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Abstract

A new concept of generalized absolute orders of magnitude
qualitative spaces is introduced in this paper. The new struc-
ture makes it possible to define sets of qualitative labels of
any cardinality, and is consistent with the classical struc-
ture of qualitative spaces of absolute orders of magnitude
and with the classical interval algebra. In addition, the al-
gebraic structure of these spaces ensures initial conditions for
adapting measure theory to a qualitative environment. This
theory provides the appropriate framework in which to intro-
duce the concept of entropy and, consequently, the opportu-
nity to measure the gain or loss of information when working
within qualitative spaces. The results obtained are significant
in terms of situations which arise naturally in many real ap-
plications when dealing with different levels of precision.

INTRODUCTION

Qualitative Reasoning (QR) is a subarea of Artificial Intelli-
gence that seeks to understand and explain human beings’
ability for qualitative reasoning (Forbus 1996), (Kuipers
2004). The main objective is to develop systems that permit
operating in conditions of insufficient numerical data or in
the absence of such data. As indicated in (Travè-Massuyès
and Dague 2003), this could be due to both a lack of infor-
mation as well as to an information overload.

A main goal of Qualitative Reasoning is to tackle problems
in such a way that the principle of relevance is preserved;
that is to say each variable has to be valued with the level
of precision required (Forbus 1984). It is not unusual for a
situation to arise in which it is necessary to work simulta-
neously with different levels of precision, depending on the
available information, in order to ensure interpretability of
the obtained results. To this end, the mathematical struc-
tures of Orders of Magnitude Qualitative Spaces (OM) were
introduced.
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The wordinformationappears constantly in QR. However,
its meaning is as yet undefined within a qualitative context.
The implicit and explicit use of the term and concept ad-
dresses the need to define and, perhaps paradoxically, to
quantify them.

In this work it is presented a way of measuring the amount
of information of a system when using orders of magnitude
descriptions to represent it. Taking into account that the en-
tropy can be used to measure the information, this work is
intended to be a first step towards this measure by means of
orders of magnitude qualitative spaces.

The concept of entropy has its origins in the nineteenth cen-
tury, particularly in thermodynamics and statistics. Thisthe-
ory has been developed from two aspects: the macroscopic,
as introduced by Carnot, Clausius, Gibbs, Planck and
Caratheodory and the microscopic, developed by Maxwell
and Boltzmann (Rokhlin 1967). The statistical concept
of Shannon’s entropy, related to the microscopic aspect,
is a measure of the amount of information (Shannon
1948),(Cover and Thomas 1991).

In order to define the concept of information within the QR
framework, this paper adapts the basic principles of Measure
Theory (Halmos 1974), (Folland 1999) to give OM a struc-
ture in which to define the concept of entropy, and, conse-
quently, the concept of information.

Section 2 defines the concept of generalized absolute orders
of magnitude qualitative spaces. In Section 3, the algebraic
structure of these spaces is analyzed in order to ensure ini-
tial conditions in which to adapt the Measure Theory. A
measure and the concept of entropy in the generalized abso-
lute orders of magnitude spaces are given in section 4 and
5 respectively. The paper ends with several conclusions and
outlines some proposals for future research.



GENERALIZED ABSOLUTE ORDERS OF
MAGNITUDE QUALITATIVE SPACES S∗

g

The classical version of the qualitative orders of mag-
nitude that appears in (Travè-Massuyès and Dague
2003) is an abstraction of intuitive concepts of “very
small ”,“small”,“big”, or “very hot”, “hot”, etc., i.e. an ab-
straction of concepts with which human beings reason. This
abstraction is done through the introduction ofqualitative
labelsin a way that defines a finite and discrete set of labels
representing the above concepts. This paper proposes a fur-
ther step towards the generalization of qualitative ordersof
magnitude. This generalization makes it possible to define
orders of magnitude as either a discrete or continuous set of
labels, providing the theoretical basis on which to developa
Measure Theory in this context.

Definition 1 LetX be a non-empty set,I a subset ofR, and
B : I → P(X) an injective function. Then eachB(t) =
Bt ⊂ X is a generalized basic label onX and the setS of
generalized basic labels onX is

S = {Bt | t ∈ I}.

Note that ift 6= t′, thenBt 6= Bt′ .

Definition 2 If i, j ∈ I, with i < j, the generalized non-
basic label[Bi, Bj) is defined by

[Bi, Bj) = {Bt | t ∈ I, i ≤ t < j}.

In the casei = j ∈ I, the convention[Bi, Bi) = {Bi} will
be used. If necessary,[Bi, Bi) = {Bi} can be identified
with the basic labelBi.

Definition 3 If i ∈ I, the generalized non-basic label
[Bi, B∞) is defined by

[Bi, B∞) = {Bt | t ∈ I, i ≤ t}.

Note thatB∞ is a symbol, not a basic label.

Definition 4 The set ofGeneralized Orders of Magnitude
S
∗
g is:

S
∗
g = {∅}∪{[Bi, Bj) | i, j ∈ I, i ≤ j}∪{[Bi, B∞) | i ∈ I}.

In this definition ofS∗
g the basic labelBi has been identified

with the singleton{Bi}.

It is important to remark that the functionB : I → P(X)
determines the elements ofS and S∗

g , and the cardinal of
the setI ⊂ R determines the cardinal ofS and therefore the
cardinal ofS∗

g .

Theclassical orders of magnitude qualitative spaces(Travè-
Massuyès and Dague 2003) verifies the conditions of the
generalized model that has just been introduced. This model
are build from a set of ordered basic qualitative labels deter-
mined by a partition of the real line.

Let X be the real interval[a1, an), and a partition of this set
given by{a2, . . . , an−1}, with a1 < a2 < . . . < an−1 <
an. The set of basic labels is

S = {B1, . . . , Bn−1},

where, for1 ≤ i ≤ n − 1, Bi is the real interval[ai, ai+1).
The set of indexes isI = {1, 2, . . . , n − 1}.

a1 a2 an−1 an. . .

B1 Bn−1

Figure 1. Classical aualitative labelsSn

For1 ≤ i < j ≤ n − 1 the non-basic label[Bi, Bj) is:

[Bi, Bj) = {Bi, Bi+1, . . . , Bj−1},

and it is interpreted as the real interval[ai, aj).

For1 ≤ i ≤ n − 1 the non-basic label[Bi, B∞) is:

[Bi, B∞) = {Bi, Bi+1, . . . , Bn−1},

and it is interpreted as the real interval[ai, an).

The complete universe of description for the Orders of Mag-
nitude Space is the set

Sn = { [Bi, Bj) | Bi, Bj ∈ S, i ≤ j}∪{ [Bi, B∞) | Bi ∈ S},

which is called the absolute orders of magnitude qualitative
space with granularityn, also denotedOM(n). In this case,
S∗

g = {∅} ∪ Sn .

There is a partial order relation≤P in Sn “to be more precise
than”, given by:

L1 ≤P L2 ⇐⇒ L1 ⊂ L2.

The least precise label is denoted by? and it is the label
[B1, B∞), which corresponds to the interval[a1, an).

BiB1 ... BnBj

?

p

r

e

c

i

s

i

o

n

... ...

[Bi,Bj)

a

b

s

t

r

a

c

t

i

o

n

.

Figure 2. The spaceSn



This structure permits working with all different levels of
precision from the label ? to the basic labels.

In some theoretical works, orders of magnitude qualitative
spaces are constructed by partitioning the whole real line
(−∞, +∞) instead of a finite real interval[a1, an). How-
ever, in most real world applications involved variables do
have a lower bounda1 and an upper boundan, and then val-
ues less thana1 or greater thanan are considered as outliers
and they are not treated like any other.

The classical sign algebraS = {−, 0, +} was the first
absolute orders of magnitude space considered by the QR
community. It corresponds to the caseS = {B−1 =
(−∞, 0), B0 = {0}, B1 = (0, +∞)}. The sign alge-
bra is obtained via a partition of the real line given by an
unique landmark0. The classical orders of magnitude qual-
itative spaces are built from partitions via a set of landmarks
{a2, . . . , an−1}, and the classical interval algebra is built
from the finest partition of the real line whose landmarks
are all real numbers.

It is important to remark the significance of the presented
mathematical formalism in the sense that it permits to lump
together a family ofS∗

g forming a continuum from the sign
algebraS = {−, 0, +} to the interval algebra corresponding
to S = R.

THE MEASURE SPACE (P(X), Σ( S∗

g
), µ∗)

To introduce the classical concept of entropy by means of
qualitative orders of magnitude spaces, Measure Theory
is required. This theory seeks to generalize the concept
of “length”, “area”and “volume”, understanding that these
quantities need not necessarily correspond to their physical
counterparts, but may in fact represent others. The main use
of the measure is to define the concept of integration for or-
ders of magnitude spaces. First, it is necessary to define the
algebraic structure on which to define a measure.

Definition 5 A class of setsℑ is called asemi-ring if the
following properties are satisfied:

1. ∅ ∈ ℑ.

2. If A, B ∈ ℑ, thenA ∩ B ∈ ℑ.

3. If A, B ∈ ℑ, A ⊂ B, then ∃n ∈ N, n ≥ 1 and
∃D1, D2, . . . , Dn such thatA = D0 ⊂ D1 ⊂ . . . ⊂
Dn = B, with Dk − Dk−1 ∈ ℑ, ∀k ∈ {1, . . . , n}.

Proposition 1 S∗
g is a semi-ring.

Proof:

1. ∅ ∈ S∗
g by definition.

2. If [Bi, Bj), [Bk, Bl) ∈ S∗
g , it is trivial to check that

[Bi, Bj) ∩ [Bk, Bl) ∈ S∗
g , taking into account the rel-

ative position between the real intervals[i, j) and[k, l).
Analogously, in the case of intersections[Bi, Bj) ∩
[Bk, B∞) or [Bi, B∞) ∩ [Bk, B∞).

3. If [Bi, Bj), [Bk, Bl) ∈ S∗
g such that [Bi, Bj) ⊂

[Bk, Bl), then two cases are considered:

(a) If Bk = Bi or Bl = Bj , it suffices to takeD0 =
[Bi, Bj) andD1 = [Bk, Bl).

(b) Otherwise, takeD0 = [Bi, Bj), D1 = [Bi, Bl) and
D2 = [Bk, Bl).
The cases[Bi, Bj) ⊂ [Bk, B∞) and [Bi, B∞) ⊂
[Bk, B∞) are proved in a similar way.

Definition 6 A classA of subsets of a non-empty setX is
called analgebrawhen it contains the finite unions and the
complements of its elements. If finite unions are replaced by
countable unions, it is called aσ-algebra.

The smallestσ-algebra that containsS∗
g ⊂ P(X) is called

theσ-algebra generated byS∗
g , denoted byΣ( S

∗
g ).

Definition 7 LetX be a non-empty set andC ⊂ P(X), with
∅ ∈ C. A measure onC is an applicationµ : C → [0, +∞]
satisfying the following properties:

1. µ(∅) = 0.

2. For any sequence(En)∞n=1 of disjoint sets ofC such that
∪+∞

n=1En ∈ C, then

µ(

+∞⋃
n=1

En) =

+∞∑
n=1

µ(En).

Any measureµ on the wholeP(X), when it is restricted to
S∗

g , gives a measure onS∗
g .

Definition 8 Letµ be a measure onS∗
g . Theouter measure

on an arbitrary subsetA of X is defined by:

µ∗(A) = inf{
∑
k∈N

µ([Bsk
, Btk

)), A ⊂
⋃
k∈N

[Bsk
, Btk

)}.

Carathéodory theorem (Halmos 1974) assuresµ∗ of defini-
tion 7 is a measure onΣ( S

∗
g ), and(P(X), Σ( S

∗
g ), µ∗) is

called a measure space. It is proved that, sinceS∗
g is a semi-

ring,µ∗
| S∗

g
= µ.

In this measure space an integration with respectµ∗ can be
defined. Because of the fact thatµ∗

| S∗

g
= µ, in any integra-

tion on S∗
g the measureµ∗ can be replaced byµ.



ENTROPY BY MEANS OF S∗

g

Once the integration inS∗
g has been defined, entropy can

then be considered. To introduce the concept of entropy by
means of qualitative orders of magnitude, it is necessary to
consider the qualitativization function between the set tobe
qualitatively described and the space of qualitative labels,
S∗

g .

To simplify the notation, let us express with a calligraphic
letter the elements inS∗

g ; thus, for example, elements
[Bi, Bj) or [Bi, B∞) shall be denoted asE .
Let Λ be the set that represents a magnitude or a feature
that is qualitatively described by means of the labels ofS∗

g .
SinceΛ can represent both a continuous magnitude such as
position and temperature, etc., and a discrete feature suchas
salary and colour, etc.,Λ could be considered as the range
of a function

a : I ⊂ R → Y,

whereY is a convenient set. For instance, ifa is a room
temperature during a period of timeI = [t0, t1], Λ is the
range of temperatures during this period of time. Another
example can be considered whenI = {1, . . . , n} andΛ =
{a(1), . . . , a(n)} aren number of people whose eye colour
we aim to describe. In general,Λ = {a(t) = at | t ∈ I}.

The process of qualitativization is given by a function

Q : Λ → S
∗
g ,

whereat 7→ Q(at) = Et = minimum label (with respect
to the inclusion⊂) which describesat, i.e. the most precise
qualitative label describingat. All the elements of the set
Q−1(Et) are ”representatives” of the labelEt or “are qual-
itatively described” byEt. They can be considered qualita-
tively equal.

The functionQ induces a partition inΛ by means of the
equivalence relation:

a ∼Q b ⇐⇒ Q(a) = Q(b).

This partition will be denoted byΛ/ ∼Q, and its equivalence
classes are the setsQ−1(Q(aj)) = Q−1(Ej), ∀j ∈ J ⊂ I.
Each of these classes contains all the elements ofΛ which
are described by the same qualitative label.

Definition 9 Letµ be a measure onS∗
g such that

∫
⋃
i∈I

{Bi}
dµ = 1.

The entropyH with respect the partitionΛ/ ∼Q is the inte-
gral:

H(Λ/ ∼Q) = −

∫
Q(Λ)

log µ dµ, (1)

whereQ(Λ) is the set of labels mapped by Q (logarithms are
to the base 2).
The expression (1) can be written as:

H(Λ/ ∼Q) = −
∑
j∈J

log(µ(Ej))µ(Ej). (2)

As in most definitions of entropy, it gives a measure of the
amount of information. In Definition 9 entropy can be in-
terpreted as the measure of the amount of information that
provides the knowledge ofΛ by means ofQ.

Nevertheless, the inner features of the orders of magnitude
structure considered introduce some differences between the
entropy defined in (1) and the entropy defined by Rokhlin
(Rokhlin 1967) and Shannon (Shannon 1948), as can be seen
in the following example:

Example 1 Suppose thatQ maps each element ofΛ to the
same labelE ∈ S∗

g ; then the induced partitionΛ/ ∼Q con-
tains only one class equal toΛ and the entropy defined in
equation (1) isH(Λ/ ∼Q) = −µ(E) log µ(E). In the clas-
sical interpretation of the entropy, the knowledge aboutΛ
induced by this particularQ will lead to an entropy equal to
zero, because in the given situation it is understood that this
trivial partition of Λ provides no information at all. On the
contrary, in the approach that has been presented in this pa-
per, althoughQ map the whole set to the same label it could
give a certain information aboutΛ: the intrinsic information
provided by the measure of the label itself.

Two different measures that show this fact are considered
in the following examples. On the one hand, the first dif-
fers from Shannon’s classical interpretation of entropy as
noted in Example 1: althoughQ map each element ofΛ
to the same labelE ∈ S∗

g entropy is not equal to zero . On
the other, the entropy corresponding to Example 3 behaves
like the classical interpretation of Shannon and Rokhlin, in
the sense just discussed. Example 2 takes into account the
lengths of the intervals corresponding to the labels, and Ex-
ample 3 is related to the cardinality of the set of representa-
tives of each label.

Example 2 Let us define a particular measureµ on {∅} ∪
Sn as follows:
For the basic labelsBi = [ai, ai+1), whith i = 1, . . . , n−1,
let

µ(Bi) =
ai+1 − ai

an − a1
.

This measure is proportional to the knowledge of impreci-
sion about the magnitude and it is normalized with respect
to the “basic” known range given by the lengthan − a1. For
non-basic labels the measure is, fori, j = 1, . . . , n− 1, i <
j:

µ([Bi, Bj)) =

j−1∑
k=i

µ(Bk) =
aj − ai

an − a1
,



and fori = 1, . . . , n − 1:

µ([Bi, B∞)) =

n−1∑
k=i

µ(Bk) =
an − ai

an − a1
.

Elements ofΛ represented by quite precise labels will pro-
vide a bigger contribution to entropyH than those who are
represented by less precise labels. Considering the particu-
lar case in whichQ maps all the elements ofΛ to the same
label: Q(Λ) = {E}, thenΛ/ ∼Q= Λ andH(Λ/ ∼Q) =
−µ(E) log(µ(E)) 6= 0.

Example 3 Another interpretation of the entropy defined in
equation (1) is obtained by defining another measureµ over
{∅ ∪ Sn as follows: For eachEt ∈ {∅} ∪ Sn ,

µ(∅) = 0, µ(Et) = card(Q−1(Et))/card(Λ).

This case recovers the classical interpretation of Shannon
and Rokhlin in the sense that ifQ maps all the elements of
Λ to the same label, then the partition does not give informa-
tion of Λ because the entropy isH(Λ/ ∼Q ) = −1 · log 1 =
0. Moreover, the entropy reaches its maximum when differ-
ent elements ofΛ are mapped to different labelsEt ∈ Sn ,
i.e., whenQ is an injective map fromΛ onto Sn . This max-
imum isH(Λ/ ∼Q ) = log(cardΛ).

CONCLUSION AND FUTURE WORK

This paper introduces the concept of entropy by means of
absolute orders of magnitude qualitative spaces. This en-
tropy measures the amount of information of a system when
using orders of magnitude descriptions to represent it.

In order to define the concept of entropy within Qualitative
Reasoning framework, this paper adapts the basic principles
of Measure Theory to give the space of absolute orders of
magnitude the necessary structure. With the presented struc-
ture, we obtain a family of qualitative spaces forming a con-
tinuum from the sign algebra to the classical interval algebra.

From a theoretical point of view, future research could fo-
cus on two lines. On the one hand, it could focus on the
comparison of

the given entropy with the macroscopic concept of
Caratheodory entropy. On the other hand, the adaptation
of Measure Theory provides the theoretical framework in
which developing a rigorous analytical study of functions
between orders of magnitude spaces. The continuity and
differentiability of these functions will allow the dynamical
study of qualitatively described processes.

Within the framework of applications, this work and its re-
lated methodology will be orientated towards the modeliza-
tion and the resolution of financial and marketing problems.
Regarding financial problems, the concept of entropy will
facilitate the study of the evolution and variation of the finan-
cial ratings. On the other hand, entropy as a measurement of
coherence and reliability is useful in group decision-making
problems arising from retail marketing applications.

Moreover, the introduced entropy will allow defining a con-
ditional entropy in this framework, which in turn will al-
low considering the Rokhlin distance to be used in decision-
making problems of ranking and selection of alternatives.
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