory setting also distinguishes our
work from the bulk of the data assimilation literature: it lets
us effectively isolate, explore, and understand the associated
research issues in a fashion that is simply not possible when
one is working with a system that is as complex and hard to
observe—Ilet alone control—as the weather.

The motivating example for this work, and the testbed for
the stages that will follow this paper, is a planar air jet (Pea-
cock et al. 2004). Using actuators at the base of the jet, we
can force the flow to assume one of its two unstable modes.
A picture of the jet in its antisymmetric mode is displayed in
Figure 2(a). Vortices are well-defined in both the symmet-
ric and antisymmetric modes, which makes the forced jet a
good candidate for point-vortex modelling. We also have
a mechanism for gathering velocity data from this flow—
particle image velocimetry (PIV). A PIV system works as
follows: (1) aerosol particles injected into the fluid are il-
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Figure 2: (a) A planar air jet. Re ~ 70. Vortices are clearly
visible in this photograph of the jet. Our goal is to track
these coherent structures with a point-vortex model, cor-
rected with experimental data to maintain accuracy. (b) is
a sample of the raw velocity field data obtained from a par-
ticle image velocimetry (PIV) system.

luminated by a laser light sheet, (2) a camera situated per-
pendicular to the light sheet takes two photographs of the
flow in quick succession, and (3) the photographs are cross-
correlated to determine displacements of the aerosol parti-
cles, which can be used to infer the velocity at each particle
position. Figure 2(b) shows a sample velocity field of the jet,
obtained via PIV. Our ultimate goal is to use this laboratory
setup to investigate some of the traditional data assimilation
methods described in the previous section and compare them
with our dynamics-informed correction approach, which is
described in the rest of this section.

As a first step toward this goal, we have devised a set
of numerical simulations that comprise a meaningful test of
our approach. The basic idea is common in the numerical
computing community: use a fine-grained simulation as an
ansatz for the “true” behavior of the system. In our case,
this amounts to using a high-resolution simulation to correct
a coarser one. This effectively isolates the data-assimilation
research questions treated in this paper from the compli-
cations of real data, and provides a controlled scenario in
which to gain experience with these techniques.

To make the ansatz as close as possible, we choose initial
conditions for our model that resemble those observed in the
laboratory. Figure 3 displays two initial vortex configura-
tions that mimic the symmetric and antisymmetric modes of
the jet. The vortex configuration displayed in Figure 3(a) is
derived from the well-known von Karman vortex street. Von
Karman proved (Lamb 1945) that two infinitely long paral-
lel rows of vortices will remain stable if two conditions are
satisfied: (1) the strength of each vortex is identical, with
vortices in the left column having opposite vorticity from
those in the right column and (2) the spacing between vor-
tices satisfies a/b = 0.281 , where a and b are labelled in
Figure 3(a). Clearly, in our numerical experiments, we can-
not use an infinitely long vortex street; but, even with a fi-
nite number of vortices, this arrangement will result in rel-
atively stable dynamics. In contrast, the symmetric pattern
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Figure 3: Vortex configurations. Initial conditions in (a) are
derived from the stability condition for a von Karman vor-
tex street. Vortices are spaced 1 unit apart in the x-direction
and a/b = 1/0.281 =~ 3.6 units apart in the y-direction. A
similar vertical spacing of 3.6 units and horizontal spacing
of 1 unit was used to obtain the symmetric configuration dis-
played in (b). In both cases, the vortices in the left column
have strength -1 (counter-clockwise rotation), and those in
the right column have strength 1 (clockwise rotation).

displayed in Figure 3(b), which corresponds to the symmet-
ric mode of the jet, is highly unstable. Thus, these two vortex
configurations provide two very different contexts—both of
which are physically realistic—in which to study data as-
similation methodologies.

Starting from these initial conditions, we first ran a high-
resolution point-vortex model simulation to represent the
“truth.” This simulation—a 4*"-order Runge-Kutta solution
of the point-vortex equations (1) with a small timestep—
provides a relatively accurate picture of the dynamical evo-
lution of the system, so it makes sense to use it as a stand-
in for the experimental data. The vortex trajectories in this
simulation are depicted in Figure 4(a). We then ran a sim-
ilar simulation, shown in Figure 4(b), with a much larger
time step—one large enough to cause the solution to diverge
from the true value. This is a useful ansatz for what happens
when a simulation diverges from reality, as floating-point er-
ror and physical noise have many of the same effects. The
final step in the evaluation of our data-assimilation strategies
was to use the “truth” simulation to correct the “model” one.
Eventually, of course, we will be working with real data as
the “truth” and a higher-resolution model of the planar air
jet as the “model.”

We first attempted a direct, continuous assimilation ap-
proach, simply replacing the simulated variables in the
“model” run with the “true” values at various intervals. This
is the standard “periodic correction” approach used in most
of the data assimilation research that was reviewed in the
previous section. Figure 5 shows a point-vortex simulation

—
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Figure 4: Full trajectories of (a) “truth” and (b) “model”
simulations starting from initial conditions in Figure 3(b).
Note that these plots are not to scale; we have zoomed in
on the x-range to make it easier to see the interesting dy-
namics. (a) is a 200 second simulation of Equation 1 from
the initial conditions of Figure 3(a) using RK4 and a 0.005
second timestep. (b) is a 200 second simulation with a 1
second timestep. In our numerical experiments, we use the
more-accurate trajectories from (a) to correct the vortices in

(b).

corrected using this technique. As outlined above, we are
using a simulation with a very fine integration timestep as
the reference or “true” simulation. The solid path in Fig-
ure 5(b) displays the full trajectory of one vortex in this
simulation. We use observations from this reference sim-
ulation to correct a coarser timestep simulation (represented
by the + + ++ path in the figure). The corrections occur
at the locations indicated by the black squares. Notice that
toward the beginning of the simulation, the vortex is mov-
ing quite slowly, as indicated by the small distance between
+s. The trajectory is also fairly smooth, indicating that the
vortex does not encounter large velocity gradients in this re-
gion. Note that the model trajectory does not diverge from
the “true” simulation, so the first two corrections applied



provide very little information and waste computational re-
sources. The middle section of the figure, where the model
goes astray, is also interesting. After this split occurs, the
observation that restores the 4- + 44 path to its “true” value
is information-rich. However, the simulation has incurred a
significant error by the time this observation is assimilated.
If we could detect the divergence point indicated by the cir-
cle in the figure and apply the correction there, we could
greatly improve the accuracy of the simulation.

(a) b)

Figure 5: Assimilating data into the point-vortex model: The
numerical results of Figure 4(b) are used to correct the vor-
tices in the simulation of Figure 4(c). The solid line and the
+ + + + + path are the true and corrected trajectories, re-
spectively; the data-assimilation scheme corrects the latter
to the former at the points indicated by the black squares.
(a) displays the results when no correction is applied to the
+ + + + + path and (b) displays the results of periodi-
cally correcting the “model” simulation at 25s intervals. The
mean-squared error was 61.7 in (a) and 1.12 in (b).

These observations led us to develop a new scheme for
timing vortex corrections, termed dynamics-informed as-
similation, that attempts to identify dynamically sensitive
regions. The goal is to correct the model only when the sys-
tem dynamics indicate that a correction will be useful. When
the model is highly accurate, the information content in the
observations is fairly low—i.e., the assimilated observations
do not impart a significant change to our prior knowledge of
the system. In contrast, when the model is failing to track
the true dynamics, the observations can drastically improve
the simulation. If we can detect when the model might be di-
verging from reality, then we can intelligently select when to

correct it. Though this appears obvious, it is a difficult task,
as we do not know the “true” state of the system in practi-
cal data assimilation applications. Fortunately, we do know
that solvers typically make mistakes in regions where veloc-
ity gradients are large. Tracking these gradients, then, pro-
vides information about the probability of model divergence
at a given time in the simulation and is thus a useful indica-
tor of correction importance. By correcting the model only
when the gradients are large, we can target regions where
correction is most beneficial, saving the computational cost
of gathering and processing observations when they are not
required.

Our approach is as follows. At each timestep, we compute
the components of the Jacobian of the velocity field at the
location of each vortex using divided differences—that is,

Ou  Ou
ox oy
J=1 .
Qv Ov
ox oy

where u and v are the velocities in the = and y directions,
respectively. The L; norm is then used to measure the size
of these gradients.

The idea behind dynamics-informed data assimilation is
to correct the vortices only when ||J|| is high. To put this
into practice, we had to develop a method to determine what
values should be considered “high.” Our first approach was
to run the simulation twice: on the first run, we recorded
the range of ||.J|| for each vortex. We then ran the experi-
ment again, correcting the model when ||J|| was in the top,
say 20%, of its range for any given vortex. This method
worked fairly well, but required a precomputation of ||.J||.
This is not viable in real simulations, so we developed an
on-line method that tracks ||.J|| and corrects the model when
its increase from one timestep to the next exceeds a certain
threshold percentage that we call J*. Note that the value
chosen for J*+ determines how many corrections are applied
to the simulation. A larger value of J T neccessitates a larger
increase in the norm of the Jacobian, which occurs less of-
ten. We can thus compare the performance of our dynamics-
informed method to that of periodic correction by evaluating
the success of each method when the same number of cor-
rections is performed.

One such comparison is shown in Figure 6. In part (a)
of the figure, we reproduce the periodic correction results
from Figure 5(a). Figure 6(b) shows the results of dynamics-
informed correction using the same datasets. In this figure,
we can clearly see that our approach is working as desired.
In the slowly varying region toward the beginning of the
simulation, the model is doing quite well and so no correc-
tions are applied. Looking at the circled area where the pe-
riodic case incurs the biggest error is also encouraging. The
velocity gradients are quite large at this point, where the vor-
tex is changing directions. Dynamics-informed correction
captures this information and applies a timely correction to
keep the vortex from going off-track. It may initially be con-
fusing to observe that there are also some regions where it
appears that the model is doing quite well, but a correction
is still applied. In these low-gradient areas where the trajec-
tory is fa! irly smooth, one would expect our approach to
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Figure 6: Dynamics-informed assimilation: These images
show the same vortex (a) corrected periodically at 25s inter-
vals and (b) corrected only when the norm of the Jacobian
increases by 92 percent between timesteps. Notice that the
second correction in (b) is applied at precisely the location
where (a) goes “off track”, resulting in a much more accu-
rate simulation. The mean-squared error was 1.12 in (a) and
0.0491 in (b).

forego the assimilation. However, our approach is to correct
all vortices whenever the velocity gradients at any vortex are
increasing. Corrections in regions where the trajectory ap-
pears smooth are often due to high gradients in the vicinity
of a different vortex.

Note that the simulations in Figures 6(a) and (b) have the
same computational cost, in terms of the number of correc-
tions applied. Recall that we can tailor the number of cor-
rections performed by the dynamics-informed approach by
tweaking the threshold percentage J 7 in the algorithm (the
percentage increase in the norm of the Jacobian that warrants
correction). Choosing a larger value for J results in fewer
corrections, while a smaller value results in more-frequent
correction. To produce the results shown in Figure 6(b), we
have chosen a J™T value that results in the same number of
corrections as in the periodic case in (a). This allows us to
compare the accuracy achieved by the two simulations for
the same computational cost. The MSE for the periodic cor-
rection approach was 1.12, while the MSE for the dynamics-
informed simulation was 0.0491. This is a 23-fold improve-
ment in accuracy for the same number of corrections!

These results may not be entirely convincing, since they
involve a single vortex from a particular simulation. We
have performed an ensemble of experiments using the sym-
metric and von Karman data sets, and the conclusion is
the same: for the same number of corrections, dynamics-
informed data assimilation results in much more accu-
rate simulations than periodic correction. Figure 7 dis-
plays the results for the von Karman vortex configuration;
here, we are plotting the log of the mean-squared error

for each experiment based on the number of corrections
applied!. We investigated periodic correction intervals of
50s, 100s, 150s, . .., 5450s. Note that choosing a 50s cor-
rection interval performs a correction every time step, which
will result in 0 MSE, while correcting every 5450s is the
same as not correcting the simulation at all. The top curve
in Figure 7 displays the results of these periodic correction
experiments. To create the bottom curve, we ran simulations
with Jacobian threshold percentages ranging from 0.5% to
300%; the resulting number of corrections in these simula-
tions ranged from 1 to 13.
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Figure 7: Comparison of dynamics-informed and periodic
assimilation using the initial conditions in Figure 3(a). Each
point in this figure represents a single simulation; the MSE
is plotted as a function of the number of corrections. The
upper curve displays the MSE results for an ensemble of pe-
riodic correction experiments; the lower curve displays the
results when using the dynamics-informed correction strat-
egy proposed here. The lower MSE values achieved by the
latter indicate higher simulation accuracy.

This figure brings out several interesting features of the
data assimilation process and provides some useful infor-
mation about the von Karman vortex configuration in partic-
ular. For both periodic and dynamics-informed correction,
the MSE decreases as the number of corrections increases.
This matches our intuition about data assimilation, espe-
cially in this context in which the observations are perfect
(i.e., noise-free): more corrections should generally produce
a more-accurate result. When the error in the observations is
significant, however—a common situation in the laboratory
or the field—we may find that correcting more frequently is
not always better. We are currently exploring this hypothesis
in numerical experiments with noisy observations.

Other useful information can also be gleaned from the
dynamics-informed curve in Figure 7. Note that the max-
imum number of corrections applied is 13, which occurs
when the Jacobian threshold percentage is 0.5%. This means
that the Jacobian of the velocity gradients increased by at
least 0.5% for only 13 of the 108 time steps in this simu-
lation. We can conclude that the velocity gradients in the

"Each point in the figure corresponds to a single simulation



von Karman experiment are very slowly varying. This is
not entirely surprising, since the von Karman initial condi-
tions were based on the stability criteria for a von Karman
vortex street (with any instability resulting from the finite
length of the street in our experiments). Also, the surpris-
ingly low? MSE of 101! that results when these 13 correc-
tions are applied strategically supports our contention that
dynamics-informed assimilation works very well. In gen-
eral, over all of the experiments, the differences in errors
between the dynamics-informed and periodic simulations is
quite dramatic. This encouraging result gives us confidence
that this technique can also be applied successfully in real
simulations with experimental data.

It is interesting to compare the von Karman results to
those achieved with the symmetric vortex data sets from
Figure 4. The MSE for each of the periodic correction
experiments is again plotted in the upper curve in Fig-
ure 8(a). Recall that the correction intervals for these ex-
periments ranged from 1s to 201s, with the 1s correction
interval resulting in 0 MSE and the 201s correction inter-
val (uncorrected simulation) generating the largest error. For
dynamics-informed correction, the threshold percentage was
varied from 0.5% to 200%; these results are plotted in the
lower curve in the figure. Here again, we see that correct-
ing more frequently results in a more accurate simulation.
However, the decrease in the MSE for dynamics-informed
assimilation does not occur as rapidly as in the von Karman
simulations. In spite of this, dynamics-informed assimila-
tion outperforms periodic assimilation by a factor of 10 to
100 in most of the experiments.

The chart in Figure 8(b) also reveals some further inter-
esting differences between the symmetric and von Karman
experiments. Note that there are often several different MSE
values that can result for a small number of corrections.
For example, for a 200s simulation, there are ten different
periodic correction intervals that result in 4 corrections—
namely, 41s,42s,...,50s. Although each of these experi-
ments performs the same number of corrections, the result-
ing MSE values are quite different, ranging from roughly
10! to 10'. We also saw some similar variability in the
von Karman experiments, but the MSE values were much
more tightly clustered for a given number of corrections.
This shows that the arbitrary choice of a periodic correction
interval can have a serious impact on the simulation accu-
racy, especially in dynamically sensitive flows. Note that
the dynamics-informed algorithm also requires a choice that
affects the number o! f corrections performed: the value
of Jacobian threshold percentage, J . One possibility is to
dynamically modify J T during the course of the simulation
using an adaptive technique. If the model is significantly
off-track when a correction is applied, it is likely that the
threshold percentage is too high. Conversely, if corrections
to the model are small, we can save computational resources
by correcting less frequently (i.e., increasing J¥). Keeping

The smallest double-precision value representable on the ma-
chine on which these experiments were performed was about
10719, so the MSE values in the figures are within the range of
precision
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Figure 8: Comparison of dynamics-informed and periodic
assimilation using the initial conditions in Figure 3(b). Each
point in this figure represents a single simulation; the MSE is
plotted as a function of the number of corrections. The upper
curve displays the MSE results for an ensemble of periodic
correction experiments; the lower curve displays the results
when using dynamics-informed correction. Part (b) of the
figure zooms in on the leftmost region of (a), so results for
smaller numbers of corrections can be seen more clearly.

track of the behavior of the norm of J over each correction
interval will allow us to determine how much to increase or
decrease our threshold. We are in the process of investigat-
ing this.

Conclusion

We have proposed the use of a data-adaptive point-vortex
model to overcome the speed and complexity limitations of
current direct approaches to numerical simulation of com-
plex fluid flows. In representing the flow only in terms of its
coherent structures, the point-vortex model ignores all other
dynamics, making it very fast. However, the point-vortex
model is not nearly as accurate as DNS methods and is thus
of questionable value in the context of real-time modeling
and control applications. If this fault could be overcome,



the point-vortex model could become a very powerful tool.
Our solution to this problem is to correct that model with
observations of the flow, a process known as data assimi-
lation. The data assimilation algorithm must be developed
with care, as an ineffective or computationally expensive
approach would destroy the speed advantages of the point-
vortex model.

We have presented a new correction methodology, which
we call dynamics-informed data assimilation, that integrates
quantitative information—sensor data—into this qualitative
model. In our method, the correction timing is dictated by
the underlying system dynamics: data is assimilated into the
model only when the dynamics indicate that it is needed. In
contrast to the standard periodic correction approach, our
strategy targets dynamically-sensitive regions and avoids
corrections when the model is performing well. Results
from our initial experiments on this approach are quite en-
couraging. There is a significant increase in the accuracy of
the simulation over standard periodic correction techniques.
For the same number of corrections, there was typically at
least an order of magnitude decrease in the mean-squared er-
ror. Stated differently, the dynamics-informed approach re-
quires far fewer corrections to acheive the same simulation
accuracy as periodic correction. This! novel result could al-
low the computational cost of gathering and processing sys-
tem observations to be drastically reduced.

All of the experiments presented in this paper are numeri-
cal simulations with perfect observations. The ultimate goal
of our research is to apply dynamics-informed data assimila-
tion to real fluid flows. Clearly, measurements of any phys-
ical system will be contaminated with noise, which presents
many additional challenges for any data assimilation strat-
egy. These issues will be explored in our future work, and
we will refine our dynamics-informed approach to ensure its
utility for practical applications.
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