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Abstract 
Building models of a complex system such as an ecosystem 
or a chemical plant is an arduous task that can take several 
person months to complete. One rarely knows the scope of 
the model, its assumptions and claims, at the outset of the 
task, let alone how to state those in a formal language. To 
make this task manageable, modelers start at the whiteboard 
– by making free-form drawings that capture their current 
understanding of the studied system. These drawings need 
not conform to any particular ontology and may lack 
internal coherency or consistency. Nevertheless, such 
drawings can help organize one's thoughts and can capture 
key participants and relationships in the dynamic system. 
We argue that these free-form drawings facilitate the 
modeling process, based on evidence from modeling in 
practice. We analyze the relationship between free-form 
drawings and formally encoded models. We then suggest 
how to exploit these relationships to develop a modeling 
environment that supports a tighter integration between 
conceptual and detailed modeling.  

1  Introduction   
Model building is a common and vital task in the sciences.  
The resulting artifacts of thought let us test the 
implications of our theories, help us better understand 
complex systems, and support effective communication 
and education. Moreover, models specified in a 
computable language support prediction and diagnosis, 
thereby enabling discussions about things such as the 
migration of killer bees and the efficacy of carbon 
sequestration. Unlike theories, models describe specific 
situations, real or imagined. For example, the theory might 
discuss the migration of a general population across a 
landmass, whereas a model would make specific claims 
about the movement of Apis mellifera scutellata into south 
Texas.  Given this model, one might predict that residents 
of El Paso will be knee deep in bee-riddled corpses by 
March 1979.  In comparison, hypotheses are singular, 
testable statements such as “building a border fence 50 
meters high will protect us all from the bee invasion.”  
With an appropriate model, one could gauge the 
plausibility of this hypothesis before committing the 
required resources.   

                                                 
 

 Despite the ubiquity of modeling, there have been 
relatively few analyses of the task of modeling. More 
often, researchers emphasize the effectiveness of an 
encoding tool [e.g., Bridewell et al.,  2006] or the use of 
the resulting model. Recent work in chemical engineering 
[Foss, Lohmann and Marquardt, 1998] and in educational 
settings [Sins, Savelsbergh and van Joolingen, 2005] 
exploring the process of modeling itself are more the 
exception than the rule.  One general finding is that the 
modelers benefit from multiple representations and that 
each one has its own merits [Lohner, van Joolingen, and 
Savelsbergh, 2003].  These results suggest that modeling 
environments should, in principle, support different views 
of the artifact and that these views should map onto each 
other.   

In the qualitative reasoning community, Bredeweg and 
colleagues have recently described a framework for 
building qualitative models [Bredeweg et al., in press]. 
One of their findings is that the use of loosely constrained 
conceptual models provided considerable, if not necessary, 
support for the development of formal qualitative models.  
Bredeweg used a concept map to capture the earlier stage 
of modeling. We believe that the simplicity and popularity 
of concept maps make them a suitable interface for 
describing the pre-formal free-form modeling that happens 
at the whiteboard, and the rest of this paper will stick to 
this assumption1.  

The natural extension of these findings is the 
development of a modeling environment that provides a 
tighter integration between building the concept map and 
the detailed model. In this paper, we describe how such a 
system might be designed.  The next section discusses the 
modeling process in more detail, with special emphasis on 
the utility of pre-formal conceptual models.  We then 
describe how concept maps facilitate building detailed 
models. Next we present a catalog of ontological 
relationships and mapping operations between elements in 
the concept map and the detailed model. Finally, we 
conclude with questions and future research issues that this 
discussion generates.  

 

                                                 
1 This is a simplifying assumption, the whiteboard provides a 
much richer interface, perhaps more like the sketching systems, 
e.g., sKEA [Forbus and Usher, 2002].  



 

2  The Modeling Process 
 
Model building forms a part of larger tasks such as design 
and scientific investigation.  The task goals influence the 
trade-offs among generality, realism, and precision of the 
model [Levins 1966]. Models built for communicating the 
relationships in a complex system tend to be more general, 
while models built for process control emphasize precision, 
and so on. One’s available knowledge and data also 
influence the modeling task.  Domains such as chemical 
engineering and circuit design are knowledge-rich, which 
enables a realistic expression of the entities and 
relationships within the modeled system.  Other domains, 
such as ecology, are less theory-driven, and the amount 
and type of data will influence one’s modeling decisions. 
Models range from being purely descriptive and 
explanatory, e.g., in political and social domains to being 
predictive, e.g., in engineering.   

Foss and colleagues [1998] performed a field study of 
the modeling process in the domain of chemical 
engineering, in which they interviewed sixteen modeling 
practitioners with an average modeling experience of over 
ten years. These interviews followed a case study wherein 
the modelers described a realistic modeling experience. On 
the basis of these interviews, Foss et al. identified six 
distinct activities: 1) problem understanding, specification, 
initial data collection, 2) conceptual modeling and model 
representation, 3) implementation and verification, 4) 
initialization and debugging, 5) validation and 6) 
documentation. Notably, the modeling process is not 
linear.  That is, the modeler may freely move among these 
six activities without any fixed pattern. However, as model 
refinement progresses, the modeler moves through the 
chunks sequentially as a moving window capturing more 
than one chunk at a time. As the modeling process goes by, 
the degree of back-steppings to the earlier chunks 
diminishes in favor of forward-steppings to the later 
chunks.  Nevertheless, there exist numerous iterations 
between the chunks rendering a highly intertwined and 
complex modeling process.  

Foss’s study offers important insights for builders of 
modeling environments.  First, modeling is not a strictly 
progressive refinement from conceptual to detailed models.  
This finding suggests that environments should support 
links among the tasks so that modelers need not shift to 
external media as they work.  Second, the modeling 
environment must provide tight integration between the 
various modeling activities. Being able to work with 
several representations of a model becomes problematic 
when they are unsynchronized.  The environment should 
treat each representation as an index into the others so that 
the modeler can move about freely with ease.  And third, 
no matter the richness of knowledge or data about an 
environment, conceptual modeling remains important.   
Thus, builders of modeling tools should consider including 
various level of representation – including those that 
permit inconsistency as is inevitable as one begins to 
model, into their software.  

One of the first stages in modeling a complex system 
involves the identification of the model’s scope, which 
includes the relative entities and relationships expressed at 
a high level.  This task fits well into Rittel and Webber’s 
(1973) notion of a wicked problem.  In particular, the 
problem definition is usually vague and evolving, proposed  

 

 
Figure 1. A visual diagram of the cross section of a leaf, 

reprinted from Farabee [2001] 

Figure 2.  A spatial free-body diagram of a skier. 
 
solutions can create new problems, and multiple solutions 
may exist with no obvious measures of preference.  To 
begin, one often represents the target system with free-
form text descriptions and drawings on paper or 
whiteboard. As with the entire modeling process, the goal 
is to make one’s knowledge explicit, but at this stage issues 
of syntax and semantics can serve as barriers and interfere 
with one’s creativity.  So, when working with pen and 
paper one introduces objects and relationships without 
concern for incomplete specifications, consistent typology, 
or formal correctness.  

Most of the quantitative modeling environments today 
(e.g., AspenTech’s HYSYS, ASCEND, SPEEDUP, 
STELLA, Simulink), primarily focus on the formal 
encoding of models without much support for the free-
form conceptual modeling that takes place on a 
whiteboard.  On the other hand, qualitative modeling 
environments like VModel [Forbus et al., 2004], Betty’s 
Brain [Leelawong 2005], Garp2, among others, provide 
richer support for less detailed models. However, these are 

                                                 
2   Downloadable from http://hcs.science.uva.nl/QRM/software/ 



 

not unconstrained enough for capturing the possible 
inconsistency and ambiguity of the whiteboard drawing. 
Underlying each of these environments is a modeling 
ontology that constrains and restricts what can be drawn, 
which is precisely what gives these environments power to 
reason with the models built using them. There are a large 
number of software tools available as “mind-mapping 
tools” [Buzan 1991] that support pre-formal unconstrained 
drawing. The end result, however, in mind mapping is the 
drawing that is produced. There is very little work on 
elaborating or fleshing the output of mind map into a 
model that can be reasoned with.  

Lets look at the different types of drawings that are built 
while modeling. We classify free-form diagrams into the 
following three categories: 

1. Visual drawings are faithful to the salient spatial 
relationships and bear apparent resemblance to the 
object or system being drawn. Figure 1 shows a 
visual diagram of a leaf.  

2. Spatial drawings use the spatial layout of the drawing 
medium. Examples include course of action diagrams 
and free body diagrams in classical mechanics. In this 
representation, one introduces abstractions and 
metaphorical conventions such as arrows that convey 
spatial direction. Figure 2 shows a free body diagram 
of a skier.  

3. Abstract drawings, such as UML diagrams, 
organizational charts, and concept maps ignore the 
implicit spatial dimension of the drawing medium. In 
these figures, the relative location of two objects does 
not necessarily communicate a real spatial 
relationship. Figure 3 shows an abstract drawing, a 
concept map.  

We admit that free-form diagrams are often complex and 
rich with implicit knowledge.  An aspect of complexity of 
free-form diagrams is that they can contain different parts 
that are visual, spatial and abstract in the same diagram, 
and humans are able to rely on vast commonsense 
knowledge to interpret it. Ideally, we would like to provide 
the modeler the freedom of drawing on the whiteboard, but 
given the complexity of automatically understanding them, 
we restrict ourselves to the third type above, abstract 
diagrams. One possibility is to take the sKEA approach 
[Forbus and Usher, 2002], and allow the modeler to 
explicitly label every element of the drawing using an 
ontology like the Cyc3 knowledge base.  

We believe that concept maps are attractive for the 
abstract diagrams for their simplicity and flexibility. 
Concept maps [Novak and Cañas, 2006] are graphical tools 
for organizing and representing knowledge. The power of 
concept maps comes from the simplicity of the ontology: 
box-and-lines. Boxes denote concepts and have linguistic 
labels that identify what they represent, and lines specify a 
relationship (causal, spatial, etc.) between two concepts. 
Propositions contain two or more concepts connected using 
linking words or phrases to form a meaningful statement. 

                                                 
3 http://www.cyc.com/ 

Recently, Bredeweg et al., [2006] included support for 
concept maps in the Garp3 system in the form of a sketch 
mode. However, in their software, the elements of the 
sketch are not connected to the elements of the detailed 
model. Here, we emphasize the value of connecting these 
representations. 

The ease of concept maps comes at a price.  First, one 
cannot simulate concept maps or use them to make strong 
predictions about system behavior. Second, one may 
explain away phenomena by leaving out important, 
nontrivial details.  For example, a concept map that claims 
“carbon sequestration reduces global warming” might be 
too simplistic and explain away the complex mechanisms 
of the process. Put simply, it is possible to make models 
that state the very fact that the model ought to explain or 
predict, without providing any richer explanation. And 
third, one may assume shared understanding of linguistic 
labels, which can hide the one’s preconceptions behind the 
ambiguity of meaning. The use of a formal, shared 
vocabulary, such as Cyc1 for naming the concepts and 
relationships can safeguard against this problem to a large 
extent, but at the cost of representational freedom.  

The modeling process consists of fleshing-out the 
concept map to a more detailed model. We call the shift to 
a more formal representation (i.e., one that can be reasoned 
over) encoding. This step involves moving to a well-
defined ontology, such as Forrester diagrams [Forrester, 
1961], qualitative process theory [Forbus, 1984], or 
mathematical equations, and assumes a firm understanding 
of the concepts. Beginning at the formal stage can be 
somewhat challenging, but the concept map constrains 
what one will encode and facilitates the formalization 
procedure. In the next section, we describe this relationship 
in more detail. 
 

3  Concept Maps Facilitate Modeling 
 
As described above, the concept map identifies the entities 
and relationships that need to be further encoded and 
elaborated in the detailed model. Introductory texts on 
modeling in various domains, e.g., biological systems 
[Haefner, 2005], ecological modeling [Jorgensen, 2001] 
advise modelers to begin with such a drawing of the 
system.  This points to the first benefit of concept maps: 
ease of knowledge elicitation. Knowledge elicitation is 
facilitated as the concept map allows the expert to express 
their mental model in a vocabulary that is close to their 
models by allowing linguistic labels for entities and 
relationships. Furthermore, the concept map makes is 
easier to try out ideas and cast them aside if they fail to 
satisfy the modeling goals and constraints. In his landmark 
book, Productive Thinking, based on a case study of Albert 
Einstein, Wertheimer (1945) argues that a bottleneck to 
scientific breakthrough is overcoming the structure of 
existing theories. By providing a freer ontology, concept 
maps might make it easier for this to happen. In the 



 

NatureNet Redime4 effort to build qualitative models of 
ecological systems, a first step has been building a textual 
description and a concept map of the system of concern. 
This claim of ease of knowledge elicitation has indirect 
support from practical modeling efforts and conventional 
modeling wisdom.  

Second, the concept map is an important aspect of 
documentation of the modeling process itself. It captures 
the conceptual evolution of the modelers’ thought process. 
It also presents a higher level description of the detailed 
model, in the sense of requirements in software [Jackson, 
1995] and design rationale [Moral and Carroll, 1996]. The 
concept map has communicative value, as it might be 
easier to get started with the concept map before looking at 
the simulatable model. For example, in the CMEX5 project, 
which was NASA’s outreach effort to explain the Mars 
exploration enterprise to lay people; a collection of about 
one hundred concept maps detailing various aspects of 
Mars exploration were released.  

Third, for large models that don’t fit on a screen, the 
concept map can be used as a navigational interface for 
browsing the detailed model by pointing to parts of it that 
one is interested in exploring in more detail. Furthermore, 
concept maps contain enough structural information that 
they can be used to retrieve analogous models from a 
library of previous models and making analogical 
suggestions during modeling [e.g., Leake et al., 2003].  
 

4  Usage Scenarios 
 
Designers of model development environments can take 
advantage of the relationship between concept maps and 
models both to create a simplified user interface and to 
scaffold the encoding of formal models. To address the 
first point, the conceptual model serves as an index to the 
components of the detailed version, letting one navigate 
quickly to the relevant sections of the model and access 
associated interface elements with ease. For the second 
point, the conceptual model can highlight incompletely 
specified regions of the system and help the user avoid 
errors in consistency. In the remainder of this section, we 
discuss how the conceptual and detailed modeling 
activities fit in the modeling environment. 

There are two possible scenarios of how the modeling 
environment might support both conceptual and detailed 
modeling:  

1) Sequential encoding: One starts with a concept map 
that is progressively encoded into a simulatable 
model. In this scheme, the concept map eventually 
“disappears.”  

2) Parallel encoding: Both the concept and the model 
are maintained at all times as the modeler goes back 
and forth elaborating and drawing connections 
between them.  

                                                 
4 http://hcs.science.uva.nl/projects/NNR/ 
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We believe that the parallel encoding is a more natural 
model of the modeling task. The Foss et al. [1998] study 
provides direct support of this intertwined nature of 
modeling activity where one is going back and forth 
between conceptual and detailed representations. 
Furthermore, this view suggests that a concept map is more 
than a stepping stone to a model.  It is a continuously 
developing high-level representation of the model that one 
wants to keep around, even after having developed a 
detailed model for explanatory, communicative purposes.  

The sequential encoding scenario constrains the 
ontological freedom of the concept map. It is easier to 
imagine gradually elaborating from concept map to the 
model if it were true that the concept map ontology was a 
strict abstraction of the model ontology. However it is not 
necessary. That is, the mapping of interactions expressed at 
the concept map to those in the model may be one-to-one, 
many-to-many, one-to-many, or many-to-one. A concept 
map is not just a sparser representation of a model. 
Sometimes the concept map might contain additional 
information about the system that never goes into the final 
model, as the concept map ontology allows one to 
represent more than what one might be able to say in the 
detailed modeling ontology. The argument against 
sequential encoding is that of ontological incompatibility.  

The sketch mode in the current version of Garp supports 
the sequential encoding scenario. It is plausible that the 
modeler might go back and forth between the sketch mode 
and the qualitative modeling mode; however, the 
environment does not provide direct support for connecting 
the sketch and the qualitative model.  

In the parallel encoding scenario, the software must 
provide facilities for keeping concept map and model in 
sync as they evolve. To implement such tight coupling 
between the concept map and the model, we need an 
analysis of relationships between them, which amounts to 
answering the questions: 1) What are the ontological 
relationships between elements (nodes and edges) in the 
concept map and the model? and 2) What kind of activities 
relate the elements in the concept map and the model? The 
answers to these questions provide the software with the 
knowledge required to connect the models. As a first start, 
the modeler can manually annotate such connections. It is 
an empirical question for future research to see what 
aspects of these can be automated and benefit the modeler 
by automatically pointing out incompleteness and 
mismatches.  
 

5  Relating Concept Maps to Models 
 
Concept maps draw their power from their lack of 
representational constraints. This freedom lets one create 
inconsistent diagrams and mix together causal, structural 
and other types of information with minimal formal syntax. 
In addition, one can include components that communicate 
the scope of a model even though those details will exist 
only implicitly in the formalized version. In this section, 



 

we examine the relationships expressed in a concept map, 
how these relationships translate into an encoded model, 
and the utility of maintaining explicit links between the 
two representations.   
Concept maps can take many forms and encode several 

types of knowledge: UML diagrams, organizational charts, 
flowcharts, and so on. To focus the discussion, we 
emphasize concept maps built as outlines for a causal 
model (qualitative or quantitative). We ground our 
discussion in the concept maps built in the CMEX project 
and those built by Bredeweg’s group in the NatureNet 
Redime project. Although these maps cover a broad scope 
of topics, ranging from autonomous spacecraft control to 
river Mesta’s ecosystem, we posit that they contain six 
distinct classes of knowledge: causal, spatial, 
mereological, taxonomic, control and parametric. Each 
type of knowledge manifests either as nodes or as edges in 
a concept map. We also discuss where the knowledge ends 
in a qualitative model built using the QPT ontology in the 
discussion below:  

1. Causal: Causal knowledge is a key part of 
explanations, and manifests in relationships such as 
“causes”, “effects”, “increases”, and “is related to”. 
These relationships map onto qualitative 
proportionalities and influences, but one can also 
specify more complex causal relationships like 
“consumes”, “produces”, and “regulates,” that map 
onto processes. Relationships such as “enables” and 
“prevents” capture causal knowledge that becomes 
preconditions and quantity conditions in a qualitative 
model. In addition to those specified, we also include 
temporal relationships like “before”, “after”, and 
“during” in this causal category as they often related 
to a vague causal knowledge. 

2. Spatial: This type of knowledge captures the spatial 
layout of entities in the modeled system. Explicit 
spatial relationships include “above”, “below”, 
“inside”, “aligned”, and so on. While encoding a 
qualitative process model, one may translate these 
relationships into preconditions for model fragments 
as they place limits on which entities can interact 
with one another. 

3. Mereological: This type of knowledge describes the 
part-whole relationships between entities in the 
system and is expressed by relationships such as 
“consists of”, “contains”, and “includes”.  

4. Taxonomic: Taxonomies describe the type 
information for objects, which manifests as a subtype 
hierarchy in Garp. Defining specific objects as 
instance of general types enables the reuse of model 
fragments. One may describe these relationships with 
terms like “is a”, “type of”, “member of”, “example 
of” (for class–instance hierarchies), and so on.  

5. Control: These relationships introduce control flow 
into the concept map. For example, one can include a 
node that determines which of two outcomes will 
happen. Often control knowledge gives an explicit 
statement of preconditions and quantity conditions.  

6. Parametric: Parametric nodes and edges let one 
introduce modeling abstractions like parameters of 
interest at the concept map level itself. Ideally, these 
objects appear directly in the encoded model. In 
concept maps, such relationships may exist as nodes 
that represent numeric quantities or edges that 
represent measurement operations.   

As mentioned at the beginning of this section, we are 
restricting our goal to knowledge contained in causal 
models. For instance in domains like design, teleology, 
economics and aesthetics might be some of the other types 
of knowledge that are relevant to model building. To 
highlight these relationships, we appeal to the specific 
examples shown in Figure 3.  This concept map describes 
the river Mesta's ecosystem [Uzunov et al. 2006] and 
contains seventeen distinct edge labels.  We place these 
labels into the above categories as follows. 

1. Causal: produces, provides, stimulates, regulates, 
consumes, feeds on, regulates, influences 

2. Spatial: inhabit, provides habitat for, lives on 
3. Mereological: consists of, has, contains 
4. Control: determines the type of 
5. Parametric: is measured by 

The relation “is profited by” fails to fit in any of the 
delineated categories. However, consider the statement 
“particulate organic matter is profited by bacteria.”  This 
claim is somewhat misleading as the bacteria consume the 
particulate organic matter, which defines a process 
relationship similar to “feeds on” between these two 
entities. We used the concept map from the river Mesta 
study to show that many relationships specified in a 
concept map fall within a limited set of categories. The 
taxonomic relations do not show up in the concept map as 
they are modeled separately in Garp. In the next section, 
we examine the encoding operations associated with these 
types of knowledge. 
 
6   Operations between Concept Maps and Models 

 
 
 

In this section, we describe the operations that a modeling 
environment needs to have to support the parallel encoding 
model. We have not built this environment yet. After 
creating an initial concept map, one can begin the iterative 
process of model and concept map revision. At this point, 
the concept map itself becomes a key part of the user 
interface.  Selecting a node will reveal an entity-specific 
dialog with which one can define either a type or an entity. 
In the former case, one specifies the properties of the type, 
which assumes the name of the node. In the latter, one 
either selects a type for the entity, or, both defines a new 
entity type and labels the node as an instance of the type.  
If a taxonomic edge connects two nodes, one can infer the 
type and properties of the child.  In addition, if the concept 
map lacks an edge between a distinct entity type and its 
instantiation, the modeling environment can add it 
automatically.  This action synchronizes the concept map 
and the encoded model and is an important tool for 
revealing relationships that were initially implicit but that 



 

became explicit during the formalization process.  More 
plainly, this activity helps one see their previously implicit 
knowledge, which may lead to a better understanding of 
the system and better modeling habits in the future. 
 

One can also select the edges of the concept map and 
assign them to any of the six specified categories.  
Structural and spatial edges establish contexts and may 
imply a need for a transport process.  For instance, a 
detailed cell model may have a pool of RNA within the 
nucleus and a pool of RNA in the cytoplasm. A model that 
incorporated mechanisms for transcription and translation 
would require a process that shuttles the RNA through the 
nuclear membrane. If the concept map contains  
mereological and boundary information, then the modeling 
environment could readily infer the necessity of such a 
process and remind the modeler to include it.  If one labels 
an edge as taxonomic then the environment can relay 
properties from the source node to the source (an entity 
type) to the target (either more specific type or an 
instantiated entity).  Finally, labeling an edge as causal will 
call up the process editing dialog.  First, the environment 
ensures that the source and target of the link are both 
entities.  If not, the interface will prompt the modeler to 
add an instantiation of the appropriate type.  Afterwards, 
both entities will appear in the process definition, which 
allows the inclusion of other entities as participants.  In the 
simple case, the modeler defines the process between two 
entities and moves to another relationship.  If, however, 
other entities are introduced, the program must bring the 
concept map up to date by adding process links between 
the newly related nodes. 

Next we present a catalog of operations between concept 

maps and models. The software must be aware of these, 
and can help the modeler annotate and connect the concept 
map and the model. This is a coarse representation of the 
types of activity links that exist between concept maps and 
models.  
1. Typing: The modeler takes a node or an edge in the 

concept map and provides the type information for it 
from the ontology(e.g., identify something as a 
process, quantity, or an influence). At this point, the 
software can use templates associated with the types to 
point out the information that is needed to fully 
describe it in the modeling ontology. Further, local 
constraint satisfaction could propagate this 
information and anticipate the types of other nodes and 
edges connected to the object.  

2. Elaboration: The modeler takes a node or edge in the 
concept map and decides to explode it and model it in 
further detail. The software makes sure that the 
internal and external connectivity to this object is 
maintained. Other than this, one can freely elaborate 
the object in any way allowed by the modeling 
ontology. This procedure is similar to the model 
containers idea in ModKit [Bogush, Lohmann and 
Marquardt, 2001].  

3. Filtering: This operation has the modeler specify the 
elements in the concept map that will not be described 
in the simulation model. This could be because the 
detailed modeling ontology cannot encode those 
elements, or they might not be relevant to the task at 
hand.  

4. Annotation: We allow this as a catchall relationship 
between the concept map and the model, where the 

Figure 3. Concept map of the River Mesta ecosystem [from Uznov et al, 2006] 
 



 

modeler can select a subset of the concept map and 
connect it to the model without specifying the detailed 
relationship between the elements.  

The above list makes it possible for the modeler to 
explicitly connect the concept map to the model. Six types 
of knowledge in concept maps and four types of operations 
going from concept maps to models, gives a set of twenty-
four connection types. Further modeling constraints might 
make it possible for the environment to automatically 
detect mismatches and/or incompleteness in the concept 
map or the model. Reasoning from the model fragments 
and assumptions [Falkenhainer and Forbus, 1991; Nayak, 
1992] might play a key part in operationalizing these 
constraints.  

 
7  Conclusions 

 
Building models is hard. We argue that a tight integration 
of the conceptual and detailed modeling processes in the 
modeling environment can facilitate modeling. We claim 
that there are six classes of knowledge that are described in 
concept maps: causal, spatial, mereological, taxonomic, 
control and parametric. We describe four types of 
operations that connect concept maps to models: typing, 
elaboration, filtering and annotation. We believe that this 
raises interesting research questions about how to provide 
automatic support for these operations in the modeling 
environment. Implementing these ideas in a modeling 
environment like Garp or Stella will provide insights about 
their usefulness, and we hope that this paper sparks a 
conversation about building better modeling environments.  
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