
Using Qualitative Reasoning in Modelling Consensus in Group Decision-Making
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Abstract

Ordinal scales are commonly used in rating and evaluation
processes. These processes usually involve group decision
making by means of an experts’ committee. In this paper a
mathematical framework based on the qualitative model of
the absolute orders of magnitude is considered. The entropy
of a qualitatively described system is defined in this frame-
work. On the one hand, this enables us to measure the amount
of information provided by each evaluator and, on the other
hand, the coherence of the evaluation committee. The new
approach is capable of managing situations where the assess-
ment given by experts involves different levels of precision.
The use of the proposed measures within an automatic sys-
tem for group decision making will contribute towards avoid-
ing the potential subjectivity caused by conflicts of interests
of the evaluators in the group.

Introduction
Nowadays, accreditation, audit, or rating agencies are deal-
ing with a huge problem. Most committees are unable to
ensure their legitimacy. Recent events have questioned the
integrity of the rating agencies and their processes, and scan-
dal stories about them have appeared in press and media.

This work is intended to be a first step towards the defini-
tion of evaluation measures in the group decision processes.
To this end we introduce an approach based on qualitative
reasoning models and the concept of entropy in order to
measure the degree of coherence reached by an evaluation
group.

Qualitative Reasoning (QR) is a sub-area of Artificial
Intelligence that seeks to understand and explain human
beings’ ability for qualitative reasoning (Forbus 1996),
(Kuipers 2004). The main objective is to develop systems
that permit operating in conditions of insufficient numerical
data or in the absence of such data. As indicated in (Travé-
Massuyès and Dague 2003), this could be due to both a lack
of information as well as to an information overload. A main
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goal of Qualitative Reasoning is to tackle problems in such a
way that the principle of relevance is preserved; that is to say,
each variable has to be valued with the level of precision re-
quired (Forbus 1984). It is not unusual for a situation to arise
in which it is necessary to work simultaneously with differ-
ent levels of precision, depending on the available informa-
tion. To this end, the mathematical structures of Orders of
Magnitude Qualitative Spaces (OM) were introduced.

The concept of entropy has its origins in the nine-
teenth century, particularly in thermodynamics and statis-
tics. This theory has been developed from two aspects:
the macroscopic, as introduced by Carnot, Clausius, Gibbs,
Planck and Caratheodory; and the microscopic, developed
by Maxwell and Boltzmann (Rokhlin 1967). The statistical
concept of Shannon’s entropy, related to the microscopic as-
pect, is a measure of the amount of information (Shannon
1948), (Cover and Thomas 1991).

Starting from the adaptation of the basic principles of
Measure Theory (Halmos 1974), (Folland 1999) to the struc-
ture of OM (Roselló et al. 2008), this paper defines the con-
cept of entropy within the QR framework.

Taking into account that entropy can be used to mea-
sure the amount of information, this work presents a way of
measuring the amount of information given by an evaluator
when describing a system by means of orders of magnitude.
On the other hand, the defined entropy is applied to analyse
the coherence degree of an evaluation committee in group
decision making.

Section 2 presents the theoretical framework. In Sec-
tion 3, the qualitative description induced by an evaluator
is studied. Two operations for information aggregation and
the concept of entropy in the absolute orders of magnitude
spaces are defined in Section 4 and 5 respectively, and Sec-
tion 6 introduces a coherence degree in group decision. The
paper ends with several conclusions and outlines some pro-
posals for future research.

Theoretical Framework
Order of magnitude models are an essential piece among
the theoretical tools available for qualitative reasoningabout
physical systems ((Kalagnanam, Simon, and Iwasaki 1991),
(Struss 1988). They aim at capturing order of magnitude
commonsense ((Travé-Massuyès 1997)) inferences, such as
used in the engineering world. Order of magnitude knowl-
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edge may be of two types: absolute or relative. The absolute
order of magnitudes are represented by a partition ofR, each
element of the partition standing for a basic qualitative class.
A general algebraic structure, called Qualitative Algebraor
Q-algebra, was defined on this framework ((Travé-Massuyès
and Piera 1989)), providing a mathematical structure which
unifies sign algebra and interval algebra through a contin-
uum of qualitative structures built from the rougher to the
finest partition of the real line. The most referenced order of
magnitude Q-algebra partitions the real line into 7 classes,
corresponding to the labels: Negative Large(NL), Nega-
tive Medium(NM), Negative Small(NS), Zero(0), Positive
Small(PS), Positive Medium(PM) and Positive Large(PL).
Q-algebras and their algebraic properties have been exten-
sively studied ((Missier, Piera, and Travé 1989), (Travé-
Massuyès and Dague 2003))

Order of magnitude knowledge may also be of relative
type, in the sense that a quantity is qualified with respect
to another quantity by means of a set of binary order-of-
magnitude relations. The seminal relative orders of magni-
tude model was the formal system FOG ((Raiman 1986)),
based on three basic relations, used to represent the intu-
itive concepts of ”negligible with respect to” (Ne), ”close
to” (Vo) and ”comparable to” (Co), and described by 32
intuition-based inference rules. The relative orders of mag-
nitude models that were proposed later improved FOG not
only in the necessary aspect of a rigorous formalisation, but
also permitting the incorporation of quantitative information
when available and the control of the inference process, in
order to obtain valid results in the real world ((Mavrovouni-
otis and Stephanopoulos 1987), (Dague 1993a), (Dague
1993b)).

In ((Travé-Massuyès et al. 2002), (Travé-Massuyès and
Dague 2003)) the conditions under which an absolute orders
of magnitude and a relative orders of magnitude model are
consistent is analysed and the constraints that consistency
implies are determined and interpreted.

In (Roselló et al. 2008) a generalization of qualitative or-
ders of magnitude was proposed to provide the theoretical
basis on which to develop a Measure Theory in this context.

The classical orders of magnitude qualitative spaces
(Travé-Massuyès and Dague 2003) verify the conditions of
the generalized model introduced in (Roselló et al. 2008).
These models are built from a set of ordered basic qualita-
tive labels determined by a partition of the real line.
Let X be the real interval[a1, an), and a partition of this set
given by{a2, . . . , an−1}, with a1 < a2 < . . . < an−1 <
an. The set of basic labels is

S = {B1, . . . , Bn−1},

where, for1 ≤ i ≤ n − 1, Bi is the real interval[ai, ai+1).
The set of indexes isI = {1, 2, . . . , n − 1}.
For1 ≤ i < j ≤ n − 1 the non-basic label[Bi, Bj) is:

[Bi, Bj) = {Bi, Bi+1, . . . , Bj−1},

and it is interpreted as the real interval[ai, aj).
For1 ≤ i ≤ n − 1 the non-basic label[Bi, B∞) is:

[Bi, B∞) = {Bi, Bi+1, . . . , Bn−1},
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Figure 1:The spaceSn

and it is interpreted as the real interval[ai, an).
The complete universe of description for the Orders of Mag-
nitude Space is the set

Sn = { [Bi, Bj) | Bi, Bj ∈ S, i ≤ j}∪{ [Bi, B∞) | Bi ∈ S},

which is called the absolute orders of magnitude qualitative
space with granularityn, also denotedOM(n).

There is a partial order relation≤P in Sn “to be more
precisely than”, given by:

L1 ≤P L2 ⇐⇒ L1 ⊂ L2. (1)

The least precise label is denoted by? and it is the label
[B1, B∞), which corresponds to the interval[a1, an).

This structure permits working with all different levels of
precision from the label? to the basic labels.

In some theoretical works, orders of magnitude qualita-
tive spaces are constructed by partitioning the whole real
line (−∞, +∞) instead of a bounded real interval[a1, an).
However, in most real world applications involved variables
do have a lower bounda1 and an upper boundan, and then
values less thana1 or greater thanan are considered as out-
liers and they are not treated like any other. To introduce the
classical concept of entropy by means of qualitative orders
of magnitude spaces, Measure Theory is required. This the-
ory seeks to generalize the concept of “length”, “area”and
“volume”, understanding that these quantities need not nec-
essarily correspond to their physical counterparts, but may
in fact represent others. The main use of the measure is
to define the concept of integration for orders of magnitude
spaces. In (Roselló et al. 2008) measures on the generalized
qualitative orders of magnitude spaces are defined.

Qualitativization induced by an evaluator
To introduce the concept of entropy by means of qualitative
orders of magnitude, it is necessary to consider the quali-
tativization function between the set to be qualitatively de-
scribed and the space of qualitative labels,Sn.

To simplify the notation, let us express with a calli-
graphic letter the elements inSn; thus, for example, ele-
ments[Bi, Bj) or [Bi, B∞) shall be denoted asE .
Let Λ be the set that represents a magnitude or a feature
that is qualitatively described by means of the labels ofSn.
SinceΛ can represent both a continuous magnitude such as
position and temperature, etc., and a discrete feature suchas
salary and colour, etc.,Λ could be considered as the range
of a function

a : I ⊂ R → Y,

99



Λ/ ∼Q Q

Q

Q

Sn

Q(Λ)

Figure 2:The qualitativization of a setΛ by means ofQ.

whereY is a convenient set. For instance, ifa is a room
temperature during a period of timeI = [t0, t1], Λ is the
range of temperatures during this period of time. Another
example can be considered whenI = {1, . . . , n} andΛ =
{a(1), . . . , a(n)} aren people whose eye colour we aim to
describe. In general,Λ = {a(t) = at | t ∈ I}.

The process of qualitativization is given by a function

Q : Λ → Sn,

whereat 7→ Q(at) = Et = minimum label (with respect
to the inclusion⊂) which describesat, i.e. the most precise
qualitative label describingat. All the elements of the set
Q−1(Et) are “representatives” of the labelEt or “are quali-
tatively described” byEt. They are qualitatively equal.

The functionQ induces a partition inΛ by means of the
equivalence relation:

a ∼Q b ⇐⇒ Q(a) = Q(b).

This partition will be denoted byΛ/ ∼Q, and its equivalence
classes are the setsQ−1(Q(aj)) = Q−1(Ej), ∀j ∈ J ⊂ I.
Each of these classes contains all the elements ofΛ which
are described by the same qualitative label.

Information aggregation
Given two qualitativizationsQ andQ′ of the setΛ over a
spaceSn it is natural to define two different operations be-
tween them. Intuitively speaking, one is the result ofmix the
two knowledges in a new knowledge that includes every-
thing known about each element ofΛ, and the other one is
the result of taking what iscommonbetween the two knowl-
edges.

The operation mix∨

Definition 1 Given two qualitativizationsQ andQ′, the op-
erationQ ∨ Q′ is a new qualitativization functionQ ∨ Q′ :
Λ → Sn such that

(Q ∨ Q′)(at) = Q(at) ⊔ Q′(at),

where⊔ is the connex union of labels i.e. the minimum label
describing the elements ofQ−1(Q(at)) and the elements of
Q′−1(Q′(at)).

The partition

(Λ/ ∼Q)∩(Λ/ ∼Q′) = {Xi∩Yj |Xi ∈ Λ/ ∼Q, Yj ∈ Λ/ ∼Q′}.

is not the partitionΛ/ ∼Q∨Q′ because there may beat0 ∈
Xi0 ∩ Yj0 andat1 ∈ Xi1 ∩ Yj1 such that(Q ∨ Q′)(at0) =
(Q∨Q′)(at1). The relation between these partitions is given
by the next proposition.

Proposition 1 Given a setΛ, the spaceSn and two quali-
tativizationsQ andQ′, then each class ofΛ/ ∼Q∨Q′ is a
(disjoint) union of classes of(Λ/ ∼Q) ∩ (Λ/ ∼Q′) :

ClassQ∨Q′(x) =
⋃

y∈ClassQ∨Q′ (x)

(ClassQ(y) ∩ ClassQ′(y))

Proof: This set equality will be proven by double inclusion:

⊂) If z ∈ ClassQ∨Q′(x) then it is trivial that z ∈
⋃

y∈ClassQ∨Q′ (x) (ClassQ(y) ∩ ClassQ′(y)) .

⊃) If z ∈
⋃

y∈ClassQ∨Q′(x) (ClassQ(y) ∩ ClassQ′(y)) then

there existsy ∈ ClassQ∨Q′(x) such thatQ(z) = Q(y)
andQ′(z) = Q′(y), then(Q ∨ Q′)(z) = (Q ∨ Q′)(y) =
(Q ∨ Q′)(x), whencez ∈ ClassQ∨Q′(x)

The last step is the proof that it is a disjoint union: let
be y, z ∈ ClassQ∨Q′(x), thenClassQ(y) ∩ ClassQ′(y) ∩
ClassQ(z)∩ClassQ′(z) = ∅ or ClassQ(y) ∩ClassQ′(y) =
ClassQ(z) ∩ ClassQ′(z). In effect:

t ∈ ClassQ(y) ∩ ClassQ′(y) ∩ ClassQ(z) ∩ ClassQ′(z) ⇒

⇒ Q(t) = Q(y), Q′(t) = Q′(y), Q(t) = Q(z), Q′(t) = Q′(z) ⇒

⇒ Q(y) = Q(z), Q′(y) = Q′(z) ⇒

⇒ ClassQ(y) = ClassQ(z), ClassQ′(y) = ClassQ′(z).

The operation common∧
The concept of coherence is required in order to introduce
the operation common:

Definition 2 Given a setΛ and a qualitative spaceSn, two
qualitativizations ofΛ, Q, Q′ arecoherent, Q ⇄ Q′, iff

Q(at) ∩ Q′(at) 6= ∅, ∀at ∈ Λ. (2)

This last condition is equivalent to say thatQ(at) ≈
Q′(at), ∀at ∈ Λ.1

It is clear that the relation⇄ is symmetric and reflexive.

Definition 3 Given a setΛ and a qualitative spaceSn, the
set of coherent qualitativizationsof a qualitativizationQ,
Cohe(Q), is

Cohe(Q) = {Q′qualitativization ofΛ | Q ⇄ Q′} (3)

1In the theory of absolute orders of magnitude, two labelsE ,F
are qualitative equal,E ≈ F , iff E ∩ F 6= ∅.
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Intuitively speaking,Cohe(Q) are all the qualitativizations
having “some agreement” when they assign labels to all the
elements ofΛ.

Definition 4 Given two qualitativizationsQ and Q′, such
thatQ ⇄ Q′, the operationQ∧Q′ is a new qualitativization
functionQ ∧ Q′ : Λ → Sn such that

(Q ∧ Q′)(at) = Q(at) ∩ Q′(at).

It is not difficult to check that the operations mix and com-
mon are commutative and associative, so it can be consid-
ered the mix and common operation of any number of qual-
itativizationsQ1, . . . , Qn.

An order relation can be defined from the operation com-
mon and mix:

Definition 5 Given two qualitativizationsQ andQ′ of a set
Λ over a qualitative spaceSn, Q is less accuratethanQ′, or
Q ≤ Q′, whenQ ∨ Q′ = Q. That is to say that∀at ∈ Λ
thenQ′(at) ⊂ Q(at), i.e. each element of the setΛ is more
precise described byQ′ than byQ.

Entropy
The information of a label
The information of a labelE will be a positive continuous
real function on the measure of the label, and will be denoted
by I(E). It also will be assumed that if a labelE is more
precise than a labelE ′, then there is more information inE
than inE ′:

E ≤P E ′ ⇒ I(E) ≥ I(E ′).

Another assumption about the functionI is that the informa-
tion of the label? is zero.

The following definition ofI inspired in the Shannon the-
ory of information ((Shannon 1948)) verifies these assump-
tions:

Definition 6 The information of a labelE ∈ Sn is

I(E) = log
1

µ(E)
,

whereµ is a normalized measure defined inSn andµ(E) 6=
0.

It is trivial to check that it is positive and continuous, and
decreases with respect to≤P :
From the definition of≤P in expression (1) from the section
2:

E ≤P F ⇒ E ⊂ F ⇒ µ(E) ≤ µ(F) ⇒ log
1

µ(E)
≥ log

1

µ(F)

Morover,I(?) = log 1 = 0.
Example: In the classicalSn model, defining a measure
µ([ai, ai+1]) = (ai+1 − ai)/(an − a1), the information of a

label isI([ai, ai+1]) = log
(

an−a1

ai+1−ai

)

.

Entropy of a qualitativization in Sn

Let us suppose a normalized measureµ in the setΛ.

Definition 7 The entropyH of a qualitativizationQ is de-
fined as:

H(Q) =
∑

E∈Sn

µ(Q−1(E))I(E). (4)

If Λ/ ∼Q= {Xi, i ∈ J}, that is, the set of equivalence
classes of∼Q, then the expression 4 can be expressed as

H(Q) =
∑

i∈J

µ(Xi)I(Q(Xi)). (5)

The expression of entropy in the definition (7) defines the
entropy as a weighted average of the information of the ele-
ments of the setΛ given byQ.

Proposition 2 Given a setΛ and the spaceSn, each with
its own measure, the maximum entropy,H(Q̃), is achieved
whenQ(Λ) = {E∗} whereE∗ is the shortest label with re-
spect toµ. In other words, the maximum entropy is reached
whenQ maps the whole setΛ to the most precise label:

H(Q̃) = max
Q

H(Q) = I(min
E

µ(E)) = log
1

µ(E∗)
.

Proof: It is clear that the label with maximum information is
the shortest label with respect toµ; if this label is calledE∗,
then

H(Q) ≤
∑

E∈Sn

µ(Q−1(E))I(E∗) =

= I(E∗)
∑

E∈Sn

µ(Q−1(E)) = I(E∗),

because the measureµ is normalized and the setQ−1(E) is
a partition ofΛ.

According to this proposition it is possible to define the
precision of a qualitativization:

Definition 8 Theprecisionof a qualitativizationQ of a set
Λ, h(Q), is the relative entropy respect the maximum en-
tropyH(Q̃) for the setΛ in Sn

h(Q) =
H(Q)

H(Q̃)
(6)

This quantity is a real number between0 and1, the closer it
is to1, the more accurate the evaluator is.

Lemma 1 For all labels E ,F ∈ Sn it is hold that I(E ⊔
F) ≤ I(E) + I(F).

Proof: SinceE ≤P E ⊔ F thenI(E) ≥ I(E ⊔ F) and then
I(E ⊔ F) ≤ I(E) + I(F)

From lemma 1 the next result with respect the operation
mix of two qualitativizations is presented:
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Theorem 1 Given a setΛ, the spaceSn, and two qualita-
tivizationsQ andQ′,then

H(Q ∨ Q′) ≤ H(Q) + H(Q′).

Proof: From equation 4

H(Q ∨ Q′) =
∑

F∈(Q∨Q′)(Λ)

µ((Q ∨ Q′)−1(F))I(F), (7)

and using the proposition 1

(Q ∨ Q′)−1(F) =
⋃

Xi∈(Λ/∼Q)∩(Λ/∼Q′ )

Xi.

Since this union is a disjoint union andµ is a measure

µ((Q ∨ Q′)−1(F)) =
∑

i∈J

µ(Xi),

whereJ is an index set. Taking into account thatXi ∈
(Λ/ ∼Q)∩(Λ/ ∼Q′), it can be expressed asXi = Mji

∩Nki

whereMji
∈ Λ/ ∼Q andNki

∈ Λ/ ∼Q′ . By construction
of Λ/Q∨Q′ , each label isF = Q(Mji

) ⊔ Q′(Nji
), then

µ((Q ∨ Q′)−1(F))I(F) =

=
∑

i∈J

µ(Mji
∩ Nki

)I(Q(Mji
) ⊔ Q′(Nji

)),

from the lemma 1:

µ((Q ∨ Q′)−1(F))I(F) ≤

≤
∑

i∈J

µ(Mji
∩ Nki

)I(Q(Mji
) + I(Q′(Nji

)),

Putting it all together into 7

H(Q∨Q′)≤
∑

M∈Λ/∼Q,N∈Λ/∼Q′

µ(M∩N)(I(Q(M))+I(Q(N))),

On the other handM ∩ N ⊂ M, N so µ(M ∩ N) ≤
µ(M), µ(N) whence the inequality is inferred.

The next proposition shows that the entropy respects the
accuracy relation between qualitativizations:

Proposition 3 Given a setΛ, the spaceSn, and two qual-
itativizationsQ and Q′ such thatQ ≤ Q′ thenH(Q) ≤
H(Q′).

Proof: Lets writeΛ/ ∼Q= ∪i∈MXi, Λ/ ∼Q= ∪j∈NYj ,
and(Λ/ ∼Q) ∩ (Λ/ ∼Q′) = ∪i,j(Xi ∩ Yj). For eachXi ∈
Λ/ ∼Q there exist a subset of indexNi ⊂ N such that
Xi = ∪j∈Ni

(Xi∩Yj) and vice-versa, there exist a subset of
indexMj ⊂ M such thatYj = ∪i∈Mj

(Xi ∩ Yj) (all unions
are disjoint unions). IfXi ∩ Yj 6= ∅ then from definition 5:

Q′(Yj) ⊂ Q(Xi) ⇒ I(Q(Xi)) ≤ I(Q′(Yj)) (8)

The entropy ofQ is

H(Q) =
∑

i∈M

µ(Xi)I(Q(Xi)) =

=
∑

i∈M

µ (∪j∈Ni
(Xi ∩ Yj)) I(Q(Xi)) =

=
∑

i∈M





∑

j∈Ni

µ(Xi ∩ Yj)I(Q(Xi))



 ≤

from the inequality in (8)

≤
∑

i∈M





∑

j∈Ni

µ(Xi ∩ Yj)I(Q(Yj))



 =

=
∑

j∈Ni

(

∑

i∈M

µ(Xi ∩ Yj)I(Q(Xi))

)

=

=
∑

j∈N

µ(Yj)I(Q(Y j)) = H(Q′).

Coherence degree in group decision
The measure of the precision and coherence in group deci-
sion evaluation problems is one of the main applications of
the theory presented in this paper. The underlying idea on
the next definition stands on the need to measure the preci-
sion of a set of evaluators and the coherence degree of its
evaluations when they are evaluating a set by means of la-
bels belonging to aSn.

First of all there is a formalization of the problem of the
group evaluation of a set: Given a spaceSn, a finite non
empty setΛ = {a1, . . . , aN} and setE = {α1, . . . , αM},
(it is the set of group evaluators), agroup evaluationof Λ is
the pair(Λ,QE), whereQE = {Qi : Λ → Sn | i ∈ E}.

There existscoherencein the group, if and only if, the
group is coherent, i.e. iff∀Q ∈ QE, Cohe(Q) = QE. Notice
that it is evident that the last condition is satisfied if there ex-
ists a Q such thatCohe(Q) = QE. Assuming that the group
is in coherence, the next definition of coherence degree mea-
sures the relation between the entropy of operations mix and
common in the qualitativizations of the group:

Definition 9 Given a group evaluation(Λ,QE) in coher-
ence, thecoherence degreeof the group,κ(QE), is

κ(QE) =
H(
∨

i∈E
Qi)

H(
∧

i∈E
Qi)

(9)

When the whole group qualitativizes the setΛ in the same
way, i.e., whenQi = Qj , ∀i, j ∈ E, thenκ(QE) = 1, and
if κ(QE) = 1 thenQi = Qj , ∀i, j ∈ E. On the other hand,
the spread withQi, implies a smallH(

∨

i∈E
Qi) and a big

H(
∧

i∈E
Qi). The given degree of coherence will give us a

global index with respect to the whole group of evaluators.
The key point on this definition is that the closer this degree
is to 1, the closer the group is to be in a consensus relation..
When the coherence degree is not satisfactory, an iterative
process will start to increase this degree.

The next property shows that the coherence degree of a
group evaluation problem cannot increase by adding to the
group a new evaluator.
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Proposition 4 Consider a group evaluation(Λ,QE) in co-
herence. Let beQnew a new evaluator ofΛ such that
Qnew /∈ QE, then

κ(QE ∪ {Qnew}) ≤ κ(QE).

Proof: : From the definitions 4 and 5 can be deduced the
inequalitiesQ ∨ Q′ ≤ Q, Q′ ≤ Q ∧ Q′ whence can be
deduced that if a new evaluator joints the group of evaluators
then:

(∨i∈EQi) ∨ Qnew ≤ ∨i∈EQi,

∧i∈EQi ≤ (∧i∈EQi) ∧ Qnew.

From proposition

H(∨i∈EQi) ∨ Qnew) ≤ H(∨i∈EQi),

H(∧i∈EQi) ≤ H((∧i∈EQi) ∧ Qnew),

whenceκ(QE ∪ {Qnew}) ≤ κ(QE).

Therefore, the only way to increase the coherence degree
in a group is that the evaluators in the group reconsider the
problem.

Conclusions and future research
A mathematical framework is presented to define group de-
cision techniques to measure precision and coherence based
on a qualitative structure of orders of magnitude.

This paper introduces the concept of entropy by means of
absolute orders of magnitude qualitative spaces to measure
the amount of information of a system when using orders of
magnitude descriptions to represent it. On the other hand,
entropy makes it possible to introduce a measure of coher-
ence in group decision-making problems.

The obtained results can be applied to tackle evaluation
and ranking problems which require an ordinal set of labels
to qualify decision alternatives.

A coherence degree is introduced in order to obtain an
objective measure of reliability in group decision making to
detect incoherencies and avoid potential subjectivity caused
by conflicts of interest regarding evaluators.

From a theoretical point of view, future research could fo-
cus on two lines. On the one hand, it could focus on the
analysis of the given structure of the qualitative descriptions
of a system to define a lattice using mix and common oper-
ations. On the other hand a distance between qualitative de-
scriptions will be defined by means of conditioned entropy.

Within the framework of applications, this work and its
related methodology will be orientated towards the develop-
ment of techniques to detect malfunctioning within an eval-
uation committee, and to analyse whether it can reflect a cor-
ruption or a lack of knowledge in a part of the committee.
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