
From Whiteboard to Model: A Preliminary Analysis

Praveen Paritosh1 and Will Bridewell2
1 Qualitative Reasoning Group, Northwestern University, Evanston, IL, USA
2 Computational Learning Laboratory, Center for the Study of Language and

Information, Stanford University, Stanford, CA 94305 USA
{paritosh@cs.northwestern.edu, willb@csli.stanford.edu}

Abstract
Building models of a complex system such as an ecosystem
or a chemical plant is an arduous task that can take several
person months to complete. One rarely knows the scope of
the model, its assumptions and claims, at the outset of the
task, let alone how to state those in a formal language. To
make this task manageable, modelers start at the whiteboard
– by making free-form drawings that capture their current
understanding of the studied system. These drawings need
not conform to any particular ontology and may lack
internal coherency or consistency. Nevertheless, such
drawings can help organize one's thoughts and can capture
key participants and relationships in the dynamic system.
We argue that these free-form drawings facilitate the
modeling process, based on evidence from modeling in
practice. We analyze the relationship between free-form
drawings and formally encoded models. We then suggest
how to exploit these relationships to develop a modeling
environment that supports a tighter integration between
conceptual and detailed modeling.

1 Introduction
Model building is a common and vital task in the sciences.
The resulting artifacts of thought let us test the
implications of our theories, help us better understand
complex systems, and support effective communication
and education. Moreover, models specified in a
computable language support prediction and diagnosis,
thereby enabling discussions about things such as the
migration of killer bees and the efficacy of carbon
sequestration. Unlike theories, models describe specific
situations, real or imagined. For example, the theory might
discuss the migration of a general population across a
landmass, whereas a model would make specific claims
about the movement of Apis mellifera scutellata into south
Texas. Given this model, one might predict that residents
of El Paso will be knee deep in bee-riddled corpses by
March 1979. In comparison, hypotheses are singular,
testable statements such as “building a border fence 50
meters high will protect us all from the bee invasion.”
With an appropriate model, one could gauge the
plausibility of this hypothesis before committing the
required resources.

 Despite the ubiquity of modeling, there have been
relatively few analyses of the task of modeling. More
often, researchers emphasize the effectiveness of an
encoding tool [e.g., Bridewell et al., 2006] or the use of
the resulting model. Recent work in chemical engineering
[Foss, Lohmann and Marquardt, 1998] and in educational
settings [Sins, Savelsbergh and van Joolingen, 2005]
exploring the process of modeling itself are more the
exception than the rule. One general finding is that the
modelers benefit from multiple representations and that
each one has its own merits [Lohner, van Joolingen, and
Savelsbergh, 2003]. These results suggest that modeling
environments should, in principle, support different views
of the artifact and that these views should map onto each
other.

In the qualitative reasoning community, Bredeweg and
colleagues have recently described a framework for
building qualitative models [Bredeweg et al., in press].
One of their findings is that the use of loosely constrained
conceptual models provided considerable, if not necessary,
support for the development of formal qualitative models.
Bredeweg used a concept map to capture the earlier stage
of modeling. We believe that the simplicity and popularity
of concept maps make them a suitable interface for
describing the pre-formal free-form modeling that happens
at the whiteboard, and the rest of this paper will stick to
this assumption1.

The natural extension of these findings is the
development of a modeling environment that provides a
tighter integration between building the concept map and
the detailed model. In this paper, we describe how such a
system might be designed. The next section discusses the
modeling process in more detail, with special emphasis on
the utility of pre-formal conceptual models. We then
describe how concept maps facilitate building detailed
models. Next we present a catalog of ontological
relationships and mapping operations between elements in
the concept map and the detailed model. Finally, we
conclude with questions and future research issues that this
discussion generates.

1 This is a simplifying assumption, the whiteboard provides a
much richer interface, perhaps more like the sketching systems,
e.g., sKEA [Forbus and Usher, 2002].

2 The Modeling Process

Model building forms a part of larger tasks such as design
and scientific investigation. The task goals influence the
trade-offs among generality, realism, and precision of the
model [Levins 1966]. Models built for communicating the
relationships in a complex system tend to be more general,
while models built for process control emphasize precision,
and so on. One’s available knowledge and data also
influence the modeling task. Domains such as chemical
engineering and circuit design are knowledge-rich, which
enables a realistic expression of the entities and
relationships within the modeled system. Other domains,
such as ecology, are less theory-driven, and the amount
and type of data will influence one’s modeling decisions.
Models range from being purely descriptive and
explanatory, e.g., in political and social domains to being
predictive, e.g., in engineering.

Foss and colleagues [1998] performed a field study of
the modeling process in the domain of chemical
engineering, in which they interviewed sixteen modeling
practitioners with an average modeling experience of over
ten years. These interviews followed a case study wherein
the modelers described a realistic modeling experience. On
the basis of these interviews, Foss et al. identified six
distinct activities: 1) problem understanding, specification,
initial data collection, 2) conceptual modeling and model
representation, 3) implementation and verification, 4)
initialization and debugging, 5) validation and 6)
documentation. Notably, the modeling process is not
linear. That is, the modeler may freely move among these
six activities without any fixed pattern. However, as model
refinement progresses, the modeler moves through the
chunks sequentially as a moving window capturing more
than one chunk at a time. As the modeling process goes by,
the degree of back-steppings to the earlier chunks
diminishes in favor of forward-steppings to the later
chunks. Nevertheless, there exist numerous iterations
between the chunks rendering a highly intertwined and
complex modeling process.

Foss’s study offers important insights for builders of
modeling environments. First, modeling is not a strictly
progressive refinement from conceptual to detailed models.
This finding suggests that environments should support
links among the tasks so that modelers need not shift to
external media as they work. Second, the modeling
environment must provide tight integration between the
various modeling activities. Being able to work with
several representations of a model becomes problematic
when they are unsynchronized. The environment should
treat each representation as an index into the others so that
the modeler can move about freely with ease. And third,
no matter the richness of knowledge or data about an
environment, conceptual modeling remains important.
Thus, builders of modeling tools should consider including
various level of representation – including those that
permit inconsistency as is inevitable as one begins to
model, into their software.

One of the first stages in modeling a complex system
involves the identification of the model’s scope, which
includes the relative entities and relationships expressed at
a high level. This task fits well into Rittel and Webber’s
(1973) notion of a wicked problem. In particular, the
problem definition is usually vague and evolving, proposed

Figure 1. A visual diagram of the cross section of a leaf,

reprinted from Farabee [2001]

Figure 2. A spatial free-body diagram of a skier.

solutions can create new problems, and multiple solutions
may exist with no obvious measures of preference. To
begin, one often represents the target system with free-
form text descriptions and drawings on paper or
whiteboard. As with the entire modeling process, the goal
is to make one’s knowledge explicit, but at this stage issues
of syntax and semantics can serve as barriers and interfere
with one’s creativity. So, when working with pen and
paper one introduces objects and relationships without
concern for incomplete specifications, consistent typology,
or formal correctness.

Most of the quantitative modeling environments today
(e.g., AspenTech’s HYSYS, ASCEND, SPEEDUP,
STELLA, Simulink), primarily focus on the formal
encoding of models without much support for the free-
form conceptual modeling that takes place on a
whiteboard. On the other hand, qualitative modeling
environments like VModel [Forbus et al., 2004], Betty’s
Brain [Leelawong 2005], Garp2, among others, provide
richer support for less detailed models. However, these are

2 Downloadable from http://hcs.science.uva.nl/QRM/software/

not unconstrained enough for capturing the possible
inconsistency and ambiguity of the whiteboard drawing.
Underlying each of these environments is a modeling
ontology that constrains and restricts what can be drawn,
which is precisely what gives these environments power to
reason with the models built using them. There are a large
number of software tools available as “mind-mapping
tools” [Buzan 1991] that support pre-formal unconstrained
drawing. The end result, however, in mind mapping is the
drawing that is produced. There is very little work on
elaborating or fleshing the output of mind map into a
model that can be reasoned with.

Lets look at the different types of drawings that are built
while modeling. We classify free-form diagrams into the
following three categories:

1. Visual drawings are faithful to the salient spatial
relationships and bear apparent resemblance to the
object or system being drawn. Figure 1 shows a
visual diagram of a leaf.

2. Spatial drawings use the spatial layout of the drawing
medium. Examples include course of action diagrams
and free body diagrams in classical mechanics. In this
representation, one introduces abstractions and
metaphorical conventions such as arrows that convey
spatial direction. Figure 2 shows a free body diagram
of a skier.

3. Abstract drawings, such as UML diagrams,
organizational charts, and concept maps ignore the
implicit spatial dimension of the drawing medium. In
these figures, the relative location of two objects does
not necessarily communicate a real spatial
relationship. Figure 3 shows an abstract drawing, a
concept map.

We admit that free-form diagrams are often complex and
rich with implicit knowledge. An aspect of complexity of
free-form diagrams is that they can contain different parts
that are visual, spatial and abstract in the same diagram,
and humans are able to rely on vast commonsense
knowledge to interpret it. Ideally, we would like to provide
the modeler the freedom of drawing on the whiteboard, but
given the complexity of automatically understanding them,
we restrict ourselves to the third type above, abstract
diagrams. One possibility is to take the sKEA approach
[Forbus and Usher, 2002], and allow the modeler to
explicitly label every element of the drawing using an
ontology like the Cyc3 knowledge base.

We believe that concept maps are attractive for the
abstract diagrams for their simplicity and flexibility.
Concept maps [Novak and Cañas, 2006] are graphical tools
for organizing and representing knowledge. The power of
concept maps comes from the simplicity of the ontology:
box-and-lines. Boxes denote concepts and have linguistic
labels that identify what they represent, and lines specify a
relationship (causal, spatial, etc.) between two concepts.
Propositions contain two or more concepts connected using
linking words or phrases to form a meaningful statement.

3 http://www.cyc.com/

Recently, Bredeweg et al., [2006] included support for
concept maps in the Garp3 system in the form of a sketch
mode. However, in their software, the elements of the
sketch are not connected to the elements of the detailed
model. Here, we emphasize the value of connecting these
representations.

The ease of concept maps comes at a price. First, one
cannot simulate concept maps or use them to make strong
predictions about system behavior. Second, one may
explain away phenomena by leaving out important,
nontrivial details. For example, a concept map that claims
“carbon sequestration reduces global warming” might be
too simplistic and explain away the complex mechanisms
of the process. Put simply, it is possible to make models
that state the very fact that the model ought to explain or
predict, without providing any richer explanation. And
third, one may assume shared understanding of linguistic
labels, which can hide the one’s preconceptions behind the
ambiguity of meaning. The use of a formal, shared
vocabulary, such as Cyc1 for naming the concepts and
relationships can safeguard against this problem to a large
extent, but at the cost of representational freedom.

The modeling process consists of fleshing-out the
concept map to a more detailed model. We call the shift to
a more formal representation (i.e., one that can be reasoned
over) encoding. This step involves moving to a well-
defined ontology, such as Forrester diagrams [Forrester,
1961], qualitative process theory [Forbus, 1984], or
mathematical equations, and assumes a firm understanding
of the concepts. Beginning at the formal stage can be
somewhat challenging, but the concept map constrains
what one will encode and facilitates the formalization
procedure. In the next section, we describe this relationship
in more detail.

3 Concept Maps Facilitate Modeling

As described above, the concept map identifies the entities
and relationships that need to be further encoded and
elaborated in the detailed model. Introductory texts on
modeling in various domains, e.g., biological systems
[Haefner, 2005], ecological modeling [Jorgensen, 2001]
advise modelers to begin with such a drawing of the
system. This points to the first benefit of concept maps:
ease of knowledge elicitation. Knowledge elicitation is
facilitated as the concept map allows the expert to express
their mental model in a vocabulary that is close to their
models by allowing linguistic labels for entities and
relationships. Furthermore, the concept map makes is
easier to try out ideas and cast them aside if they fail to
satisfy the modeling goals and constraints. In his landmark
book, Productive Thinking, based on a case study of Albert
Einstein, Wertheimer (1945) argues that a bottleneck to
scientific breakthrough is overcoming the structure of
existing theories. By providing a freer ontology, concept
maps might make it easier for this to happen. In the

NatureNet Redime4 effort to build qualitative models of
ecological systems, a first step has been building a textual
description and a concept map of the system of concern.
This claim of ease of knowledge elicitation has indirect
support from practical modeling efforts and conventional
modeling wisdom.

Second, the concept map is an important aspect of
documentation of the modeling process itself. It captures
the conceptual evolution of the modelers’ thought process.
It also presents a higher level description of the detailed
model, in the sense of requirements in software [Jackson,
1995] and design rationale [Moral and Carroll, 1996]. The
concept map has communicative value, as it might be
easier to get started with the concept map before looking at
the simulatable model. For example, in the CMEX5 project,
which was NASA’s outreach effort to explain the Mars
exploration enterprise to lay people; a collection of about
one hundred concept maps detailing various aspects of
Mars exploration were released.

Third, for large models that don’t fit on a screen, the
concept map can be used as a navigational interface for
browsing the detailed model by pointing to parts of it that
one is interested in exploring in more detail. Furthermore,
concept maps contain enough structural information that
they can be used to retrieve analogous models from a
library of previous models and making analogical
suggestions during modeling [e.g., Leake et al., 2003].

4 Usage Scenarios

Designers of model development environments can take
advantage of the relationship between concept maps and
models both to create a simplified user interface and to
scaffold the encoding of formal models. To address the
first point, the conceptual model serves as an index to the
components of the detailed version, letting one navigate
quickly to the relevant sections of the model and access
associated interface elements with ease. For the second
point, the conceptual model can highlight incompletely
specified regions of the system and help the user avoid
errors in consistency. In the remainder of this section, we
discuss how the conceptual and detailed modeling
activities fit in the modeling environment.

There are two possible scenarios of how the modeling
environment might support both conceptual and detailed
modeling:

1) Sequential encoding: One starts with a concept map
that is progressively encoded into a simulatable
model. In this scheme, the concept map eventually
“disappears.”

2) Parallel encoding: Both the concept and the model
are maintained at all times as the modeler goes back
and forth elaborating and drawing connections
between them.

4 http://hcs.science.uva.nl/projects/NNR/
5 http://cmex.ihmc.us/

We believe that the parallel encoding is a more natural
model of the modeling task. The Foss et al. [1998] study
provides direct support of this intertwined nature of
modeling activity where one is going back and forth
between conceptual and detailed representations.
Furthermore, this view suggests that a concept map is more
than a stepping stone to a model. It is a continuously
developing high-level representation of the model that one
wants to keep around, even after having developed a
detailed model for explanatory, communicative purposes.

The sequential encoding scenario constrains the
ontological freedom of the concept map. It is easier to
imagine gradually elaborating from concept map to the
model if it were true that the concept map ontology was a
strict abstraction of the model ontology. However it is not
necessary. That is, the mapping of interactions expressed at
the concept map to those in the model may be one-to-one,
many-to-many, one-to-many, or many-to-one. A concept
map is not just a sparser representation of a model.
Sometimes the concept map might contain additional
information about the system that never goes into the final
model, as the concept map ontology allows one to
represent more than what one might be able to say in the
detailed modeling ontology. The argument against
sequential encoding is that of ontological incompatibility.

The sketch mode in the current version of Garp supports
the sequential encoding scenario. It is plausible that the
modeler might go back and forth between the sketch mode
and the qualitative modeling mode; however, the
environment does not provide direct support for connecting
the sketch and the qualitative model.

In the parallel encoding scenario, the software must
provide facilities for keeping concept map and model in
sync as they evolve. To implement such tight coupling
between the concept map and the model, we need an
analysis of relationships between them, which amounts to
answering the questions: 1) What are the ontological
relationships between elements (nodes and edges) in the
concept map and the model? and 2) What kind of activities
relate the elements in the concept map and the model? The
answers to these questions provide the software with the
knowledge required to connect the models. As a first start,
the modeler can manually annotate such connections. It is
an empirical question for future research to see what
aspects of these can be automated and benefit the modeler
by automatically pointing out incompleteness and
mismatches.

5 Relating Concept Maps to Models

Concept maps draw their power from their lack of
representational constraints. This freedom lets one create
inconsistent diagrams and mix together causal, structural
and other types of information with minimal formal syntax.
In addition, one can include components that communicate
the scope of a model even though those details will exist
only implicitly in the formalized version. In this section,

we examine the relationships expressed in a concept map,
how these relationships translate into an encoded model,
and the utility of maintaining explicit links between the
two representations.
Concept maps can take many forms and encode several

types of knowledge: UML diagrams, organizational charts,
flowcharts, and so on. To focus the discussion, we
emphasize concept maps built as outlines for a causal
model (qualitative or quantitative). We ground our
discussion in the concept maps built in the CMEX project
and those built by Bredeweg’s group in the NatureNet
Redime project. Although these maps cover a broad scope
of topics, ranging from autonomous spacecraft control to
river Mesta’s ecosystem, we posit that they contain six
distinct classes of knowledge: causal, spatial,
mereological, taxonomic, control and parametric. Each
type of knowledge manifests either as nodes or as edges in
a concept map. We also discuss where the knowledge ends
in a qualitative model built using the QPT ontology in the
discussion below:

1. Causal: Causal knowledge is a key part of
explanations, and manifests in relationships such as
“causes”, “effects”, “increases”, and “is related to”.
These relationships map onto qualitative
proportionalities and influences, but one can also
specify more complex causal relationships like
“consumes”, “produces”, and “regulates,” that map
onto processes. Relationships such as “enables” and
“prevents” capture causal knowledge that becomes
preconditions and quantity conditions in a qualitative
model. In addition to those specified, we also include
temporal relationships like “before”, “after”, and
“during” in this causal category as they often related
to a vague causal knowledge.

2. Spatial: This type of knowledge captures the spatial
layout of entities in the modeled system. Explicit
spatial relationships include “above”, “below”,
“inside”, “aligned”, and so on. While encoding a
qualitative process model, one may translate these
relationships into preconditions for model fragments
as they place limits on which entities can interact
with one another.

3. Mereological: This type of knowledge describes the
part-whole relationships between entities in the
system and is expressed by relationships such as
“consists of”, “contains”, and “includes”.

4. Taxonomic: Taxonomies describe the type
information for objects, which manifests as a subtype
hierarchy in Garp. Defining specific objects as
instance of general types enables the reuse of model
fragments. One may describe these relationships with
terms like “is a”, “type of”, “member of”, “example
of” (for class–instance hierarchies), and so on.

5. Control: These relationships introduce control flow
into the concept map. For example, one can include a
node that determines which of two outcomes will
happen. Often control knowledge gives an explicit
statement of preconditions and quantity conditions.

6. Parametric: Parametric nodes and edges let one
introduce modeling abstractions like parameters of
interest at the concept map level itself. Ideally, these
objects appear directly in the encoded model. In
concept maps, such relationships may exist as nodes
that represent numeric quantities or edges that
represent measurement operations.

As mentioned at the beginning of this section, we are
restricting our goal to knowledge contained in causal
models. For instance in domains like design, teleology,
economics and aesthetics might be some of the other types
of knowledge that are relevant to model building. To
highlight these relationships, we appeal to the specific
examples shown in Figure 3. This concept map describes
the river Mesta's ecosystem [Uzunov et al. 2006] and
contains seventeen distinct edge labels. We place these
labels into the above categories as follows.

1. Causal: produces, provides, stimulates, regulates,
consumes, feeds on, regulates, influences

2. Spatial: inhabit, provides habitat for, lives on
3. Mereological: consists of, has, contains
4. Control: determines the type of
5. Parametric: is measured by

The relation “is profited by” fails to fit in any of the
delineated categories. However, consider the statement
“particulate organic matter is profited by bacteria.” This
claim is somewhat misleading as the bacteria consume the
particulate organic matter, which defines a process
relationship similar to “feeds on” between these two
entities. We used the concept map from the river Mesta
study to show that many relationships specified in a
concept map fall within a limited set of categories. The
taxonomic relations do not show up in the concept map as
they are modeled separately in Garp. In the next section,
we examine the encoding operations associated with these
types of knowledge.

6 Operations between Concept Maps and Models

In this section, we describe the operations that a modeling
environment needs to have to support the parallel encoding
model. We have not built this environment yet. After
creating an initial concept map, one can begin the iterative
process of model and concept map revision. At this point,
the concept map itself becomes a key part of the user
interface. Selecting a node will reveal an entity-specific
dialog with which one can define either a type or an entity.
In the former case, one specifies the properties of the type,
which assumes the name of the node. In the latter, one
either selects a type for the entity, or, both defines a new
entity type and labels the node as an instance of the type.
If a taxonomic edge connects two nodes, one can infer the
type and properties of the child. In addition, if the concept
map lacks an edge between a distinct entity type and its
instantiation, the modeling environment can add it
automatically. This action synchronizes the concept map
and the encoded model and is an important tool for
revealing relationships that were initially implicit but that

became explicit during the formalization process. More
plainly, this activity helps one see their previously implicit
knowledge, which may lead to a better understanding of
the system and better modeling habits in the future.

One can also select the edges of the concept map and
assign them to any of the six specified categories.
Structural and spatial edges establish contexts and may
imply a need for a transport process. For instance, a
detailed cell model may have a pool of RNA within the
nucleus and a pool of RNA in the cytoplasm. A model that
incorporated mechanisms for transcription and translation
would require a process that shuttles the RNA through the
nuclear membrane. If the concept map contains
mereological and boundary information, then the modeling
environment could readily infer the necessity of such a
process and remind the modeler to include it. If one labels
an edge as taxonomic then the environment can relay
properties from the source node to the source (an entity
type) to the target (either more specific type or an
instantiated entity). Finally, labeling an edge as causal will
call up the process editing dialog. First, the environment
ensures that the source and target of the link are both
entities. If not, the interface will prompt the modeler to
add an instantiation of the appropriate type. Afterwards,
both entities will appear in the process definition, which
allows the inclusion of other entities as participants. In the
simple case, the modeler defines the process between two
entities and moves to another relationship. If, however,
other entities are introduced, the program must bring the
concept map up to date by adding process links between
the newly related nodes.

Next we present a catalog of operations between concept

maps and models. The software must be aware of these,
and can help the modeler annotate and connect the concept
map and the model. This is a coarse representation of the
types of activity links that exist between concept maps and
models.
1. Typing: The modeler takes a node or an edge in the

concept map and provides the type information for it
from the ontology(e.g., identify something as a
process, quantity, or an influence). At this point, the
software can use templates associated with the types to
point out the information that is needed to fully
describe it in the modeling ontology. Further, local
constraint satisfaction could propagate this
information and anticipate the types of other nodes and
edges connected to the object.

2. Elaboration: The modeler takes a node or edge in the
concept map and decides to explode it and model it in
further detail. The software makes sure that the
internal and external connectivity to this object is
maintained. Other than this, one can freely elaborate
the object in any way allowed by the modeling
ontology. This procedure is similar to the model
containers idea in ModKit [Bogush, Lohmann and
Marquardt, 2001].

3. Filtering: This operation has the modeler specify the
elements in the concept map that will not be described
in the simulation model. This could be because the
detailed modeling ontology cannot encode those
elements, or they might not be relevant to the task at
hand.

4. Annotation: We allow this as a catchall relationship
between the concept map and the model, where the

Figure 3. Concept map of the River Mesta ecosystem [from Uznov et al, 2006]

modeler can select a subset of the concept map and
connect it to the model without specifying the detailed
relationship between the elements.

The above list makes it possible for the modeler to
explicitly connect the concept map to the model. Six types
of knowledge in concept maps and four types of operations
going from concept maps to models, gives a set of twenty-
four connection types. Further modeling constraints might
make it possible for the environment to automatically
detect mismatches and/or incompleteness in the concept
map or the model. Reasoning from the model fragments
and assumptions [Falkenhainer and Forbus, 1991; Nayak,
1992] might play a key part in operationalizing these
constraints.

7 Conclusions

Building models is hard. We argue that a tight integration
of the conceptual and detailed modeling processes in the
modeling environment can facilitate modeling. We claim
that there are six classes of knowledge that are described in
concept maps: causal, spatial, mereological, taxonomic,
control and parametric. We describe four types of
operations that connect concept maps to models: typing,
elaboration, filtering and annotation. We believe that this
raises interesting research questions about how to provide
automatic support for these operations in the modeling
environment. Implementing these ideas in a modeling
environment like Garp or Stella will provide insights about
their usefulness, and we hope that this paper sparks a
conversation about building better modeling environments.

Acknowledgments

This work is supported by Artificial Intelligence Program
of the Computer Science Division of the Office of Naval
Research and by Grant No. IIS-0326059 from the National
Science Foundation. Praveen Paritosh would like to thank
Ken Forbus, Tom Hinrichs, Matt Klenk, Bert Bredweg,
and Andrew Lovett for insightful discussions. Will
Bridwell would like to thank Pat Langley, Dorrit Billman,
Stuart Borrett, Bert Bredeweg, Anders Bower, and Desiree
Tullos for conversations about conceptual modeling.

References

Bogusch, R., Lohmann, B., Marquardt, W. (2001).
Computer-aided process modeling with ModKit,
Computers and Chemical Engineering. Volume 25,
Number 7, pp. 963-995.

Bredeweg, B., Salles, P., Bouwer, A., Liem, J., Nuttle T.,
Cioaca, E., Nakova, E., Noble, R., Caldas, A., Uzunov,
Y., Varadinova, Y., Zitek, A. in press, Towards a
Structured Approach to Building Qualitative Reasoning
Models and Simulations, Ecological Informatics.

Bridewell, W., Sanchez, J., Langley, P., Billman, D.
(2006). An interactive environment for the modeling and

discovery of scientific knowledge. International Journal
of Human–Computer Studies, 64, 1099–1114.

Buzan, T. (1991). The Mind Map Book . New York:
Penguin.

Falkenhainer, B. and Forbus, K. (1991). Compositional
Modeling: Finding the Right Model for the Job.
Artificial Intelligence, 51, 95-143.

Farabee, M., (2001). On-line biology textbook, retrieved
from http://www.emc.maricopa.edu/faculty/farabee/

Forbus, K., Carney, K., Sherin, B., Ureel L., (2004).
VModel: A Visual Qualitative Modeling Environment
for Middle-school Students, In Proceedings of the 16th
Conference on Innovative Applications of Artificial
Intelligence.

Forbus, K., Lockwood, K., Klenk, M., Tomai, E., and
Usher, J. (2004). Open-domain sketch understanding:
The nuSketch approach. To appear in AAAI Fall
Symposium on Making Pen-based Interaction Intelligent
and Natural, October, Washington, DC.

Forbus, K. and Usher, J. (2002). Sketching for knowledge
capture: A progress report. In Proceedings of IUI 2002,
San Francisco, California.

Forrester, J. W. (1961). Industrial dynamics. Waltham, MA
Foss, B. A., Lohmann, B., Marquardt, W. (1998). A Field

Study of the Industrial Modeling. J. of Process Control,
8(6):325--338.

Haefner, J.W. (2005). Modeling Biological Systems:
Principles and Applications, Springer.

Jackson, M. (1995). Software requirements &
specifications: a lexicon of practice, principles and
prejudices, ACM Press/Addison-Wesley Publishing Co.
New York.

Jorgensen, S. (2001). Fundamentals of Ecological
Modelling, 3rd edition, Elsevier.

Leake, D., Maguitman, A., Reicherzer, T., Cañas, A.,
Carvalho, M., Arguedas, M., Brenes, S., Eskridge, T.,
(2003). Aiding Knowledge Capture by Searching for
Extensions of Knowledge Models, Proceedings of K-
CAP ´03, October 2003, Sanibel Island, Florida.

Leelawong, K. (2005). Using the Learning-by-Teaching
Paradigm to Design Intelligent Learning Environments,
Doctoral Dissertation, Vanderbilt University.

Levins, R. (1966). The Strategy of Model Building in
Population Biology, American Scientist 54: 421–431.

Lohner, S., van Joolingen, W., Savelsbergh, E. (2003). The
effect of external representation on constructing
computer models of complex phenomena, Instructional
Science 31: 395–418.

Moran T.P., Carroll J.M., (1996). Design Rationale:
concepts, techniques, and use.

Novak, J. D. & A. J. Cañas. (2006). The Theory
Underlying Concept Maps and How to Construct Them,
Technical Report IHMC CmapTools 2006-01, Florida
Institute for Human and Machine Cognition.

Nayak, P. P., (1992). Automated Modeling of Physical
Systems, Doctoral Dissertation, Stanford University.

Rittel, H., and M. Webber; "Dilemmas in a General Theory
of Planning" pp 155-169, Policy Sciences, Vol. 4,

Elsevier Scientific Publishing Company, Inc.,
Amsterdam, 1973.

Sins, P., Savelsbergh, E., van Joolingen, W. (2005). The
Difficult Process of Scientific Modelling: An analysis of
novices' reasoning during computer-based modeling.
International Journal of Science Education, Volume 27,
Number 14, Number 14/18 November 2005, pp. 1695-
1721(27)

Tomai, E., Forbus, K., and Usher, J. (2004). Qualitative
spatial reasoning for geometric analogies. Proceedings
of the 18th International Qualitative Reasoning
Workshop.

Uzunov, Y., Elena Nakova, E., and Varadinova, E. 2006.
Textual description of river Mesta case study, Naturnet-
Redime, STREP project co-funded by the European
Commission within the Sixth Framework Programme
(2002-2006), Project no. 004074, Project Deliverable
Report D6.3.1.

