A Definition of Entropy based on Qualitative Descriptions
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Abstract

A new concept of generalized absolute orders of magnitude
gualitative spaces is introduced in this paper. The nevestru
ture makes it possible to define sets of qualitative labels of
any cardinality, and is consistent with the classical struc
ture of qualitative spaces of absolute orders of magnitude
and with the classical interval algebra. In addition, the al
gebraic structure of these spaces ensures initial condifar
adapting measure theory to a qualitative environment. This
theory provides the appropriate framework in which to intro
duce the concept of entropy and, consequently, the opportu-
nity to measure the gain or loss of information when working
within qualitative spaces. The results obtained are sizanifi

in terms of situations which arise naturally in many real ap-
plications when dealing with different levels of precision

INTRODUCTION

Qualitative Reasoning (QR) is a subarea of Artificial Intell

The wordinformationappears constantly in QR. However,
its meaning is as yet undefined within a qualitative context.
The implicit and explicit use of the term and concept ad-
dresses the need to define and, perhaps paradoxically, to
quantify them.

In this work it is presented a way of measuring the amount
of information of a system when using orders of magnitude
descriptions to represent it. Taking into account that the e
tropy can be used to measure the information, this work is
intended to be a first step towards this measure by means of
orders of magnitude qualitative spaces.

The concept of entropy has its origins in the nineteenth cen-
tury, particularly in thermodynamics and statistics. Tthis-

ory has been developed from two aspects: the macroscopic,
as introduced by Carnot, Clausius, Gibbs, Planck and
Caratheodory and the microscopic, developed by Maxwell
and Boltzmann (Rokhlin 1967). The statistical concept
of Shannon’s entropy, related to the microscopic aspect,
is a measure of the amount of information (Shannon

gence that seeks to understand and explain human beings’1948),(Cover and Thomas 1991).

ability for qualitative reasoning (Forbus 1996), (Kuipers
2004). The main objective is to develop systems that permit
operating in conditions of insufficient numerical data or in

In order to define the concept of information within the QR
framework, this paper adapts the basic principles of Measur

the absence of such data. As indicated in (Trave-Massuyées Theory (Halmos 1974), (Folland 1999) to give OM a struc-

and Dague 2003), this could be due to both a lack of infor-
mation as well as to an information overload.

A main goal of Qualitative Reasoning is to tackle problems
in such a way that the principle of relevance is preserved;
that is to say each variable has to be valued with the level
of precision required (Forbus 1984). It is not unusual for a
situation to arise in which it is necessary to work simulta-
neously with different levels of precision, depending oa th
available information, in order to ensure interpretapitf

the obtained results. To this end, the mathematical struc-
tures of Orders of Magnitude Qualitative Spaces (OM) were
introduced.
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Authors would like to thank their colleagues of GREC reskarc
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gestions.

ture in which to define the concept of entropy, and, conse-
quently, the concept of information.

Section 2 defines the concept of generalized absolute orders
of magnitude qualitative spaces. In Section 3, the algebrai
structure of these spaces is analyzed in order to ensure ini-
tial conditions in which to adapt the Measure Theory. A
measure and the concept of entropy in the generalized abso-
lute orders of magnitude spaces are given in section 4 and
5 respectively. The paper ends with several conclusions and
outlines some proposals for future research.



GENERALIZED ABSOLUTE ORDERS OF
MAGNITUDE QUALITATIVE SPACES  §;

Theclassical orders of magnitude qualitative spa¢esave-
Massuyes and Dague 2003) verifies the conditions of the
generalized model that has just been introduced. This model
are build from a set of ordered basic qualitative labelsrdete

The classical version of the qualitative orders of mag- mined by a partition of the real line.

nitude that appears in (Trave-Massuyés and Dague

2003) is an abstraction of intuitive concepts of “very | et x be the real interva,, a,,), and a partition of this set
small ,“small”,"big", or “very hot", “hot”, etc., i.e. an&- given by{as,...,an_1}, Witha; < as < ... < an_1 <
straction of concepts with which human beings reason. This The set of basic labels is

abstraction is done through the introductioncpfalitative

labelsin a way that defines a finite and discrete set of labels 8§ ={Bu1,...,Bn1},

representing the above concepts. This paper proposes a furwhere, forl < i < n — 1, B; is the real intervala;, a;1).

ther step towards the generalization of qualitative ordérs  The set of indexes i§ = {1,2,...,n—1}.

magnitude. This generalization makes it possible to define

orders of magnitude as either a discrete or continuous set of

labels, providing the theoretical basis on which to develop B By_1

Measure Theory in this context. —1 } }
ap az An—1 Qn,

Definition 1 Let X be a non-empty sef,a subset oR, and
B : I — P(X) an injective function. Then eadB(t) =
B; C X is ageneralized basic label oki and the setS of
generalized basic labels dfiis

S={B;|tel}.
Note that ift # t/, thenB; # By.

Definition 2 If 4,5 € I, withi < j, thegeneralized non-
basic labelB;, B;) is defined by

[Bi,Bj):{Bt|t€I,Z’§t<j}.

In the case = j € I, the conventionB;, B;) = {B;} will
be used. If necessaryB;, B;) = {B;} can be identified
with the basic labeB;.

Definition 3 If ¢ € I, the generalized non-basic label
[Bi, B~ ) is defined by

[B;, B) = {B |t € I,i <t}
Note thatB,, is a symbol, not a basic label.
Definition 4 The set ofGeneralized Orders of Magnitude
S is:
g

Sy = {0yU{[Bi, B)) | i,j € I, i < j}U{[Bi, Bx) | i € I}.

In this definition of S}, the basic labeB; has been identified
with the singletor{ B;}.

It is important to remark that the functiaB : I — P(X)
determines the elements §fand S*, and the cardinal of
the setl C R determines the cardinal &fand therefore the
cardinal ofS; .

Figure 1. Classical aualitative labelS,,

Forl <i < j <n — 1the non-basic labéB;, B;) is:
[Bi, BJ) = {BZ, Bi+1, ey ijl},
and it is interpreted as the real interyal, a;).

For1l < i < n — 1the non-basic labéB;, B.) is:
[Bia Boo) - {Bu Bi+1a v aanl}a
and it is interpreted as the real interj@l, a., ).

The complete universe of description for the Orders of Mag-
nitude Space is the set

Sn = { [BiaBj) | BiaBj € S,Z < ]}U{ [BlaBOO) | Bl S S}a

which is called the absolute orders of magnitude qualiativ
space with granularity, also denoted M (n). In this case,
Sy ={0}US,.

There is a partial order relationp in S,, “to be more precise
than”, given by:

L1 <p Ly <= L{ C Ls.

The least precise label is denoted bwnd it is the label
[B1, B ), Which corresponds to the intenah, a,,).

5B 0 = v =o0oo=9

So =08 cngoe

B - B B .. B
Figure 2. The spaceS,,



This structure permits working with all different levels of
precision from the label ? to the basic labels.

In some theoretical works, orders of magnitude qualitative
spaces are constructed by partitioning the whole real line
(=00, +00) instead of a finite real intervad,, a,,). How-
ever, in most real world applications involved variables do
have a lower bound; and an upper bound,, and then val-
ues less than, or greater tham,, are considered as outliers
and they are not treated like any other.

The classical sign algebr8 = {—,0,+} was the first

absolute orders of magnitude space considered by the QR

community. It corresponds to the case = {B_;
(—00,0),By = {0},B1 = (0,400)}. The sign alge-
bra is obtained via a partition of the real line given by an
unique landmark. The classical orders of magnitude qual-
itative spaces are built from partitions via a set of landmar
{as,...,a,—1}, and the classical interval algebra is built
from the finest partition of the real line whose landmarks
are all real numbers.

It is important to remark the significance of the presented
mathematical formalism in the sense that it permits to lump
together a family ofS} forming a continuum from the sign
algebraS = {—,0, +}to the interval algebra corresponding
toS =R.

THE MEASURE SPACE (P(X), (S ), %)

To introduce the classical concept of entropy by means of

gualitative orders of magnitude spaces, Measure Theory
is required. This theory seeks to generalize the concept

of “length”, “area’and “volume”, understanding that these
guantities need not necessarily correspond to their palysic

counterparts, but may in fact represent others. The main use

of the measure is to define the concept of integration for or-

ders of magnitude spaces. First, it is necessary to define the

algebraic structure on which to define a measure.

Definition 5 A class of setsy is called asemi-ringif the
following properties are satisfied:

1. 0es.
A, Be G thenANBe S

3.IfAB € 5, A C B,thendn € Nyn > 1 and
dDq1,Ds,...,D, such thatA = Dy ¢ D; C ... C
D, =B,withDy, — Dy_; € ,Vk € {1,...,n}.

Proposition 1 S; is a semi-ring.

Proof:

1. 0 € S; by definition.

2. If [B;, By),[Bx, B1) € Sy, itis trivial to check that
[Bi, Bj) N [Bk, Bi) € S*‘ taking into account the rel-
ative position between the real intervalsj) and[k, [).
Analogously, in the case of intersectiofB;, B;)
[Bi, Bso) OF [ B, Bso) N [ Bk, Boo)-

3. If [Bi,Bj),[Bk,Bl) S S; such that [Bi,Bj)
[Bi, B;), then two cases are considered:

(@) If By = B; or B = B4y, it suffices to takeD,
[Bi,Bj) anle = [Bk,Bl).

(b) Otherwise, takeDy = [B;, B;),D1 = [B;, B;) and
Dy = [By, By).
The casegB;,B;j) C [Bk,Bw) and [B;,Bs) C
[Bg, B~ ) are proved in a similar way.

N

C

O

Definition 6 A class.A of subsets of a non-empty sEtis
called analgebrawhen it contains the finite unions and the
complements of its elements. If finite unions are replaced by
countable unions, it is called a-algebra.

The smallest-algebra that containsS;, C P(X) is called
theo-algebra generated b} , denoted by (S} ).

Definition 7 Let X be a non-empty setamtdC P(X), with
() € C. Ameasure oif is an applicationu : C — [0, +0o0]
satisfying the following properties:

1. p(0) =o0.

2. For any sequencgr,, )52, of disjoint sets o€ such that
Ut E, €C, then

+oo

Any measureq: on the wholeP (X
S; , gives a measure ofj .

), when it is restricted to

Definition 8 Lety be a measure of8? . Theouter measure
on an arbitrary subsetl of X is defined by:

/L*(A) = lnf{z M([Bsk’Btk))7 AcC U [Bsk’Btk)}'

keN keN

Carathéodory theorem (Halmos 1974) assuresf defini-
tion 7 is a measure oR(Sj ), and (P(X), 3(Sg ), u*) is
called a measure space. Itis proved that, sﬁ;e; a semi-

fng, ufg. = p-

In this measure space an integration with respgatan be
defined. Because of the fact thﬂ;g* = u, in any integra-
g

tionon S} the measurg™ can be replaced by.



ENTROPY BY MEANS OF SZ whereQ(A) is the set of labels mapped by Q (logarithms are
to the base 2).

The expression (1) can be written as:

H(A) ~q) ==Y log(u(&))n(&)). )

jeJ

Once the integration ir§? has been defined, entropy can
then be considered. To introduce the concept of entropy by
means of qualitative orders of magnitude, it is necessary to
consider the qualitativization function between the sdido
qualitatively described and the space of qualitative kgbel
Sy . As in most definitions of entropy, it gives a measure of the
amount of information. In Definition 9 entropy can be in-
terpreted as the measure of the amount of information that
provides the knowledge af by means of).

To simplify the notation, let us express with a calligraphic
letter the elements irS;; thus, for example, elements
[Bi, Bj) or [B;, B ) shall be denoted &.

Let A be the set that represents a magnitude or a feature Nevertheless, the inner features of the orders of magnitude
that is qualitatively described by means of the labelSpf structure considered introduce some differences betvwesen t
SinceA can represent both a continuous magnitude such as entropy defined in (1) and the entropy defined by Rokhlin
position and temperature, etc., and a discrete featureagich  (Rokhlin 1967) and Shannon (Shannon 1948), as can be seen
salary and colour, etcA could be considered as the range in the following example:

of a function
a:ICR—-Y,

whereY is a convenient set. For instancegaifis a room
temperature during a period of tinfe= [to, #1], A is the

range of temperatures during this period of time. Another

example can be considered when= {1,...,n} andA =
{a(1),...,a(n)} aren number of people whose eye colour
we aim to describe. In generdl,= {a(t) = a; |t € I}.

The process of qualitativization is given by a function
Q:A— S,

wherea; — Q(a:) = & = minimum label (with respect
to the inclusionC) which describes;, i.e. the most precise
qualitative label describing,. All the elements of the set
Q~1(&) are "representatives” of the labg] or “are qual-
itatively described” by¢;. They can be considered qualita-
tively equal.

The function@ induces a partition im\ by means of the
equivalence relation:

a~g b Qa) = Qb).

This partition will be denoted bjt/ ~¢, and its equivalence
classes are the sefs 1 (Q(a;)) = Q7 1(&;), Vj € J C .
Each of these classes contains all the elements which
are described by the same qualitative label.

Definition 9 Letu be a measure ol such that

/U{Bi} =

icl

The entropyH with respect the partitioth/ ~, is the inte-
gral:

H(A/ ~q) = —/Q(A) log pudyp, 1)

Example 1 Suppose thaf) maps each element df to the
same labef € S; ; then the induced partitioh/ ~¢ con-
tains only one clqass equal to and the entropy defined in
equation (1) iIsH(A/ ~q) = —p(€)log u(€). In the clas-
sical interpretation of the entropy, the knowledge ahbut
induced by this particula® will lead to an entropy equal to
zero, because in the given situation it is understood that th
trivial partition of A provides no information at all. On the
contrary, in the approach that has been presented in this pa-
per, although) map the whole set to the same label it could
give a certain information about the intrinsic information
provided by the measure of the label itself.

Two different measures that show this fact are considered
in the following examples. On the one hand, the first dif-
fers from Shannon’s classical interpretation of entropy as
noted in Example 1: althoug® map each element of

to the same labefl € S entropy is not equal to zero . On
the other, the entropy correspondmg to Example 3 behaves
like the classical interpretation of Shannon and Rokhtin, i
the sense just discussed. Example 2 takes into account the
lengths of the intervals corresponding to the labels, and Ex
ample 3 is related to the cardinality of the set of representa
tives of each label.

Example 2 Let us define a particular measyreon {#} U
S,. as follows:

For the basic labelB; =
let

[ai,alﬂ), whithi = 1,....,n— 1,

o —
p(B;) = L
an — ax
This measure is proportional to the knowledge of impreci-
sion about the magnitude and it is normalized with respect

to the “basic” known range given by the length— a,. For
non-basic labels the measureis,fof =1,...,n—1,i <
J
= a; — a;
1([Bi, Bj)) = > u(Bi) = aJ .
k=i "



andfori=1,...,n—1:

n—1
Ap — A5
B Bee)) = 3 B) = 2=

Elements ofA represented by quite precise labels will pro-
vide a bigger contribution to entropy than those who are
represented by less precise labels. Considering the partic
lar case in which)) maps all the elements df to the same
label: Q(A) = {€}, thenA/ ~o= AandH(A/ ~q) =

— (&) log(u(€)) # 0.

Example 3 Another interpretation of the entropy defined in
equation (1) is obtained by defining another meaguoger
{0U S, as follows: For each; € {0} U S, ,

u(0) =0, u(&) = card(Q " (€:)) /card(A).

the given entropy with the macroscopic concept of
Caratheodory entropy. On the other hand, the adaptation
of Measure Theory provides the theoretical framework in
which developing a rigorous analytical study of functions
between orders of magnitude spaces. The continuity and
differentiability of these functions will allow the dynaoail
study of qualitatively described processes.

Within the framework of applications, this work and its re-
lated methodology will be orientated towards the modeliza-
tion and the resolution of financial and marketing problems.
Regarding financial problems, the concept of entropy will
facilitate the study of the evolution and variation of thefin

cial ratings. On the other hand, entropy as a measurement of
coherence and reliability is useful in group decision-mgki
problems arising from retail marketing applications.

Moreover, the introduced entropy will allow defining a con-

This case recovers the classical interpretation of Shannon ditional entropy in this framework, which in turn will al-

and Rokhlin in the sense thatdf maps all the elements of

A to the same label, then the partition does not give informa-
tion of A because the entropyi$(A/ ~¢g ) = —1-logl =

0. Moreover, the entropy reaches its maximum when differ-
ent elements of\ are mapped to different labefs € S,,,

i.e., whenQ is an injective map fromk onto S,, . This max-
imum isH(A/ ~¢g ) = log(cardA).

CONCLUSION AND FUTURE WORK

This paper introduces the concept of entropy by means of
absolute orders of magnitude qualitative spaces. This en-
tropy measures the amount of information of a system when
using orders of magnitude descriptions to represent it.

In order to define the concept of entropy within Qualitative
Reasoning framework, this paper adapts the basic prirgciple
of Measure Theory to give the space of absolute orders of
magnitude the necessary structure. With the presented stru
ture, we obtain a family of qualitative spaces forming a con-
tinuum from the sign algebra to the classical interval atgeb

From a theoretical point of view, future research could fo-
cus on two lines. On the one hand, it could focus on the
comparison of

low considering the Rokhlin distance to be used in decision-
making problems of ranking and selection of alternatives.
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