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Abstract 

A core problem in spatial reasoning is finding an 
appropriate set of relationships to compute.  This paper 
proposes that humans represent topological relationships 
between 2D regions using three basic, qualitative relations: 
contains, intersects, and overlaps-with.  We show how 
these relations can be computed from sketched inputs using 
a model of mid-level perception. Results from a pilot 
experiment indicate that these three relationships suffice to 
explain people‟s judgments on four English spatial terms 
(“intersects”, “overlaps”, “connects to”, and “contains”), 
although a combination of the three is generally required for 
each term.   

 Introduction 

A major problem in building systems that reason about 
space is determining the correct set of spatial relations to 
represent. In the QR community, the Region Connection 
Calculus (RCC8) (Cohn 1996; Cohn et al. 1997; see Figure 
1) is a prominent and effective way of representing 
topological relations between two-dimensional shapes. 
RCC8 includes 8 qualitative terms which exhaustively 
describe the set of possible topological relations between 
two shapes. RCC8 relations have been used in a number of 
applications, from qualitative spatial simulation (Randell et 
al. 1992) to sketch understanding (Forbus et al. 2008).  

While representational schemes like RCC8 are useful for 
building formal AI reasoning systems, it is not clear how 
closely they align with human spatial representations. 
Reasoning systems which use human-like representations 
are better equipped for both interacting with humans in 
cooperative endeavors and modeling human thought 
processes in cognitive modeling studies. However, there 
have been few attempts by AI researchers to look at how 
humans compute and represent topological relations.  

In one notable exception from Geographic Information 
Systems, Xu and Mark (1997) conducted a study in which 
they showed participants scenes containing pairs of linear 
objects (such as roads and rivers). Participants were 
instructed to indicate how well various predicates 

described the scenes (predicates included “X crosses Y,” 
“X connects with Y,” “X merges with Y,” etc). By 
studying their results, the authors were able to get a better 
idea of the various factors that determined which predicate 
people might use in describing a geographic scene. 

While the Xu and Mark results are helpful, we believe 
there is a more general question of what are the topological 
primitives computed and represented by humans when they 
examine a visual scene. By primitives, we mean a small set 
of relations from which all (or at least most) other 
topological relations can be computed. These primitives 
should meet the following requirements: 

1) They should be easily computable by humans using 
low- or mid-level visual operations. 

2) They should not be tied to any particular domain, such 
as geography. 

3) While the individual primitives may not correspond to 
topological terms in the English language, such as 
“contains” or “intersects with,” it should be possible to 
explain how humans can use the primitives together to 
compute and assess those terms. 

In this paper, we propose that people use three 
topological primitives for representing two-dimensional 
visual scenes: contains, intersects, and overlaps-with. We 
show how these primitives can be computed using visual 
routines (Ullman 1984), a general approach to modeling 

 
Figure 1. The Region Connection Calculus (RCC8) relations 

for describing topology. The TPP and NTPP relations each 

have inverse relations, TPPi and NTPPi. 
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mid-level visual processing. We then evaluate the 
primitives by examining how well they explain human 
assessments of four topological terms from English: 
“connects,” “intersects,” “overlaps,” and “contains.” Note 
that while the primitives and the English terms look quite 
similar, our results show that there is by no means a one-
to-one mapping between primitives and English terms. 

We begin by presenting Visual Routines for Sketching 
(VRS), an implementation of Ullman‟s visual routines 
proposal which we are developing. We then summarize the 
psychological literature on topological relations and show 
how it motivates the use of our three topological 
primitives. Then, we describe the visual routines written in 
VRS to compute our three primitives. After this, we 
present the results from a preliminary psychological study 
conducted to evaluate our primitives. We conclude by 
discussing related and future work. 

Visual Routines for Sketching 

Ullman (1984) proposed that people have access to a set of 
elementary operations, operations we can run over our 
visual working memory to extract information. This finite 
set of operations can be combined in different ways to 
create a near-infinite set of visual routines for computing 
different spatial features and relations.  

We are developing Visual Routines for Sketching 
(VRS), a computer implementation of visual routines, as a 
platform for experimenting with computational models of 
perception. It provides a set of low-level elementary 
operations, supported by the psychophysics and cognitive 
psychology literature. Using these operations, researchers 
can construct visual routines based on their theories for 
how a particular spatial feature is computed. These 
routines can be run and evaluated on two-dimensional 
sketches or line drawings in CogSketch1 (Forbus et al. 
2008), an open-domain sketch understanding system. 

CogSketch users can create sketches either by drawing 
with a pen or by importing shapes built in PowerPoint. 
VRS works directly with the ink of the sketch, the lines 
representing the edges of each object. Thus, it avoids edge 
detection issues. 

VRS‟s current vocabulary of operations is given in Table 
1. As we describe each of the levels of representation in the 
system, we refer to operations listed in this table. 

                                     
1 Available for download at: 

http://silccenter.org/projects/cogsketch_index.html 

Basic Representation 

Ullman (1984) suggested that the human perceptual system 
uses a bottom-up, parallel approach to build an initial basic 
representation of the visual world. VRS computes a basic 
representation via two steps: First, the ink is projected onto 
a retinotopic map, a simplification of V1 in the primary 
visual cortex which represents the orientation of any edges 
at each location in the image. This produces a set of edge 
activations at various locations.  

Second, edge activations are grouped together to form 
contours. This step is based on the contour integration 
literature (e.g., Yen and Finkel 1998; Li 1998), which 
suggests that there is a parallel process in which people 
group edges together based on the Gestalt grouping 
principles of good continuation and closedness. To these 
principles we add the hard constraint of uniform 
connectedness (Palmer and Rock, 1994). That is, edge 
activations will only be grouped together in a contour if 
they are the same color and they lie directly adjacent to 
each other in the visual representation. In the future, we 
plan to relax the connectedness constraint partially to allow 
the system fill in gaps between parts of a line (e.g., Saund, 
2003). 

Incremental Representation 

Ullman proposed that there is a set of elementary 
operations that can be applied serially to the basic 
representation. By combining these operations into visual 
routines, an individual can both gather information and 
update the representation, thus producing an incremental 
representation. In VRS there are three key elementary 
operations, inspired by Ullman‟s proposal, which gather 
data and add visual elements to the incremental 
representation: 

1) Curve Tracing traces along consecutive edge 
activations. It produces a curve, a new grouping of 
activations which may lie along one or multiple contours. 

2) Scanning begins at one location and moves forward in 
a fixed direction. It produces a straight curve representing 
the line scanned over. 

3) Region Coloring fills in the area between curves and 
contours, creating a new region. 

All three operations take optional arguments that allow 
them to be constrained in several ways, e.g., curve tracing 
along a region, region coloring along a curve, or scanning 
between two points. The operations can be used to gather 
information, such as detecting what other elements lie 
along a curve or within a region.  

Operation Type Operations 

Covert Attention Curve Tracing, Scanning, Region Coloring 

Working with Elements or Objects Attribute Access, Activation, Inhibition/Excitation, Deletion 

Working with Objects Object Creation, Binding to Elements 

Maintenance Marking Locations 

Table 1. Elementary operations in VRS. 
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The visual elements in the incremental representation 
can be queried via the Attribute Access operation to access 
data such as the size of an element, the center of an 
element, the curvedness of a curve, or the orientation of a 
straight curve. Elements can also be Inhibited, causing 
them to be ignored by future operations. 

Objects 

The Object Creation operation sets up object files 
(Kahneman et al., 1992). Object files serve as a bridge 
between the visual representation and higher-level, 
conceptual representations. Each object file contains 
indices (Pylyshyn, 2001), which point to the curves and 
regions that make up the object in the incremental 
representation. Because objects can share regions or curves 
in the incremental representation (as when two shapes 
overlap), it is possible for multiple object files to point 
down to the same visual elements in the incremental 
representation. However, these elements can only point up 
to one object file at a time. To ensure that a particular 
object file‟s visual elements are pointing up to it, a routine 
must Activate that object. 

Universal Routine 

Different visual routines may be relevant to studying 
different images. However, there needs to be some type of 
routine to run on the basic representation and gain enough 
information to determine what follow-up routine to use. 
Thus, Ullman suggested that there might be a universal 
routine which is applied by default to visual stimuli. The 
following is a universal routine written using the 
elementary operations described above. This routine 
identifies the objects in a visual scene. 

Universal Routine: Finding objects in the visual scene 

1) Region Coloring: Color the ground, locate any contours 
in it. 
2) Curve Tracing: Trace each contour to determine 
whether it is a closed shape. Produces a curve. 
3) Object Creation: Make an object file for each curve. 
4) Region Coloring: If an object is a closed shape, color 
the area inside it to identify its interior. Produces one or 
more regions, which will be bound to the object. May also 
locate new contours located within the object. 
5) Recursion: For any new contours located, repeat steps 
2-5.  

Current State of VRS 

At present, VRS contains the elementary operations listed 
in Table 1. However, we are still in the process of 
determining the full set of operations and the ways they 
can interact. Eventually, we hope to develop a simple 
coding language which will allow other researchers to 
build their own visual routines by combining elementary 
operations in novel ways. 

Psychological Motivation 

Much of the psychological work on topological relations 
has been related to linguistic terms and how they vary 
across languages and cultures. Landau and Jackendoff 
(1993) analyzed the full set of spatial prepositions in the 
English language—several of which describe topological 
relations—and determined the various factors that 
determined which preposition is used to describe a 
scenario. One important factor was distance. Different 
distances resulted in the use of different prepositions for 
describing the relative positions of two objects: 

Inside: “in,” “inside,” “throughout” 
Contact: “on,” “all over” 
Proximal: “near,” “all around” 
Distal: “far” 

Here, both inside and contact could be seen as 
topological primitives that determine which preposition 
should be used. Landau and Jackendoff further found that 
the preposition used was only rarely affected by the form 
of the objects being related to each other. They suggested 
that our mental representations of relative location are 
separate from our representations of shape and identity, 
and they predicted that other languages would similarly use 
spatial prepositions that were not related to the objects‟ 
forms.   

A number of studies have found fault with this 
prediction (see Kemmerer 2006 for a review). There are 
languages that base the preposition used on the form of the 
objects being related (e.g., relative tightness of an object in 
a container for Korean: Hespos and Spelke 2004). 

However, there may still be some set of domain-
independent topological primitives that are universally 
computed. These primitives might be combined with object 
shape and object identity in determining which spatial 
preposition should be used, with the appropriate 
combinations varying across languages. Levinson and 
Meira (2003) conducted a survey of nine highly different 
languages in which speakers of each language were shown 
the same set of pictures depicting topological relations and 
asked to describe those pictures. While there were major 
differences in how each language grouped the pictures, 
there appeared to be correlations across languages. 
Multidimensional scaling revealed that many languages 
group together pictures relating to in (e.g., an animal in a 
cage), attachment (clothes on a clothesline), on/over (an 
object on a table), on-top (a tablecloth covering a table), 
and near/under. These groups align with the commonly 
discussed topological concepts of containment and 
attachment, and the physical concept of support.  

While the distinction between these concepts clearly 
depends upon the forms of the objects being related, and 
the distinctions tend to be even more fine grained in many 
languages, it seems reasonable to propose that Landau and 
Jackendoff‟s primitives, inside and contact, likely aid in 
distinguishing between containment, when one object is 
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located entirely within another object, and attachment or 
support, when the objects are merely touching.  

However, we believe that these two primitives are not 
sufficiently detailed.  There are multiple possible forms of 
contact between two objects in a visual scene. In the 
simplest form, intersection, the edges of the objects 
simply touch each other in some way. In another form, 
overlap, there is space in the visual scene which is 
occupied by both the objects. For example, in Figure 2 
both the apple inside the bowl and the apple that overlaps 
with the bowl would be labeled as “in the bowl,” whereas 
the apple that merely intersects the bowl would be labeled 
as “on the bowl.” In this paper, we will be testing the 
hypothesis that people use both the intersection and 
overlap primitives, along with containment, to compute 
and assess topological relations. 

The Primitives 

We have chosen to use three topological primitives: 
contains, intersects, and overlaps-with. Each of these 
primitives describes the location of one object, the target, 
relative to another target, the ground. In this section, we 
describe what these primitives mean and give the visual 
routines for computing them. All visual routines are 
computed over objects which can be identified in the visual 
scene using the universal routine described above. 

Intersects 

This relationship holds whenever some part of one shape‟s 
edge intersects some part of the other shape‟s edge. The 
visual routine for computing this is given below. 

Intersects (Target, Referent) 

1) Activation: Activate the Referent object, causing all its 
associated edges to point up to it. 
2) Curve Tracing: Trace along the Target object‟s curve, 
checking whether any of the Referent object‟s edges are 
encountered.  

Overlaps-with 

This relation is defined only for pairs of closed shapes 
(although variations might apply to other shape types). 
Two shapes are overlapping if their interiors share some 
region. That is, there is some area that lies within both 
closed shapes. However, the shapes must also both have 
regions that are not shared: one shape cannot lie entirely 
inside the other shape. Note that if one shape overlaps-

with another shape, it necessarily also intersects the other 
shape. The visual routine is given below. 

Overlaps-with (Target, Referent) 

1) Attribute Access: Check whether the Referent and 
Target objects share any regions. 
2) Attribute Access: Check whether the Referent has 
regions not shared by the Target. 
3) Attribute Access: Check whether the Target has regions 
not shared by the Referent. 
4) Combine Data: If the objects share regions but they 
both have regions not shared with the other, then they 
overlap. 

Contains 

This relation is defined only when one object, the referent, 
is a closed shape. Contains holds when the other object, 
the target, lies entirely within the referent. The visual 
routine is given below. Note that this routine actually calls 
the overlaps routine.  

Contains (Referent, Target) 

1) Activation: Activate the Target object, causing all its 
associated edges to point up to it. 
2) Region Coloring: Color in the Referent‟s regions, 
checking to see whether any of the Target‟s edges lie 
within the Referent. 
3) Visual Routine Call: Check whether Overlaps-
with(Target, Referent) is false. 
4) Combine Data: If part of the Target lies within the 
Referent, and the Target and Referent do not overlap, then 
the Referent contains the Target. 

Relation to RCC8 

Recall that RCC8 (Figure 1) consists of six topological 
relations, plus two inverse relations, whereas our approach 
uses only three relations. Nonetheless, all of the RCC8 
relations except EQ2 (equal) can be easily computed from 
our three relations (see Table 2). We believe this supports 
our argument that our relations are more basic, or more 
fundamental. In particular, RCC8 distinguishes between 
“Tangential Proper Part” (TPP) and “Non-Tangential 
Proper Part” (NTPP). It seems unlikely that humans make 
this distinction, at least in their initial representations. The 
more primitive contains relationship captures the 
important commonalities across TPP and NTPP. 

Experiment 

We conducted a pilot psychological study to evaluate our 
primitives. In this study, participants saw basic visual 

                                     
2 It would be relatively straightforward to write a visual routine to 

compute the equal relationship. However, we think it unlikely 

that humans encode such a relationship, since two objects whose 

regions and edges are identical will be indistinguishable from 

each other. 

 
Figure 2. From left to right, the apple is inside the bowl, 

the apple overlaps with the bowl, and the apple intersects 

the bowl.  
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scenes consisting of a large red circle and a small green 
circle (see Figure 3). These scenes were accompanied by a 
statement such as “Red intersects with green.” Participants 
were instructed to rate the appropriateness of the statement 
as a description of the scene, using a scale from 0 to 10. 

We evaluated our model by examining whether the 
topological primitives contains, intersects, and overlaps-
with could explain individuals‟ ratings for English terms. 
We assume that an individual might assess a statement 
such as “Red overlaps with green” by computing some 
linear combination of the three primitives.  

We hypothesized that, if our model was accurate, it 
should explain both average and individual performance. 
That is, (1) For each English term, there should be a set of 
weights for the primitives that correlates highly with 
average human ratings for that term. This means that the 
weights are expressing the degree to which individuals 
consider each of the primitives on average in assessing that 
term. (2)  For each English term and each participant, there 
should be a set of weights for the primitives that correlates 
highly with that individual‟s ratings. This set of weights 
describes what that particular person considers when 
assessing the English term. Note that there might be high 
inter-individual differences in the weights. However, if all 
individuals are basing their assessments on the primitives, 
then there should be some appropriate set of weights for all 
individuals.  

Methods 

Stimuli consisted of a red circle with radius .5 inches and a 
green circle with radius .2 inches. There were nine possible 
distances between the green circle and the red circle, which 
varied from the two circles being entirely disconnected to 
the circles overlapping to the green circle being located 
entirely within the red circle (see Figure 3). There were 
also four possible directions between the red circle‟s center 
and the green circle‟s center (up, down, left, and right). 
Thus, there were 36 total images. 

Each image was accompanied by one of the following 
sentences: 

“Red intersects green.” 

“Red overlaps with green.” 
“Red connects to green.” 
“Red contains green.”  

A given participant saw each sentence paired with each 
image, for a total of 36 x 4 = 144 trials. The trials were 
presented in a random order for each participant. 

Participants chose a rating from 0 to 10 for each 
image/sentence pair by selecting a value from a pop-out 
menu. Participants were given as much time as they 
desired to choose the ratings. However, participants chose 
ratings relatively fast, typically going through the 144 trials 
in about ten minutes. 

The study was run using 10 participants, five male and 
five female. Nine spoke English as a first language, while 
the other had learned English at an early age. 

Analysis 

Our primary question in analyzing the results was whether 
participants‟ ratings could be explained using the 
primitives contains, intersects, and overlaps-with. We 
used CogSketch and VRS to compute these qualitative 
relations for each of the 36 images.  

In evaluating whether the primitives could explain either 
average or individual performance, our system performed 
an exhaustive search for the set of weights for the 
primitives which maximized the Pearson correlation 
coefficient with the human data. 

Results 

Table 3 shows the correlations between the model and 
human ratings. As the table shows, the model correlated 
quite high (.98 or above) with the average human ratings 
for each of the four English terms. The model also 
correlated well with the ratings of individuals. The median 
correlations with individuals were all above .9. “Overlaps” 
was the only term for which any of the individual 
correlations fell below .85. 

 Average  Individual 

Median 

Individual 

Minimum 

Individual 

Maximum 

“Intersects” .995 .966 .881 .999 

“Overlaps” .994 .932 .790 .999 

“Connects” .993 .95 .850 1.0 

“Contains” .981 .953 .890 .994 

Table 3. Correlations between the model and human ratings of 

the four English terms.  

There are at least two alternative explanations for the 
high performance of the model. One is that there is nothing 
special about our primitives. Perhaps any three randomly 
generated factors could correlate highly with human data, 
after performing an exhaustive search for the optimal set of 
weights for those factors. The other is that our model does 
not require all three primitives. Perhaps two of the 
primitives are doing all the work, and the third primitive is 
extraneous.  

 
 

Figure 3. Five of the nine total distances between the large 

red and small green circles. 

RCC8 Relation Primitives to Compute it 

  

DC !intersects ^ !contains  

EC intersects ^ !contains ^ !overlaps 

PO overlaps 

TPP/TPPi contains ^ intersects 

NTPP/NTPPi contains ^ !intersects 

Table 2. The topological primitives which can be used to 

compute seven of the eight RCC8 relations. 
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To rule out either of these possibilities, we compared our 
model against four other possible models (see Table 4). 
Three were constructed by leaving one of the three 
primitives out of the model and determining weights for 
only two primitives. The last model, Random-3 was 
constructed by building three random primitives (simply 
by randomly computing a value of true or false for each 
primitive‟s presence in each of the 36 stimuli) and then 
searching for an optimal set of weights for the three 
random primitives. Because of the randomness involved, 
we constructed triplets of random primitives 40 times for 
each English term and averaged the results. 

 C,I,O  C,I C,O I,O Random-3 

“Intersects” .995 .901 .906 .994 .227 

“Overlaps” .994 .781 .956 .934 .213 

“Connects” .993 .980 .475 .993 .189 

“Contains” .981 .917 .981 .068 .217 

Table 4. Several models‟ correlations with the average human 

ratings. Letters indicate which primitives were used in each 

model. Random-3 uses three randomly generated factors.  

As Table 4 shows, the complete model, C,I,O easily 
outperforms all other models. The models containing only 
two primitives typically perform slightly worse for three of 
the English terms, but each performs significantly worse 
on at least one term. Thus, clearly all three primitives are 
required to model the human rating data. The random 
model performs far worse than any of the other models, 
indicating that the particular primitives chosen for our 
model are much better than random factors. 

Table 5 gives the optimal weights for each of the three 
primitives in explaining the average human ratings of the 
four English terms. As the table shows, there was by no 
means a one-to-one mapping between primitives and 
English terms. Participants considered at least two 
primitives in assessing each of the four English terms. In 
assessing the trickier “Overlaps” term, they appear to have 
considered all three primitives, on average. 

 Contains Intersects Overlaps-with 

“Intersects” .048 .435 .516 

“Overlaps” .245 .209 .546 

“Connects” .021 .979 - .206 

“Contains” .695 0 .305 

Table 5. Optimal weights of the three primitives in explaining 

the average human ratings of the four English terms.  

Figure 4 shows the performance of the model for each 
individual in greater detail. In addition to showing the 
correlations, the figure shows the amount of weight given 
to each primitive by each individual. As the figure shows, 
there was a great deal of variation across individuals.  

Discussion 

As the results show, we can vary the weight assigned to 
each of the three primitives to create models that correlate 
well with either average or individual assessments of 
different topological terms. We can also examine the 
weights to see how different individuals are performing 
their assessments. For example, participant 7 apparently 
assessed “Red connects to green” entirely based on the 
intersects primitive (see Figure 4). That is, the participant 
believed the shapes were “connected” any time their edges 
intersected. On the other hand, participant 1‟s model of 
“connects” had a strongly negative weight for overlaps-
with. That is, the participant believed the shapes were 
“connected” when their edges intersected without their 
areas overlapping. 

The results for “contains” were also quite interesting. 
Participant 3‟s model of “contains” consists almost entirely 
of contains, indicating that the participant thought one 
shape contained another when the other shape was located 
entirely within it. However, other participants‟ models of 
“contains” also give some weight to overlaps-with. This 
suggests that when the two circles merely overlapped, 
many participants believed it was somewhat appropriate to 
say one shape “contained” the other. 

 
Figure 4. Model correlations with each of the 10 participants. The colors of the bars show the relative weight of each of the three 

primitives.        In = “Intersects”     Ov = “Overlaps”     Cn = “Connects”     Ct = “Contains” 
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Related Work 

Lockwood and colleagues (Lockwood et al., 2006; 
Lockwood, Lovett, and Forbus, 2008) have used 
CogSketch and its predecessor along with a model of 
analogical generalization (Halstead and Forbus, 2005) to 
automatically learn representations of spatial prepositions 
like “on” and “in.” They have demonstrated that in both 
English and Dutch, the topological relation between the 
figure and ground plays an important role in determining 
which linguistic term should be used to describe the 
objects, although other relations like relative position are 
also important for some terms. They used the full set of 
RCC8 relations to represent topological relationships in 
their work. 

A number of researchers have built computer models 
based on the idea of visual routines. However, many of 
these models are designed only to solve a particular 
problem (e.g., Chapman, 1992; Horswill, 1995), and thus 
they miss out on the generality promised by the original 
idea. Rao (1998) constructed a system for both learning 
and performing visual routines for solving different spatial 
problems. However, because his focus was on controlling a 
robot in the real world, the elementary operations in his 
system are in many cases more complex and higher-level 
than the simple operations proposed by Ullman.  

Conclusions and Future Work 

Thus far, our results support our hypothesis that 
individuals use three topological primitives in assessing 
two-dimensional topological relations. However, we have 
only the tested the hypothesis using a small set of stimuli. 
In the future, we would like to expand the stimuli set to 
include a greater range of shapes. In particular, how do 
individuals assess topological relations between open 
shapes, e.g., lines, or between one open and one closed 
shape? We would also like to expand the range of English 
terms being assessed. However, we suspect that it will be 
difficult to come up with many more topological terms that 
can be assessed in a domain-general manner, that is, 
between abstract shapes. Finally, a more distant goal would 
be to look at how well the primitives explain topological 
terms from other languages.  

We would also like to assess our hypothesis using a 
similarity rating task. In such a task, participants would see 
pairs of stimuli and rate their similarity on a scale from 0 to 
10. Previous work has shown that people perceive stimuli 
as more similar or closer together when they are located in 
the same qualitative categories (e.g., color names: 
Winawer et al. 2007; or regions of a room: Newcombe and 
Liben 1982). Thus, by identifying similarity clusters we 
can better determine individuals‟ qualitative categories. 

One long-term question is how our two-dimensional 
topological primitives relate to topological relations 
between three-dimensional objects. We suspect that 
topological relations between real-world objects like those 
explored cross-culturally by Levinson and Meira (2003) 

require integrating 2D topological primitives with both 3D 
depth cues and conceptual information. However, an 
exploration of the factors used in assessing spatial relations 
in three-dimensional visual scenes lies outside the scope of 
the present body of work. 

Finally, we plan to continue developing VRS as a 
testbed for building cognitive models of perceptions. At 
present, we are concurrently evaluating a model of 
positional relations with VRS. Eventually, we hope to 
make VRS publicly available so that other researchers can 
use it to evaluate their own theories. 
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