
PROVABLY SPURIOUS QUALITATIVE SIMULATION PREDICTIONS THAT
JUST WON’T GO AWAY

Nuri Taşdemir and A. C. Cem Say

Boğaziçi University
Department of Computer Engineering

Bebek, 34342, İstanbul, Turkey
nuri.tasdemir@boun.edu.tr, say@boun.edu.tr

Abstract
It is known that sound and complete qualitative simulators do not exist; that is, there exist inputs
which lead to ineradicable spurious behaviors, proving whose inconsistency is an undecidable
task, and thus any sound qualitative simulator has to include them in its output. In this paper, we
ask whether the next best thing, that is, a single sound qualitative simulator which detects and
eliminates all provably inconsistent predictions, is possible, and obtain a negative answer. We
prove that, for any sound qualitative simulator Q, which possesses two other reasonable properties
that we define, there exists an input model which causes Q to predict a spurious prediction that can
in fact be eliminated easily by many other qualitative simulators. Our result is a qualitative
simulation version of Gödel’s celebrated Incompleteness Theorem. We also show that, even when
one restricts attention to models without self-reference, there exist infinitely many provably
inconsistent inputs, which require so much time for a consistency check that such a simulator has
to start printing out the spurious behaviors beginning with their initial states if it has a practical
upper bound on its runtime.

1. Introduction

It is known [4] that sound and complete qualitative simulators do not exist; that is,
there exist inputs which lead to ineradicable spurious behaviors, proving whose
inconsistency is an undecidable task, and thus any sound qualitative simulator has to
include them in its output. In this paper, we ask whether the next best thing, that is, a
single sound qualitative simulator which detects and eliminates all provably inconsistent
predictions, is possible, and obtain a negative answer. We prove that, for any sound
qualitative simulator Q, which possesses two other reasonable properties that we define,
there exists an input model which causes Q to predict a spurious prediction that can in
fact be eliminated easily by many other qualitative simulators. Our result is a qualitative
simulation version of Gödel’s celebrated Incompleteness Theorem. We also show that,
even when one restricts attention to models without self-reference, there exist infinitely
many provably inconsistent inputs, which require so much time for a consistency check
that such a simulator has to start printing out the spurious behaviors beginning with their
initial states if it has a practical upper bound on its runtime.

2. Background

In the following, we make use of the terminology of QSIM [2], which is a state-of-
the-art qualitative simulation methodology, although it should be noted that the results
that we will be proving are valid for all reasoners whose input-output vocabularies are
rich enough to support the representational techniques that will be used in our proofs.

This section starts by clarifying some of the additional terminology to be used in the rest
of the paper. We then list a number of previously proven facts that will be utilized in our
arguments.

2.1 Terminology

Qualitative simulator input: Qualitative simulators take a system model and a
description of the initial system state as input. The model consists of one or more
operating region descriptions and definitions of possible transitions between operating
regions. Each operating region description contains variable-related definitions such as
quantity spaces and legal ranges, and constraints that hold between the variables in that
region. In this paper, the initial state description is always assumed to contain a complete
assignment of qualitative values to all the variables of the initial operating region. When
some control switches and parameters of the simulation need to be set to values other
than their defaults (e.g. when the user wants QSIM to create no new landmarks for some
variables during simulation,) the description of these settings is also part of the input. In
the following discussion, the term qualitative simulator input denotes a single string
encoding all the information mentioned above.

Soundness: A qualitative simulator is sound if it is guaranteed that, for any ODE and

initial state that matches the simulator’s input, there will be a behavior in its output which
matches the ODE’s solution. QSIM, for instance, is known to have the soundness
property [2].

Completeness: A complete qualitative simulator would come with a guarantee that

every behavior in its output corresponds to the solution of at least one ODE matching its
input.

The output of a sound and complete qualitative simulator, if such a thing could exist,

would thus contain a tree of qualitative states rooted at the initial state, such that all paths
starting from the root and ending at a leaf (for finite branches) or containing an infinite
sequence of states correspond to a solution of an ODE matching the input, and all such
solutions would match such a path.

Consistent input: An input is consistent if and only if it could cause the prediction of

at least one behavior on a hypothetical sound and complete qualitative simulator.
Note that good qualitative simulators are supposed to produce an empty tree in

response to an inconsistent input.

We now define two more desirable properties for qualitative simulators, indeed, for

almost any program.

Steadfastness: A steadfast qualitative simulator is one which does not retract any part

of its output that it has already printed. In particular, once a steadfast qualitative simulator
has printed the root of the behavior tree, corresponding to the initial system state, its
output is guaranteed to contain at least one behavior prediction starting from that state.

The motivation behind our explicit definition of this very reasonable and easily
realizable property is the interesting fact that implementations of QSIM which start
printing out the behavior tree before the simulation is over, (this is inevitable for inputs
that cause trees which are either infinite, or finite but so big that running the simulation to
completion is not an option,) are not steadfast; since inconsistency can propagate
backward from the leaves to the root, QSIM may decide to prune a branch of the
behavior tree after adding arbitrarily many states to it [2]. This is a result of the rule
which states that all states, except the quiescent states and the transition states (which
satisfy the operating region transition or termination conditions), should have at least one
consistent successor in order to be consistent. A state which has no consistent successor
state is also inconsistent even if it passes all other filters. So a state which has been added
to the behavior tree may be labeled much later as inconsistent, if all of its successor states
have been labeled inconsistent. Therefore, there are inputs which QSIM may announce as
inconsistent only after building and then destroying a large tree rooted at them. If the
simulator does not keep such a tree in memory, but instead starts to print it out before the
end of the simulation, the later announcement that the input was, after all, inconsistent
constitutes a violation of steadfastness as defined above.

Responsiveness: A responsive qualitative simulator starts printing a nonempty output

within a finite amount of time after it starts running.
Note that a responsive qualitative simulator should produce an output even if the

input is inconsistent. In such a case, the simulator should print a statement to the effect
that the simulation result is an empty tree.

A responsive and steadfast qualitative simulator announces its final verdict about the

input (i.e. either reports an inconsistency or prints the initial state as the root of the
behavior tree, meaning that it has deemed the input consistent) in finite time. In the
discussion below, we refer to this announcement as the response of the qualitative
simulator to its input.

2.2 Facts

2.2.1 Exact Representation of Integers in Qualitative Simulator Inputs
For any integer z, there exists a set of QSIM variable quantity spaces and constraints,

from which z’s equality to a particular variable in that set can be unambiguously deduced
[6]. This can be achieved easily by encoding the required value with addition and
multiplication constraints. For example, if we want to express that a variable has value 5,
then we can use following structure where all the variables are defined to be constant and
ONE is initialized to a positive finite value:

ONE = ONE × ONE
TWO = ONE + ONE
THREE = TWO + ONE
FOUR = THREE + ONE
FIVE = FOUR + ONE

Here, it is obvious that ONE equals 1, and so FIVE is 5.

2.2.2 Computationally Universal Qualitative Simulators Exist
The unlimited register machine (URM), which is equivalent in power to the Turing

machine (TM) model, is one of the many mathematical idealizations of computers [1]. A
URM has finitely many registers which can store nonnegative integers. There is no upper
limit for the value contained in a register. Every URM has a program which contains an
ordered list of instructions (Table 1) to be performed on the registers. When an
instruction (other than a jump) is executed, the next instruction to be executed is the one
right after the current one. Table 2 contains the description of a simple URM, which gets
two integers as input in registers 1 and 2, and gives the sum of these numbers as its
output in register 1.

URM Instructions
)(jrinc increments the value in register j

)(jrzero resets the value in register j to zero

),,(mkj irrjump If j is equal to k, jumps to instruction m,
otherwise, the next instruction is
executed

end terminates the computation

Table 1: URM Instructions

i1: zero(r3)
i2: jump(r2,r3,i6)
i3: inc(r1)
i4: inc(r3)
i5: jump(r2,r2,i2)
i6: end

Table 2: URM Program Computing f(x, y) = x + y

Yılmaz and Say proved [10] that any given URM/input pair can be simulated in a
qualitative simulator which supports one of several quite restricted subsets of the
input/output vocabulary of QSIM. To simulate a URM program with p instructions, one
constructs a qualitative simulator input with 2+p operating regions: one for each
instruction, one for the initialization, and one more for the finalization of the
computation. In the qualitative simulation of the URM’s computation process, each state
of the behavior tree (except the root, which corresponds to the initialization,) corresponds
to the execution of an instruction. This simulation can be performed in a behavior tree
with a single branch. (Note that this requires some additional filters which “decode” the
input to obtain and then keep track of the exact numerical values of the simulation
variables to be incorporated to presently available qualitative simulators, and nobody has
seriously tried to implement the construction in [10] to our knowledge. However, an

implementation is entirely possible, and in fact quite straightforward when compared
with some of the mathematically much more sophisticated filters that have been
developed for QSIM, e.g. [5, 7].)

In fact, such qualitative simulators can be thought of as an alternative computational
model like the URM, and appropriately prepared qualitative simulator inputs play the
roles of the programs to run on this computational model.

Note that qualitative simulators can be (and are) simulated by our computers;
therefore they can be simulated in a TM, which is capable of doing everything which can
be done by our computers [8]. It follows from the computational universality of URM’s
that any qualitative simulator can be simulated by a URM. As a result, a qualitative
simulator which supports one of the subsets of the QSIM input vocabulary listed in [10]
can simulate any other qualitative simulator implementation.

2.2.3 The Recursion Theorem
This theorem, [8] which is a well-known fact of computability theory, provides the

following technique, which can be used when one needs to construct programs which can
store their own code in a variable, and then process it as necessary: We construct a
program which consists of three parts; A, B, and Main, which run in this order. When
executed, part A stores the code of the other two parts, namely, a string of the form
<B,Main>, into a variable v. Part B then starts running, and uses the string in v to
construct the description of a partial program which stores the value that B sees in v into
the variable v. Note that the partial program B prepares in this manner is A itself. B then
appends <A>, which it has just constructed, with the current contents of v, stores the
resulting longer string, which is none other than the code of our program itself, namely
<A,B,Main>, in v, and passes control to part Main, which can use the program’s code
stored in v when needed. Main contains the rest of the code which makes the program
accomplish whatever its designated task is; A and B are used just for implementing the
recursion technique described above.

2.2.4 The Halting Problem Is Reducible to Hilbert’s Tenth Problem
As the name suggests, Hilbert’s Tenth Problem is the tenth of 23 problems which

were announced in 1900 by the famous mathematician David Hilbert as a challenge to the
mathematicians of the 20th century. It asks for an algorithm for deciding whether a given
multivariate polynomial with integer coefficients has integer solutions. In 1970, Yuri V.
Matiyasevich showed that no such algorithm exists, by demonstrating a method which
can be used to construct, for any given Turing machine T, a polynomial P with integer
coefficients, such that P has a solution in the natural numbers if and only if T halts on the
empty input. As mentioned above, the original statement of the problem talks about the
domain of integers, rather than natural numbers. However, this can be shown to be
equivalent in difficulty to the version with the domain restricted to the natural numbers;
see, for instance, [3].

2.2.5 Hilbert’s Tenth Problem Is Reducible to Qualitative Simulator Input
Consistency Checking
Yılmaz and Say have proven [10] that, even if the qualitative representation is

narrowed so that only the derivative, add, mult and constant constraints can be used in

QDE’s, and the simulation proceeds only in a single operating region, it is still impossible
to build a sound and complete qualitative simulator based on this input-output
vocabulary. This proof uses a reduction from Hilbert’s Tenth Problem, namely, a
technique that can be used to build, for any given multivariate polynomial P with integer
coefficients, a qualitative simulator input QI, such that QI is consistent if and only if P
has a solution in the integers. This means that a sound and complete qualitative simulator,
if it existed, could be used to solve Hilbert’s Tenth Problem. Although this proves that
there can be no qualitative simulator which is both sound and complete, the
transformation used for this purpose in [10] can also be used fruitfully to obtaining
interesting results about sound, steadfast, responsive and naturally incomplete simulators,
as will be seen in Section 3.2.

3. Every Sound, Steadfast and Responsive Qualitative Simulator Has a “Blind

Spot”

We will now prove that every qualitative simulator which possesses the soundness,
steadfastness, and responsiveness properties necessarily predicts a provably spurious
behavior B, and that this same B can be recognized as spurious and filtered out easily by
many other feasibly constructible qualitative simulators. Section 3.1 demonstrates this
fact for qualitative simulators which support the operating region transition feature. In
Section 3.2, we show that this feature is not required for the phenomenon we describe
here to occur.

3.1.The Blind Spot Theorem: Multi-Region Version

We start by observing that qualitative simulator inputs can be designed to use a

simple adaptation of the recursion technique of Section 2.2.3 to obtain and store their
own code in a simulation variable. Such an input will consist of three submodels: A, B,
Main. A, which consists of a single operating region, will contain a variable V, which it
initializes to an integer encoding the string <B, Main>. Another variable in A is
constrained to reach a landmark which will trigger a transition to the starting operating
region of the multiple-region submodel B. Variable V inherits its value during all
operating region transitions. B models a URM which uses its knowledge of the value in V
to prepare the description of a qualitative input submodel, which models a URM that
initializes variable V to the value B now sees in V, and then triggers a transition to the
starting operating region of B. Note that this submodel description prepared by B is none
other than <A>. B then combines <A> and <B, Main> to obtain <A, B, Main>, stores this
value in V, and triggers a transition to Main, where the description of the entire input <A,
B, Main> can be used as needed.

We now note that, given any qualitative simulator C, one can build a qualitative

simulator input MC as follows:
MC contains the representation of a URM program. Upon starting execution, MC first

acquires its own code <MC> using the recursion technique described above, and then
starts to simulate C, whose code has been embedded in that of the program of MC, with
<MC> as input. The simulation of C is performed until C gives its response about the

input, i.e. until C either declares inconsistency or prints the initial state as the root of the
behavior tree. If C rejects the initial state of <MC>, the program of MC ends by arriving at
an operating region where a variable increases until it reaches a bound of its legal range,
constituting a successful termination of the corresponding branch of the behavior tree,
meaning that <MC> was a consistent input. On the other hand, if C prints the initial state
of its input, the program of MC jumps to an instruction represented by the operating
region ORC, which causes a contradiction. This can be achieved by a variable, say, S,
which is defined in all operating regions, and whose value is inherited in all operating
region transitions. S is constrained to be constant in all operating regions and it is
initialized to a positive finite value. In the operating region ORC, S is constrained to be
constant at zero. Therefore a transition into this region causes an inconsistent behavior.

Now let Q be any sound, steadfast and responsive qualitative simulator. We claim

that the input MQ is inconsistent, and yet Q does not reject this input; it starts printing a
provably spurious prediction that begins with the initial state of MQ. We justify this claim
with the following analysis of the execution of Q on input MQ:

To prevent confusion, let Q0 denote the “outer” Q, and let Q1 denote the “inner” Q,
which will be simulated as described above by the program MQ. Since Q0 and Q1 are
implementations of the same qualitative simulator which are working on the same input
(MQ), their actions will be exactly the same.

There are two possibilities for the response of Q to the input MQ: Q either rejects MQ,
or prints out the initial state of MQ.

Let us first analyze the case where Q0 rejects MQ. Then Q1 will also reject MQ. But
now consider what the program described by MQ does: It simulates Q1 for a finite number
of steps to see how Q1 responds to <MQ>, and when it sees a rejection, it terminates
successfully, without reaching a contradictory state. This is a perfectly valid behavior of
the described system, and should of course be printed out by any sound qualitative
simulator. Since Q is sound, we conclude from this argument that it cannot reject MQ.

The remaining possibility is that both Q0 and Q1 will print out the initial state of MQ.
Since Q is steadfast, printing the initial state is an irreversible action, and means that Q
announces the input MQ to be consistent. Let us consider what the program of MQ does in
this case: It simulates Q1 for a finite number of steps, and when it sees Q1 print out the
initial state of MQ, it jumps to a contradictory operating region, making the branch of the
behavior tree describing its entire execution a spurious one. Since the model is so
constrained that no other nonspurious branches are possible, as explained in section 2.2.2,
we conclude that MQ is, after all, inconsistent. By the argument of the previous
paragraph, Q must announce this inconsistent input to be consistent.

There exist other qualitative simulators which can correctly detect the inconsistency
of this input and reject it: Consider, for example, a computationally universal version of
QSIM, to which the “numerical” filters mentioned in section 2.2.2, that are required for
the simulation of a URM to produce a single-branch behavior tree, have been
incorporated. Such a simulator will start “running” the program of the input MQ, which in
turn will simulate Q on the input MQ, see Q accept MQ as proven above, and jump to the
contradictory operating region, at which point the “outer” simulator will propagate the
inconsistency all the way back to the initial state and reject the input MQ. Interestingly,
almost every sufficiently sophisticated qualitative simulator other than Q is capable of

rejecting MQ in this manner. It is this fact which leads us to use the term “blind spot” in
the title of this section.

As a somewhat frustrating thought exercise, one can show that some qualitative
simulators can sometimes “understand” that their present input will cause a blind spot
spurious prediction, but they just cannot announce it loud, so to speak: Assume that our
sound, responsive and steadfast simulator Q has been written by someone who knows
about the trick that we have been discussing above. The programmer has coded Q so that
it obtains its own code using the recursion technique, and then uses this to construct the
string <MQ>, which will cause it so much trouble. Q can now compare its present input
with <MQ>, but even this capability does not save it: Even when Q “knows” that the input
is <MQ>, it cannot announce it to be inconsistent as proven above, and the only option
available is to start print the spurious prediction.

The argument we use to prove the existence of blind spots in sound, steadfast and
responsive qualitative simulators has been inspired by the proof of Gödel's
incompleteness theorem, which states that a sound formal system of axioms and rules of
inference cannot be complete if it satisfies some simple conditions. (A sound formal
system is one in which one cannot prove a statement to be both true and false at the same
time. In a complete formal system, every true statement is provable.) The key point of
Gödel’s proof is the sentence T=“This sentence cannot be proven,” which can be defined
mathematically in any system M which satisfies the conditions. If this sentence T can be
proven, then it is obvious that a false statement is provable; since T states that T itself
cannot be proven. Since system M is sound, this is not a valid choice. The other
possibility is the non-existence of a proof in system M for statement T. This means that T
is true, and therefore M is incomplete. For more information on Gödel's proof, see [9].
The resemblance between the argument in this section and Gödel's proof is a result of self
reference. In our proof, the input has to be consistent if the qualitative simulator rejects it,
and in Gödel's proof, the statement has to be wrong if the system can be used to prove it.

3.2.The Blind Spot Theorem: Single-Region Version

In the proof of Section 3.1, the operating region transition feature of the QSIM

vocabulary played a critical role, since it is due to that representational item that URM’s
can be modeled. In this section, we show that the problem demonstrated in that section
persists even when the operating region transition feature is excluded from the qualitative
simulation vocabulary.

Let Q be any sound, steadfast and responsive qualitative simulator which works with
the restricted vocabulary described above. We will now demonstrate that there exists an
input which is inconsistent but which is announced to be consistent by Q. For this
purpose, we first construct a Turing machine named T.

T starts to simulate Q’s simulation of an input M, whose preparation will be described
shortly. On the first response of Q, T stops the simulation. If Q rejects its input, T halts;
otherwise, T loops forever.

 T prepares the input M, which it feeds to U, as follows: T first obtains its own code
<T> by recursion, and then it sets up a polynomial D, which has a solution if and only if
T halts with the empty string as input, (The details of this computation are explained in
the next two paragraphs.) T then encodes D as a qualitative simulator input M using the

technique described in [10], (Section 2.2.5) setting the initial magnitudes of all the
simulation variables representing the polynomial variables to (0, ∞).

The transformation used by T to encode its own halting status in a multivariate
polynomial is realized in two stages. T first employs the techniques of [3] (Section 2.2.4)
to produce a polynomial D1 defined on the domain N (including zero). Since we will
specify to the simulator that we are looking for a solution where all the polynomial
variables are positive, as mentioned in the previous paragraph, what we really want here
is a polynomial which has positive roots if T halts. So T transforms D1 to another
polynomial D in the following manner:

Given a polynomial),(D 211 nxxx L , which is defined on N, we will build a new
polynomial D, which has a solution in the positive integers, if and only if),(D 211 nxxx L
has a solution in the set of natural numbers. D is the product of all the variations of D1.
By a variation of D1, we mean a polynomial which can be obtained by setting some of
the variables of D1 directly to zero. Since there are two possibilities (zero or not) for each
variable, there are 2n variations of D1.

{ }

1.or 0 i.e. i, string theofcharacter j theis i where

)ii,i(DD where,DD

th
j

22111i
10i

i
n

nn xxx ×××== ∏
∪∈

K

Having described T, we immediately proceed to our proof. Q can either find the input

M inconsistent, or can start to print out the initial state. Let us analyze these cases.
Assume that Q says that M is inconsistent, and that therefore T halts. But if T halts,

then D has a solution, and M is consistent. So Q has incorrectly rejected a consistent
behavior. Since Q is sound, this is impossible, so Q cannot reject M.

So Q accepts M. But then T is a TM that does not halt, meaning that D has no
solution, and that M is inconsistent. So Q accepts an inconsistent model.

4. States Checkable with High Cost

In [10], it is shown that a qualitative simulator can simulate a URM. Now, we will

use this fact to construct a qualitative simulator input whose consistency requires)2(knΘ
time to be detected, where n is the size of the input and k > 0.

Consider any EXPTIME-complete language A. The fastest algorithm which decides A
has superpolynomial time complexity, since all other languages in the class EXPTIME
can be reduced to A in polynomial time, and it is known that P⊂EXPTIME [8]. Since A
is decidable, a URM which decides it exists, call this URM U.

We will use a modified version of the technique in [10], to encode U and its input as
an input for a qualitative simulator Q. The only difference from [10] will be the number
of finalization operating regions. We need two separate finalization operating regions.
Since Q will simulate a decider, one of the regions will stand for yes, while the other will
stand for no. The no operating region contains an inconsistency with regard to the other
operating regions, so if the simulation reaches the no operating region, this will result in a
spurious behavior, and since there will be at most one simulation branch, the input will be
inconsistent in this case. The yes operating region does not contain an inconsistency, and

therefore in the case of reaching there, the simulation will output a single nonempty
behavior successfully.

Now, let us construct a Turing machine T for deciding A. T reads its input string x,
and uses the technique described in the previous paragraph to construct a qualitative
simulator input M, which encodes the URM U working on input x, and then simulates Q
on input M until Q gives its response to the initial state. If Q prints the initial state, this
means that x∈A, and T prints yes; if Q rejects the input M due to inconsistency, this
means x∉A, and T prints no. (Note that this construction is guaranteed to be valid only if
Q is steadfast.)

Let us calculate how fast the fastest possible qualitative simulator Q can respond to M
in this scenario. Let the length of x be n. The length of the input M of the qualitative
simulator is)(nΘ , since the only operating region of M whose size depends on n is the
starting region, where the value x is supposed to be encoded as the initial value of U’s
first register, and this can be done using a set of constraints that can be expressed in)(nO
symbols. All the other operating regions have fixed lengths that do not depend on x. So
M is)(nΘ . Now, we know that for some values of x, the fastest possible T will have to

run for)2(knΘ steps. If one leaves the simulation of Q aside, it is clear that the remaining

parts of T have a total runtime of)(O n . Since the total time is)2(knΘ , this concludes

that time required for Q should also be)2(knΘ . Since M is)(nΘ , and n is)(MΘ , Q is

seen to require)2(
k)(MΘΘ steps, that is, an exponential amount of time in terms of the

size of its own input, to decide about the consistency of its initial state.
If one thinks about QSIM (a version which has been augmented with the numerical

filters to ensure a single branch while simulating the URM, and which has been
guaranteed to act steadfastly, at least for the inputs it will encounter in this construction,
by making sure that it starts printing the constructed state tree only when the simulation is
over,) in this scenario, it is clear that the announcement of the verdict about the initial

state will take)2(
k)(MΘΘ steps, since QSIM would construct the branch all the way to its

end, and then, in case of a no answer, propagate the inconsistency all the way back to the
initial state. The proof above shows that this runtime is the best that can be achieved by
any qualitative simulator.

We conclude that, for any sound, responsive and steadfast qualitative simulator which
has a practical (i.e. polynomial) upper bound on its runtime, there exist infinitely many
provably inconsistent inputs, which require so much time for a consistency check that the
simulator has to start printing out the spurious behaviors beginning with their initial
states.

There exists an infinite hierarchy of languages which require worse and worse
runtimes than those in EXPTIME [8]. All these can be used to demonstrate the existence
of spurious behaviors which are eradicable in principle, but ineradicable in practice, by
the same argument as above.

5. Conclusion

We proved that there is no single sound, responsive and steadfast qualitative
simulator which can detect and eliminate all eradicable spurious predictions.
Furthermore, when practical limits are imposed on the runtime, the set of spurious
predictions that can be eliminated is a dramatically small subset of the set of all
eradicable spurious predictions.

We acknowledge that the models involved in our arguments are not of the kind that
would normally be submitted to a qualitative simulator by a sensible user. But getting rid
of the occasionally predicted eradicable spurious behavior is a desirable thing for those
normal users as well, and we hope that the findings reported here might be useful for
researchers interested in constructing qualitative simulators with improved theoretical
guarantees and additional filters of increasing mathematical sophistication.

References

[1] Nigel J. Cutland, 1980. Computability: An Introduction to Recursive Function
Theory. Cambridge University Press.

[2] Benjamin J. Kuipers, 1994. Qualitative Reasoning: Modeling and Simulation with
Incomplete Knowledge, MIT Press, Cambridge, MA.

[3] Yuri V. Matiyasevich, 1993. Hilbert’s Tenth Problem. Cambridge, Mass.: The
MIT Press.

[4] A. C. Cem Say and H. Levent Akın, 2003. Sound and complete qualitative
simulation is impossible, Artificial Intelligence Vol. 149, pp. 251-266.

[5] A. C. Cem Say, 1998. L'Hôpital's filter for QSIM, IEEE Transactions on Pattern
Analysis and Machine Intelligence Vol. 20, pp. 1-8.

[6] A. C. Cem Say, 1997. Numbers representable in pure QSIM, in: Proc. Eleventh
International Workshop on Qualitative Reasoning, Cortona, Italy, pp. 337–344.

[7] A. C. Cem Say, Selahattin Kuru, 1993. Improved filtering for the QSIM
algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 15,
pp. 967-971.

[8] Michael Sipser, 1997. Introduction to the Theory of Computation, PWS
Publishing Company.

[9] Raymond M. Smullyan, 1992. Gödel's Incompleteness Theorems. Oxford
University Press.

[10] Özgür Yılmaz and A. C. Cem Say, 2006. Causes of ineradicable spurious
predictions in qualitative simulation, Journal of Artificial Intelligence Research
Vol.27, pp. 551-575.

