
Abstract 

Qualitative representations can play an important 

role in sketch understanding, by providing stable 

relational descriptions that support learning for 

recognition. A common approach is to represent a 

sketch of an object as a set of edges and relations 

between edges. However, hand-drawn sketches are 

generally noisy, with unintended gaps, jitter, and 

other glitches that cause artifacts in edge represen-

tations.  We describe a new higher-level represen-

tation, edge-cycles, that is more stable than edge-

based representations, and demonstrate that it pro-

vides significantly better results in learning to clas-

sify hand-drawn sketches of everyday objects. 

1 Introduction 

Software that works with people via sketching could have a 

revolutionary impact on human-computer interaction.  Con-

sequently, understanding hand-drawn sketches is an im-

portant problem.  Hand-drawn sketches are noisy: Lines 

intended to be straight often aren’t, lines jitter, and gaps 

often occur in what was intended to be a continuous outline.  

Qualitative representations provide a natural approach to 

sketch understanding, because they can abstract out the 

quantitative variations that constitute noise, and recover 

more of the intended shapes.  Previous work on CogSketch 

[Forbus et al., 2011; Lovett et al., 2008] has shown that 

qualitative representations of digital ink in terms of proper-

ties of shapes, groups, and edges can provide useful results 

in a variety of tasks.  However, as shapes get more complex, 

edge-level representations tend to bog down.  For example, 

the hand-drawn sketches of everyday examples in [Lovett et 

al., 2006] initially contained as many as 86 edges, with 

many more relationships connecting those facts, making 

matching and generalization quite difficult.  This paper de-

fines a new higher-level representation, edge-cycles, that 

provides a higher level of qualitative abstraction.  An edge-

cycle is a sequence of edges connected end-to-end, whose 

last edge connects back to its first edge.  Edge-cycles are 

computed from the edge-level representation, but because 

they are more abstract, they should provide a more stable 

level of representation.    We show that edge-cycles signifi-

cantly out-perform edge-level representations on the object 

recognition task of [Lovett et al., 2006]. 

We begin by reviewing CogSketch, our sketch under-

standing system, and the analogical processing techniques 

being used for learning and classification.  Then we describe 

the edge-cycle representation, followed by an experiment 

where we compare edge-cycle and edge-level representa-

tions.  We close with a description of other related work and 

future work. 

2 Background 

We begin by summarizing CogSketch and the analogical 

processing models used for learning and classification. 

2.1 CogSketch 

CogSketch [Forbus et al., 2011] is an open-domain sketch 
understanding system.  It computes a variety of qualitative 
spatial representations on digital ink, including qualitative 
topological relationships [Cohn et al., 1997], positional rela-
tionships (e.g. above, rightOf), symmetry (using MAGI 
[Ferguson, 1994]), and relative sizes.  Its representations are 
hierarchical, with the default shape level describing pieces 
of the ink that the user labeled as an entity.  (In the sketches 
here, the entire sketch is always one entity.)  The edge-level 
representation is the more detailed level of representation 
that decomposes a shape into its edges and encodes their 
attributes (e.g. straight, curved, or elliptical) and relation-
ships between them (e.g. corners, whether a corner is con-
cave or convex).  The highest level representation is the 
group level, where CogSketch groups objects together based 
on proximity and similarity.  By default, CogSketch com-
putes only shape-level representations, with edge or group 
level representations being computed on demand by systems 
that use CogSketch.  In the experiments reported here, the 
edge-level representations are always computed.   

2.2 Models of analogical processes 

We use SAGE, a model of analogical generalization, for 

learning and MAC/FAC, a model of analogical retrieval, for 

classification.  These both in turn use SME, a model of ana-

logical matching, so we start with it.  
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The Structure-Mapping Engine 
SME, the Structure-Mapping Engine [Falkenhainer et al., 
1989] is a domain-general computational model of analogy 
and similarity, based on Gentner’s [1983] structure-mapping 
theory of analogy.  Its inputs are two cases, the base and 
target, consisting of structured, relational representations.  
SME produces one or more mappings between the base and 
the target.  Each mapping contains: (1) correspondences that 
match relations and entities in the base with relations and 
entities in the target; (2) a numerical similarity score, pro-
vided the correspondences; and (3) candidate inferences that 
assert what might hold in the target, provided the corre-
spondences with the base.  Two relevant factors to note 
about SME for this paper: (1) here we normalize the usual 
similarity score by dividing it by the self-similarity score, 
i.e. the maximum score attained by matching either the base 
or target to itself.  This ensures that the similarity score is 
always between zero and one.  (2) Mappings are constrained 
to be 1:1, i.e. each item in the base or target can map to at 
most one other item in the other.  There is strong psycholog-
ical evidence for this constraint, and it simplifies the match-
ing process considerably.  However, it does put more pres-
sure on encoding systems to be accurate in their grouping 
operations, as shown below. 

MAC/FAC 

MAC/FAC [Forbus et al., 1995] is a domain-general com-

putational model of similarity-based retrieval.  Its inputs are 

a case library, again consisting of structured, relational rep-

resentations, and a probe, which is a case.  MAC/FAC re-

trieves one or more cases from the case library that are simi-

lar to the probe.  It uses a two-stage filtering process.  The 

first stage is coarse, using a vector representation automati-

cally computed from the structured representation to esti-

mate similarity between the probe and the contents of the 

case library by computing dot products in parallel.  It returns 

the best, plus up to two others, if sufficiently close.  The 

second stage uses SME to compare the structured represen-

tation of the probe with the structured representations of the 

outputs of the first stage.  Again, it returns the best, or up to 

three if the others are very close.  The mappings it computes 

are available for subsequent processing.  Here, MAC/FAC 

is used for classification: During testing, a sample is used as 

the probe, and analogical retrieval used to find the most 

similar generalization, which constitutes its classification, 

using the union of all generalization contexts (see next sec-

tion) as the case library. 

Category Learning with SAGE 

Our category learning approach uses SAGE, a computation-

al model of analogical generalization
1
.  SAGE is designed 

for learning multiple categories using positive examples.  

Each category (e.g. Brick) has an associated generalization 

context, which contains a set of previously seen examples of 

                                                 
1 SAGE is the descendant of SEQL [Kuehne et al 2000], ex-

tended with probabilities [Halstead and Forbus, 2005]. 

the category, and a set of generalizations, which are auto-

matically created by SAGE.   SAGE learns incrementally.  

Given a new example, SAGE uses MAC/FAC to retrieve 

similar prior examples and/or generalizations, using the 

generalization context as its case library.  If the similarity 

between the best retrieved item and the example is higher 

than a similarity threshold S, then the retrieved item and the 

example are merged.  If the retrieved item is itself an exam-

ple, a new generalization is formed.  If the retrieved item is 

a generalization, the example is assimilated into it.  In both 

cases, the assimilation process consists of calculating prob-

abilities for each statement in the updated (or new) generali-

zation, based on frequency of occurrence of corresponding 

facts in the examples that have gone into it.  Entities that are 

not identical are replaced by arbitrary new entities, not logi-

cal variables.  As examples accumulate, incidental proper-

ties fade away (by becoming less probable), whereas charac-

teristic properties are strengthened (by remaining more 

probable).  If no sufficiently similar item is retrieved for the 

example, the example itself is stored in the generalization 

context corresponding to its label.   

3 Representation 

There is psychological evidence that while people’s repre-

sentations of space are computed from the bottom up, they 

are attended to from the top down during problem-solving 

[Hochstein and Ahissar, 2002].  Higher-level representa-

tions are typically better places to start because they are 

sparser, providing lower working-memory loads, and reduc-

ing the number of distractors in matching.  Consequently we 

want our representations to be as sparse as possible, while 

retaining features that are important for categorization.  

Edge-cycles, we argue, provide a useful and cognitively 

plausible representation for learning and recognition. 

Constructing representations at both the edge level and 

edge-cycle level depends on the segmentation of ink into 

edges.  We begin by describing our segmentation algorithm.  

We then describe relevant aspects of the Lovett et al. [2006] 

edge-level representation in more detail, since we use this as 

a baseline for our evaluation in section 4.  We follow with a 

description of the three types of edge-cycles used in the pre-

sent encoding approach. 

3.1 Segmentation of ink into edges 

The algorithm used by CogSketch to segment ink into edges 

has changed since 2006; what is described in this section is 

the present segmentation algorithm, since this is what is 

used to compute the edge-cycle representation
2
.  For more 

details on the segmentation algorithm used in 2006, see 

[Lovett et al., 2006]. 

                                                 
2 The present segmentation algorithm computes significantly 

more edges than the baseline algorithm.  Consequently, the seg-

mentation algorithm alone is not responsible for making the pre-

sent representation sparser than the baseline. 
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CogSketch captures digital ink as sets of polylines, with 

each point represented by a 2D coordinate and timestamp.  

CogSketch resamples the polylines to factor out velocity 

artifacts and describe them according to changes in curva-

ture.  Polylines are initially segmented at intersection points, 

and then further decomposed based on discontinuities in 

curvature [Lovett et al., 2009].  This segmentation process 

results in edges, whose end points can be connected to each 

other via junctions. 

3.2 Edge-level (baseline) representation 

In this section, we describe the edge-level representation 

produced by CogSketch in Lovett et al. [2006], since this 

encoding produced the representations that we use as a base-

line for our evaluation in section 4. 

 Of the edges created during segmentation, each is classi-

fied either as a straightEdge or a curvedEdge, with 

curved edges also sometimes qualifying as an el-

lipseEdge. Additional attributes may apply to edges of 

each type (e.g. vertical and horizontal).  Pairwise 

relations are computed between neighboring edges to cap-

ture relative position, length and orientation (e.g. above, 

longerThan and perpendicular). 

Junctions are represented by (1) relations that describe the 

connections between edges and (2) attributes that make 

qualitative distinctions between their shapes (e.g. arrow-

Junction, forkJunction, and tJunction).  Junctions 

connecting three or more edges are related to one another 

via positional relations. 

A precursor to edge-cycles is the detection and use of clo-

sure, i.e. when a group of connected edges closes in on it-

self.  Closure is used to identify three-sided and four-sided 

shapes, and to identify corners that are convex with respect 

to some enclosed region.  Edge-level properties that are 

constant within a shape (e.g., all of the edges are 

straightEdge or all of the corners are convex), are propa-

gated upward to the shape-level representation of the object 

of which they are a part.  

It should be noted that edge-level representations can be 

quite large: The sketches used in the experiment described 

here sometimes involved over 600 facts [Lovett et al., 

2006], making analogical matching quite challenging.   In 

fact, pruning heuristics were used in the 2006 experiments 

to eliminate many of the edges, based on giving priority to 

edges that were connected to the exterior of an object.  Ex-

perimentally, it was found that keeping no more than about 

175 assertions yielded the best results for learning and clas-

sification.  This result suggests that the edge-level represen-

tation, while crucial for understanding shapes, is too de-

tailed for these purposes.  This led us to the edge-cycle rep-

resentation, described next. 

3.3 Edge-cycle representation 

The edge-cycle representation abstracts away from specific 

edges, to construct sparser representations.  The sketch in 

Figure 1 illustrates the difference between the encodings. 

 There are two types of entities in the edge-cycle represen-

tation: edge-connected objects and edge-cycles. An edge-

connected object is a maximal set of connected edges. For 

example, the brick in Figure 1 contains four objects: the 

brick itself and the three holes.  An edge-cycle is a sequence 

of edges which is closed, i.e. traversing the path along the 

edges eventually leads back to the start point, without en-

countering any dead-ends.  A single object may contain sev-

eral edge-cycles or it may contain none at all. 

 There are two types of edge-cycles: atomic edge-cycles 

and perimeter edge-cycles.  We define each below and then 

describe the attributes and relationships that are computed 

for objects and edge-cycles. 
 

Atomic edge-cycles 

An atomic edge-cycle is one that contains no other cycles 

that share any of its edges.  For example, in Figure 1(c), the 

 

 
 

Figure 1: A sketch of a brick drawn by one of the participants (a), and a visualization of each encoding.  The edge-level encoding (b) has 

16 entities (all edges), and ends up generating 114 facts.  The right-hand edge of the top surface is segmented into two entities due to noise 

in the curvature.  The edge-cycle encoding (c) has 11 entities: 4 edge-connected objects, 3 atomic edge-cycles that are also perimeter edge-

cycles, 3 atomic edge-cycles that are not perimeters, and 1 perimeter edge-cycle that is not atomic.  It generates only 46 facts.  The edge-

cycle representation is unaffected by the curvature-related segmentation error. 

(a) (b) (c) 

QR2011: 25th International Workshop on Qualitative Reasoning

110



brick’s outer contour is not an atomic edge-cycle because it 

contains three edge-cycles that share edges with it (the three 

surfaces of the brick).  However, each of these is an atomic 

edge-cycle.  

Atomic edge cycles are found via the closure computation 

in the edge-level representation.  We believe atomic edge-

cycles are an appropriate basic entity type, since people 

have been found to compute closure early on in spatial pro-

cessing [Treisman and Paterson, 1984].  Atomic edge-cycles 

form salient closed shapes, and properties that are uniform 

within them are propagated from the edges to the shape it-

self (e.g. straight edges, convex corners). 

 

Perimeter edge-cycles 

A perimeter edge-cycle describes the shape of an object’s 

outer contour.  It consists of the cycle of edges that form the 

exterior of an edge-connected object (provided there is such 

a cycle.  As with atomic edge-cycles, perimeter edge-cycles 

are closed shapes, so shape-level attributes and relationships 

are also computed over them.  In some cases, a perimeter 

edge-cycle may also be atomic, e.g., the holes in the brick in 

Figure 1(c).   Since outer contours are highly salient [Hoff-

man and Richards, 1984], a non-atomic term (using the log-

ical function PerimeterFn) is used to describe such enti-

ties.  This increases the order (in the structure-mapping 

sense of how nested an expression is), thereby causing the 

exterior to provide more weight in the mapping.   
 

Attributes and relations 

The attributes and relations computed for edge cycles are 

primarily those used in CogSketch’s shape representation, 

including the ability to propagate shared edge properties 

upward to the shape, e.g. 2DShape-Convex (all corners 

and curved edges in the shape are convex) and 2DShape-

AxisAligned (every edge that makes up the shape is axis-

aligned).  Similarly, positional relationships are computed 

(above/rightOf and enclosesVertically / en-

closesHorizontally), as well as relative-orientation 

relations (parallelElements / perpendicu-

larElements).  Two additional attributes are computed to 

encode the presence of edges that are not part of any edge-

cycle.  These edges, called terminal edges, include (1) any 

edge that is not connected to any other edge on one of its 

ends, and (2) any edge that is only connected only to termi-

nal edges on one of its ends.  Terminal edges inside an 

atomic edge cycle are encoded with as edgeIntruded-

Shape,similarly, terminal edges outside of a perimeter edge 

cycleis encoded as edgeProtrudedShape (e.g., C5 in 

Figure 2(b)). 

 Intersection relationships between edge-cycles are im-

portant because they signal connectivity in what they depict.   

Edge-cycles that share an edge are related by 

sharesEdgesWith, and any two edge cycles that share 

either a junction or an edge are related by 

touchesDirectly, which provides a notion of adjacency.  

Positional relations and relative-orientation relations are 

only computed by default between adjacent edge-cycles.  A 

third intersection relation, edgeSubsetOf, is used in the 

rare case when all of the edges in one cycle form a subset of 

those in another cycle (e.g., C2 and C3 in Figure 2(b)). 

Containment relationships between atomic edge-cycles 

and edge-connected objects are important for encoding nest-

ed imagery within a sketch.  The atomicPartOf relation 

connects an atomic cycle to the edge-connected object it is 

part of.  Conversely, the containsObject relation holds 

between an atomic edge-cycle and an edge-connected object 

if the cycle spatially contains the object without sharing any 

edges or junctions with it (e.g. the brick’s holes in Figure 1). 

4 Experiment  

We evaluated our cycle-based encoding approach on the 
learning task of [Lovett et al., 2006], using the original 
edge-level representations as a baseline.  This experiment 
was based on a corpus of hand-drawn sketches from 10 par-
ticipants depicting each of 8 everyday objects from the book 
Sun Up to Sun Down [Buckley, 1979], a book that uses sim-
ple drawings to illustrate physical processes such as heat 
transfer.  The sketched concepts in the dataset are a brick, a 
bucket, a cup, a cylinder, a fireplace, a house, an oven, and a 
refrigerator.  Participants were instructed to sketch each 
object in CogSketch using the corresponding picture from 
the book as a guide, so that the general features and orienta-
tions of the sketches would be similar. 

 
  
Figure 2: Two participants’ sketches of cylinders, both drawn with 

water spouts.  In (a), the spout and the cylinder are different edge-

connected objects.  In (b), the spout and the cylinder are connected 

by the stream of fluid, and thus, part of the same edge-connected 

object.  The close-up shows the atomic (C1-C4) and perimeter (C5) 

edge-cycles in the vicinity of the stream depiction. The symmetric 

sharesEdgesWith relation holds between the pairs: {C1: C4}, 

{C1: C3}, {C1: C5}, {C4: C3}, {C4: C5}, {C3: C5} {C3: C2}.  The 

touchesDirectly relation, also symmetric, holds between all of 

these same pairs as well as {C1: C2} and {C4: C2}.  C2 is related to 

C3 by edgeSubsetOf, since all of the edges that comprise C2 (in 

this case only one edge) are also in C3.  The three bottom edges are 

not part of any edge-cycle because they terminate at one end, but 

they add an edgeProtrudedShape attribute to the perimeter 

edge-cycle C5. 

(a) (b) 
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4.1 Evaluation Procedure 

All 80 sketches in the corpus were automatically encoded 

using two different methods: the baseline edge-based encod-

ing, and the present edge-cycle-based encoding.  To test 

their effectiveness, we used the same supervised learning 

task from [Lovett et al., 2006].  That is, in each condition, 

categories were learned via SAGE, using the process de-

scribed in Section 2.2.  During testing, unlabeled examples 

were classified using MAC/FAC.  We used a 10-fold cross-

validation, with the 8 sketches generated by a particular 

participant constituting a fold.  This resulted in 10 rounds of 

training and testing per condition, where the system does 

analogical learning over nine participants’ sketches and cat-

egorizes those of the tenth.  To explore how SAGE’s simi-

larity threshold affects the results, we ran this experiment 

across a range of values for this parameter, from 0 to 1.   

4.2 Results 

Figure 3 summarizes the results.  Recall that the similarity 

threshold S is the minimum similarity score (computed by 

SME) required between an example and another example 

(or generalization) for SAGE to combine them.  With S = 0, 

SAGE always combines descriptions, and the two encodings 

achieved equal performance.  For every other value, the 

cycle-level encoding outperformed the edge-level encoding.  

Moreover, for similarity thresholds between 0.4 and 0.8, 

with the exception of 0.6, the performance was significantly 

different (p < 0.05, one-tailed paired t-test).  The difference 

between the maximum accuracies achieved in the two con-

ditions, which was at S = 0.65 for the cycle-based encoding 

and S = 1.0 for the edge-based encoding, was marginally 

significant at p < 0.06.To better understand these results and 

the tradeoffs involved, it is useful to look more closely at 

the relationships between the representations computed.  

Figure 4 shows the confusion matrices produced by the 

classifier in the cycle-based and edge-based conditions, with 

the similarity threshold set to 1.0.  With that high of a simi-

larity threshold, SAGE never generalizes, and hence classi-

fication consists of finding the closest exemplar.  This fac-

tors out analogical generalization, so that we can focus on 

properties of the representations produced.   

We found two main reasons for confusability in the edge-

level representations.  The first was the need for pruning, as 

mentioned above.  Ovens were the worst for the edge-level 

encoding relative to the cycle encoding, so a closer look can 

be revealing.  With edge-level representations, houses and 

refrigerators were often retrieved.  A closer look revealed 

that the particular sketches of ovens that were labeled as 

houses and refrigerators shared an unusual feature along 

their exteriors where four edges meet, which showed up in 

the edge-based representations as a high order relation (and 

therefore very influential in determining structural similari-

ty).  This feature was not prevalent across all ovens, but it 

was among houses and refrigerators.  Two of the three ov-

 
Figure 3: The classification accuracy of the SAGE-based learner at 

various similarity thresholds (S), when run on each encoding 

scheme.  The difference in performance is significant with p < 0.05 

for all 0.4 ≤ S ≤ 0.8, with one exception at S = 0.6. 

 Cycle-Based, S = 0.65       Edge-Based, S = 1.0      

  Predicted    Predicted 
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Brick 10 0 0 0 0 0 0 0  

A
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Brick 9 0 1 0 0 0 0 0 

Oven 1 9 0 0 0 0 0 0  Oven 1 6 1 2 0 0 0 0 

Fridge 0 0 8 1 0 1 0 0  Fridge 1 0 8 0 1 0 0 0 

House 0 0 0 10 0 0 0 0  House 0 2 0 8 0 0 0 0 

Fireplace 0 0 0 2 7 1 0 0  Fireplace 0 0 0 0 10 0 0 0 

Cup 0 0 0 1 0 6 3 0  Cup 0 0 0 0 0 6 3 1 

Bucket 0 0 0 0 0 1 7 2  Bucket 1 0 0 0 0 3 5 1 

Cylinder 0 0 0 0 0 2 3 5  Cylinder 0 0 0 0 0 2 1 7 

 

Figure 4: The confusion matrices produced by the classifier on the cycle-based (left) and edge-based (right) encodings at their maximum 

performances (S = 0.65 and S = 1.0, respectively). 
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ens that were confused with houses and refrigerators also 

had truncated edge-level representations that contained no 

mention of the round edges depicting the stovetop burners 

and knobs, which are intuitively the most salient differences 

between the sketches of ovens and those of houses and re-

frigerators.  This illustrates that an outline-based pruning 

heuristic can lead to critical internal features being omitted 

from the representation.   

The second reason for confusability in edge-level repre-

sentations was segmentation errors.  Recall that digital ink 

generally artifacts that can make accurate segmentation dif-

ficult.  Edges that connect end-to-end at 2-way junctions can 

be especially difficult.  This can result in unintended junc-

tions and failure to recognize intended junctions.  This can 

have a significant impact on the edge-level representation.  

For example, in Figure 5(a), the cylinder’s top edge is split 

into two.  This means that different entities are participating 

in the three-way junctions on either side of the top.  Since 

SME requires mappings to be 1:1, this substantially reduces 

the similarity computed for the edge-level representation.  

The edge-cycle representation is robust relative to extra 

junctions because it abstracts the edges away to cycles. 

On the other hand, a close analysis of the confusion ma-

trix for the edge-cycle representation reveals that it has its 

own set of problems.  Consider the cylinder in Figure 5(b), 

which contains a gap in the top.  Not closing this gap leads 

to an edge-cycle description with half of the atomic edge-

cycles of the cylinder in 4(a), changes the perimeter edge-

cycle to be convex, and removes an edge-protrusion attrib-

ute.  These are substantial changes that radically reduce per-

ceived similarity by the system, although people seem to 

“fill” these gaps reasonably easily.  The edge-level represen-

tations are more stable when gaps occur, since most of the 

constituents will remain unchanged. 

Another problem with our current edge-cycle representa-

tion is that our qualitative vocabulary isn’t expressive 

enough to capture a number of useful properties of shapes. 

Figure 6 shows one participant’s sketch of a fireplace (left) 

along with the most similar examples retrieved in the cycle-

based (middle) and edge-based (right) conditions.  A de-

tailed examination of the correspondences is revealing: The 

textures on the bottom row indicate the correspondences 

between the sample (bottom-left) and the retrievals from the 

edge-cycle (bottom-middle) and edge-level representation 

(bottom-right).  The fire corresponds with the window in the 

edge-cycle representation because they both have many 

straight lines, although the number of lines in both is quite 

different.  Relative size is not taken into account, e.g. the 

match between the top of the mantle and the roof.  Adding 

these and other higher-level properties (e.g. that the door is 

almost entirely contained within the wall of the house, 

whereas the inner wall of the mantle is more exposed to the 

exterior) could help improve both retrieval and mapping. 

Another problem with our current edge-cycle representa-

tions is that they are still too sensitive to small variations in 

drawing style.  Seemingly minor depiction differences can 

lead to large differences in the number of edge-connected 

objects present.  For example, fluids were sometimes de-

picted with lines in the foreground of the scene, connecting 

otherwise separate edge-connected objects (e.g. the stream 

falling from the cylinder’s spout in Figure 2(b)). One fire-

place was depicted with several small lines of rising smoke, 

causing the number of edge-connected objects in the scene 

to triple.  Such “decorations” do not cause similar problems 

for people, although they can cause serious trouble for any 

current recognition-based approach.  We return to the deco-

ration problem below. 

 

 
Figure 6: Across the top row are an unlabeled example encountered 

during testing (top-left) along with the top retrievals from memory in 

the cycle-based (top-middle) and edge-based (top-right) conditions.  

The bottom row uses textures to depict the structural mappings 

between each retrieval (bottom-middle and bottom-right) and the 

unlabeled example (bottom-left). 

           
(a)                                 (b) 

 

 

Figure 5: Sketches of cylinders whose edge segmentations were 

problematic.  In (a), an extra junction was detected due to a 

sudden change in curvature that was a presumably unintentional. 

In the edge-based representation this split up a critical edge 

entity involved in two three-way junctions.  In (b), two edges 

that were supposed to be connected were not due to a gap in the 

ink.  The cycle-based encoding subsequently lost an entire 

atomic edge-cycle and misconstrued the perimeter shape. 
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5 Related Work 

Several previous systems generated symbolic representa-

tions at the edge level to support shape recognition [Fergu-

son and Forbus, 1999; Museros and Escrig, 2004; Veselova 

and Davis, 2004].  Though we represent shapes at a higher 

level of abstraction (edge-cycles), there are parallels be-

tween these previous approaches and our own. 

Our use of adjacency to restrict what edge-cycle relation-

ships are computed is similar to Veselova and Davis’ [2004] 

use of adjacency in their edge-level representations.  When 

determining which constraints to infer from a sketch, one 

heuristic they use is looking for special cases of geometric 

configurations (e.g. perpendicular or collinear lines).  Our 

strategy for propagating edge-level attributes and relations 

to edge-cycles, which is to do so only when they are shared 

across an entire shape, places a similar emphasis on special 

cases at the edge-cycle-level. 

 Like our cycle-encoding, Museros and Escrig’s [2004] 

qualitative shape descriptions are heavily based on closure, 

since they target a task that involves recognizing geometric 

tiles.  Their vocabulary was designed to handle shapes that 

are less organic and noisy than those found in our sketches, 

and is not equipped with as rich a vocabulary for relating 

intersecting closed shapes to one another, as our approach 

does.  It does, however, use edge-level descriptors that our 

approach could benefit from (e.g. acute/obtuse angles). 

 There have been decades of work on reconstructing 3-D 

object models from 2-D line-drawings via line-labeling 

[Clowes, 1971; Huffman, 1971; Malik, 1987; Cooper, 

2007], but these techniques are highly specialized for 3-D 

modeling tasks.  They typically deal with sketches that are 

far less noisy than the sketches here, in which all lines are 

taken to be relevant to the 3-D contour of the object. 

 The segmentation algorithm used in our approach draws 

some ideas from scale-space techniques for segmenting 

based on discontinuities in curvature [Mokhtarian and 

Mackworth, 1986; Saund, 1990; Witkin, 1989].  Saund’s 

[1999] work on subjective contour segmentation using de-

terministic annealing is promising for overcoming errors 

due to gaps in digital ink. 

 We use SAGE to generalize across structured qualitative 

descriptions of edge-cycles.  Recent work in the object 

recognition community has mirrored this approach with 

efforts to abstract generic models from multiple images, by 

reducing segmented images to graph representations and 

then employing editing and matching operations.  Keselman 

and Dickinson [2005] create region adjacency graphs from 

segmented input images, and search for approximate least 

common abstractions of multiple examples based on edit-

distance (effectively adding/removing edges between re-

gions).  Todorovic and Ahuja [2008] learn region-based 

hierarchical models for object categories, while incorporat-

ing geometric and photometric properties into the similarity 

measure that is used to match regions.  Both of these ap-

proaches allow for many-to-many mappings between re-

gions, which SME does not handle.  Fidler and Leonardis 

[2007] learn a large hierarchy of part compositions for ob-

ject categories in which simpler parts at lower levels are 

shared across objects at the higher levels.  The part-

hierarchy supports robust matching going from the top 

down and efficient indexing going from the bottom up.  Our 

approach addresses these same concerns via SME’s system-

aticity constraint and MAC/FAC’s coarse first-stage filter, 

respectively.  However, these other approaches have not 

been tested on hand-generated line drawings. Sketches are 

subject to noisy ink and depiction differences across partici-

pants, and they usually lack many of the segmentation clues 

that real-world images contain, such as color, texture and 

lighting.  Our qualitative ink descriptions are robust against 

noise because minor quantitative variance is ignored. 

6 Summary and Future Work 

We have introduced the idea of edge-cycles, a higher-level 

qualitative representation for sketches that is generally more 

sparse and stable than the edge-level representation it is 

computed from.  This resulted in a significant improvement 

in learning and classification compared to our previous 

edge-level representation.  

 However, as the analysis above indicated, there is still 

more work needed.  First, incorporating better gap-filling 

strategies, such as Saund’s work on subjective contours, 

could be useful.  Solving the Decoration  Problem very like-

ly requires a combination of a richer vocabulary for describ-

ing edge-cycles and a more incremental approach to encod-

ing and retrieval  (e.g. recognizing parts, like fires in fire-

places, burners on stoves, and handles on doors).  This in 

turn requires building up robust models of depiction [Lock-

wood et al., 2008].  We plan to combine crowd-sourced 

gathering of labeled sketches with active learning [Settles, 

1994], by developing heuristics for generating new draw-

ings from edge-cycle representations.  
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