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Abstract
The concept of qualitative velocity, together with
qualitative distance and orientation, are very impor-
tant in order to represent spatial reasoning for mov-
ing objects, such as robots. We consider the propo-
sitional dynamic logic which deals with qualitative
velocity and enables us to represent some reasoning
tasks about qualitative properties. The use of logic
provides a general framework which improves the
capacity of reasoning. This way, we can infer ad-
ditional information by using axioms and the logic
apparatus. In this paper we present sound and com-
plete relational dual tableau that can be used for
verification of validity of formulas of the logic in
question.

1 Introduction
Qualitative reasoning, QR, tries to simulate the way of hu-
mans think in almost all situations. For example, we do not
need to know the exact value of velocity and position of
a car in order to drive it. As said in [Delafontaine et al.,
2011], when raising or answering questions about moving
objects, both qualitative and quantitative responses are pos-
sible. However, human beings are more likely to prefer to
communicate in qualitative categories, supporting their intu-
ition, rather than using quantitative measures. On the other
hand, representing and reasoning with qualitative information
can overcome information overload, that is, more information
has to be handled than can be processed.

A form of QR is order of magnitude reasoning, where the
values are represented by different qualitative classes. For ex-
ample, talking about velocity we may consider slow, normal,
and quick as qualitative classes.

The use of logic in QR, as in other areas of AI, provides
a general framework which improves the capacity of solving
problems and, as we will see in this paper, allows us to deal
with the reasoning problem. This way, we can infer additional
information by using axioms and the logic apparatus. There
are several applications of logics for QR (see e.g., [Bennett et
al., 2002; Duckham et al., 2006]) and many of them concern
spatial reasoning. As an example of logic for order of magni-
tude reasoning, see [Burrieza et al., 2010]; a theorem prover
for one of these logics can be seen in [Golińska-Pilarek and

Muñoz-Velasco, 2009], implemented in [Golińska-Pilarek et
al., 2008].
The concept of qualitative velocity [Escrig and Toledo, 2002;
Stolzenburg et al., 2002], together with qualitative distance
and orientation, are very important in order to represent spa-
tial reasoning for moving objects, such as robots. Recent
papers [Cohn and Renz, 2007; Liu et al., 2009; 2008] try
to make progress in the development of qualitative kinemat-
ics models, as given in [Forbus et al., 1987; Nielsen, 1988;
Faltings, 1992]. The problem of the relative movement of one
physical object with respect to another can been treated by the
Region Connection Calculus [Randell et al., 1992] and the
Qualitative Trajectory Calculus [Van de Weghe et al., 2005;
Delafontaine et al., 2011]. However, as far as we know,
the first paper which proposes a logic framework for quali-
tative velocity is [Burrieza et al., 2011], where the Proposi-
tional Dynamic Logic for order of magnitude qualitative to
deal with the concept of qualitative velocity is proposed. The
main advantages of this approach are: the possibility of con-
structing complex relations from simpler ones; the flexibility
for using different levels of granularity; its possible exten-
sion by adding other spatial components, such as position,
distance, cardinal directions, etc.; the use of a language close
to programming languages; and, above all, the strong support
of logic in spatial reasoning. Following [Escrig and Toledo,
2002], velocity of an object B with respect to another object
A is represented by two components: module and orientation,
each one given by a qualitative class. If we consider a veloc-
ity of B with respect to A, and another velocity of C with
respect to B, the composition of these two velocities consists
of obtaining the velocity ofC with respect toA. For example,
if (Q,l) represents a quick velocity towards the left orientation
of B with respect to A, and (N,r) is a normal velocity to-
wards the right of C with respect to B, the composition is
a velocity of C with respect to A, that could be either (Q,l)
or (N,l), that is, a quick or normal velocity towards the left
orientation. The results of these compositions could depend
on the specific problem we are dealing with. In the following
section, we consider the logic QV where some assumptions
about these compositions are posed in its models.

In this paper we present sound and complete relational dual
tableau for the Propositional Dynamic Logic of qualitative
velocity introduced in [Burrieza et al., 2011], which can be
used to verification of validity of its formulas. The system is
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based on Rasiowa-Sikorski diagrams for first-order logic [Ra-
siowa and Sikorski, 1960]. The common language of most of
relational dual tableaux is the logic of binary relations, which
is a logical counterpart to the class RRA of (representable) re-
lation algebras introduced by [Tarski, 1941]. The formulas of
the classical logic of binary relations are intended to represent
statements saying that two objects are related. Relations are
specified in the form of relational terms. Terms are built from
relational variables and/or relational constants with relational
operations of union, intersection, complement, composition,
and converse.

Relational dual tableaux are powerful tools for verification
of validity as well as for proving entailment, model checking
(i.e., verification of truth of a statement in a particular fixed
finite model) and satisfaction (i.e., verification that a state-
ment is satisfied by some fixed objects of a finite model).
A comprehensive survey on applications of dual tableaux
methodology to various theories and logics can be found in
[Orłowska and Golińska-Pilarek, 2011]. The main advantage
of relational methodology is the possibility of representation
within a uniform formalism the three basic components of
formal systems: syntax, semantics, and deduction apparatus.
Hence, the relational approach provides a general framework
for representation, investigation and implementation of theo-
ries with different languages and/or semantics.

The paper is organized as follows. In Section 2 we present
the Propositional Dynamic Logic of qualitative velocity, QV,
its syntax and semantics. Relational formalization of the logic
is presented in Section 3. In Section 4 we present the rela-
tional dual tableau for this logic, and we prove its soundness
and completeness; moreover, we show an example of the re-
lational proof of validity of a formula. Conclusions and final
remarks are discussed in Section 5.

2 Logic QV for reasoning with qualitative
velocity

In this section we present the syntax and semantics of the
logic QV for order of magnitude qualitative reasoning to deal
with the concept of qualitative velocity. We consider the set of
qualitative velocities L1 = {z, v1, v2, v3}, where z, v1, v2, v3
represent zero, slow, normal, and quick, respectively; and the
set of qualitative orientations L2 = {n, o1, o2, o3, o4} repre-
senting none, front, right, back, and left orientations, respec-
tively. Thus, we consider four qualitative classes for the mod-
ule of the velocities, and five qualitative classes for the orien-
tation of the velocity. Orientations oj and oj+2, for j ∈ {1, 2},
are interpreted as opposite. Furthermore, orientations oj and
oj+1, for j ∈ {1, 2, 3}, are interpreted as perpendicular.

The logic QV is an extension of propositional dynamic logic
PDL which is a framework for specification and verification
of dynamic properties of systems. It is a multimodal logic
with the modal operations of necessity and possibility de-
termined by binary relations understood as state transition
relations or input-output relations associated with computer
programs. The vocabulary of the language of QV consists
of symbols from the following pairwise disjoint sets: V - a
countably infinite set of propositional variables; C = L1×L2

- the set of constants representing labels from the set L1×L2;

SP = {⊗?|? ∈ C} - the set of relational constants represent-
ing specific programs; {∪, ; , ?,∗ } - the set of relational opera-
tions, where ∪ is interpreted as a nondeterministic choice, ; is
interpreted as a sequential composition of programs, ? is the
test operation, and ∗ is interpreted as a nondeterministic itera-
tion; {¬,∨,∧,→, [ ], 〈〉} - the set of propositional operations
of negation, disjunction, conjunction, implication, necessity,
and possibility, respectively.

The set of QV-relational terms interpreted as compound pro-
grams and the set of QV-formulas are the smallest sets con-
taining SP and V ∪ {⊥} ∪ C, respectively, and satisfying the
following conditions:

• If S and T are QV-relational terms, then so are S ∪ T ,
S ;T , and T ∗.
• If ϕ is a QV-formula, then ϕ? is a QV-relational term.
• Ifϕ and ψ are QV-formulas, then so are¬ϕ,ϕ∨ψ,ϕ∧ψ,

and ϕ→ ψ.
• If ϕ is a QV-formula and T is a QV-relational term, then

[T ]ϕ and 〈T 〉ϕ are QV-formulas.

Given a binary relationR on a setW andX ⊆W , we define:

R(X)
df
= {w ∈W | ∃x ∈ X, (x,w) ∈ R}.

Fact 1 For every binary relation R on a set W and for all
X,Y ⊆W :

R(X) ⊆ Y iff (R−1 ; (X ×W )) ⊆ (Y ×W ).

A QV-model is a structureM = (W,m), where W is a non-
empty set of states andm is a meaning function satisfying the
following conditions:

• W =
⋃

?∈C ? where all ?’s are pairwise disjoint subsets
of states understood as states of objects affected by a
qualitative velocity
• m(p) ⊆W for every p ∈ V
• m(?) = ?, for every ? ∈ C
• m(⊗?) ⊆ W × W , for every ⊗? ∈ SP, and for all
v, vr, vs ∈ L1 and for all o, oj, oj+1, oj+2 ∈ L2, the fol-
lowing hold:

(S1) m(⊗(v,o)) ;m(⊗(z,n)) = m(⊗(v,o))

(S2) m(⊗(v,oj)) ;m(⊗(v,oj+2)) = m(⊗(z,n)), for
j ∈ {1, 2}

(S3) m(⊗(v,oj+1))(m(v, oj)) ⊆ m(v, oj) ∪ m(v, oj+1),
for j ∈ {1, 2, 3}

(S4) m(⊗(vs,oj+1))(m(vr, oj)) ⊆ m(vs, oj+1), for
j ∈ {1, 2, 3} and r < s

(S5) m(⊗(vs,o))(m(vr, o)) ⊆ m(vs, o) ∪ m(v3, o), for
s ∈ {2, 3} and r < s

(S6) m(⊗(vs,oj+2))(m(vr, oj)) ⊆ m(vs, oj+2) ∪
m(vs−1, oj+2), for j ∈ {1, 2}, s ∈ {2, 3}, and
r < s

m extends to all the compound QV-relational terms and for-
mulas:
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• m(T ∗) = m(T )∗ =
⋃

i≥0m(T i), where T 0 is the iden-

tity relation on W and T i+1 df
= (T i ;T )

• m(S ∪ T ) = m(S) ∪m(T )

• m(S ;T ) = m(S) ;m(T )

• m(ϕ?) = {(s, s) ∈W ×W : s ∈ m(ϕ)}
• m(¬ϕ) = W \m(ϕ)

• m(ϕ ∨ ψ) = m(ϕ) ∪m(ψ)

• m(ϕ ∧ ψ) = m(ϕ) ∩m(ψ)

• m(ϕ→ ψ) = m(¬ϕ) ∪m(ψ)

• m([T ]ϕ) = {s ∈ W | for all t ∈ W, if (s, t) ∈
m(T ), then t ∈ m(ϕ)}
• m(〈T 〉ϕ) = {s ∈ W | exists t ∈ W such that (s, t) ∈
m(T ) and t ∈ m(ϕ)}

Given a QV-modelM = (W,m), a QV-formula ϕ is said to
be satisfied inM by s ∈ W ,M, s |= ϕ for short, whenever
s ∈ m(ϕ). As usual, a formula is true in a model whenever it
is satisfied in all states of the model and it is QV-valid if it is
true in all QV-models.

Intuitively, (s, s′) ∈ m(T ) means that there exists a compu-
tation of program T starting in the state s and terminating in
the state s′. Program S∪T performs S or T nondeterministi-
cally; program S ;T performs first S and then T . Expression
ϕ? is a command to continue if ϕ is true, and fail otherwise.
Program T ∗ performs T zero or more times sequentially. For
example, the formula 〈(v1, o4)?〉ϕ is satisfied in s whenever
s is a slow velocity towards the left orientation and ϕ is satis-
fied in s; the formula [⊗∗(v3,o2)]ϕ is satisfied in s iff for every
velocity s′ obtained by the repetition of the composition of
s with a quick velocity towards the right orientation a non-
deterministically chosen finite number of times, ϕ is satisfied
in s′; the formula [⊗(v1,o4) ;⊗(v2,o2)]ϕ is satisfied in s iff for
every velocity s′ obtained by composing s with a slow veloc-
ity towards the left orientation followed by a normal velocity
towards the right orientation, ϕ is satisfied in s′.

3 Relational representation of logic QV

In this section we present the relational formalization of logic
QV providing a framework for deduction in logic QV. First,
we define the relational logic RLQV appropriate for express-
ing QV-formulas. Then, we translate all QV-formulas into
relational terms and we show the equivalence of validity be-
tween a modal formula and its corresponding relational for-
mula. The vocabulary of the language of the relational logic
RLQV consists of symbols from the following pairwise dis-
joint sets: OV = {x, y, z, . . .} - a countably infinite set of ob-
ject variables; RV = {P,Q, . . .} - a countably infinite set of
binary relational variables; RC = {1, 1′} ∪ {R?,Ψ?|? ∈ C}
- the set of relational constants, where C is defined as in QV-
models; OP = {−,∪,∩, ; ,−1,∗ } - the set of relational oper-
ation symbols representing the usual operations on relations
(complement (−), union (∪), intersection (∩), composition
(; ), and converse (−1)) and the specific operation of iteration

of a relation (∗). The intuitive meaning of the relational rep-
resentation of the symbols of logic QV is as follows: propo-
sitional variables are represented by relational variables; con-
stants from C are represented by relational constants Ψ? in-
terpreted as right ideal binary relations; relational constants
R? correspond to specific programs ⊗?; the relational con-
stants 1 (the universal relation), 1′ (the identity relation), and
relational operations are used to represent compound QV-
formulas.

The set of RLQV-terms is the smallest set containing relational
variables and relational constants and closed on all the rela-
tional operations. RLQV-formulas are of the form xTy, where
T is an RLQV-relational term and x, y are object variables. An
RLQV-model is a structureM = (W,m) where W is defined
as in QV-models andm is the meaning function that satisfies:

• m(P ) ⊆W ×W , for every P ∈ RV ∪ {R?|? ∈ C}
• m(Ψ?) = ?×W , for every ? ∈ C
• m(1′) is an equivalence relation on W

• m(1′) ;m(P ) = m(P ) ;m(1′) = m(P ), for every P ∈
RV ∪ RC (the extensionality property)

• m(1) = W ×W
• For all v, vr, vs ∈ L1 and for all o, oj, oj+1, oj+2 ∈ L2,

the following hold:

(RS1) m(R(v,o)) ;m(R(z,n)) = m(R(v,o))

(RS2) m(R(v,oj)) ;m(R(v,oj+2)) = m(R(z,n)), for
j ∈ {1, 2}

(RS3) m(R(v,oj+1))
−1 ;m(Ψ(v,oj)) ⊆ m(Ψ(v,oj)) ∪

m(Ψ(v,oj+1)), for j ∈ {1, 2, 3}
(RS4) m(R(vs,oj+1))

−1 ;m(Ψ(vr,oj)) ⊆ m(Ψ(vs,oj+1)), for
j ∈ {1, 2, 3} and r < s

(RS5) m(R(vs,o))
−1 ;m(Ψ(vr,o)) ⊆ m(Ψ(vs,o)) ∪

m(Ψ(v3,o)), for s ∈ {2, 3} and r < s

(RS6) m(R(vs,oj+2))
−1 ;m(Ψ(vr,oj)) ⊆ m(Ψ(vs,oj+2)) ∪

m(Ψ(vs−1,oj+2)), for j ∈ {1, 2}, s ∈ {2, 3}, and
r < s

• m extends to all the compound relational terms as fol-
lows:

m(−T ) = m(1) ∩ −m(T ),
m(S ∪ T ) = m(S) ∪m(T ),
m(S ∩ T ) = m(S) ∩m(T ),
m(T−1) = m(T )−1,
m(S ;T ) = m(S) ;m(T ),
m(T ∗) = m(T )∗.

Symbols −, ∪, ∩, −1, and ; occurring at the right sides
of equalities above denote the usual operations on rela-
tions of complement, union, intersection, converse, and
composition, respectively.

Observe that the conditions (RS1), . . . , (RS6) are relational
counterparts of the conditions (S1), . . . , (S6) assumed in QV-
models. An RLQV-modelM in which 1′ is interpreted as the
identity is said to be standard. Let v:OV→W be a valuation
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in an RLQV-modelM. An RLQV-formula xTy is said to be
satisfied inM by v whenever (v(x), v(y)) ∈ m(T ). A for-
mula ϕ is true inM if it is satisfied inM by all the valuations
and it is RLQV-valid whenever it is true in all RLQV-models.

Now, we define the translation τ of QV-terms and QV-
formulas into RLQV-relational terms. Let τ ′ be a one-to-
one mapping that assigns relational variables to propositional
variables. The translation τ is defined as follows:

• τ(p) = (τ ′(p) ; 1), for every p ∈ V
• τ(?) = Ψ?, for every ? ∈ C
• τ(⊗?) = R?, for every ⊗? ∈ SP

For all relational terms T and S:

• τ(T ∗) = τ(T )∗

• τ(S ∪ T ) = τ(S) ∪ τ(T )

• τ(S ;T ) = τ(S) ; τ(T )

• τ(¬ϕ) = −τ(ϕ)

• τ(ϕ?) = 1′ ∩ τ(ϕ)

• τ(ϕ ∨ ψ) = τ(ϕ) ∪ τ(ψ)

• τ(ϕ ∧ ψ) = τ(ϕ) ∩ τ(ψ)

• τ(ϕ→ ψ) = τ(¬ϕ ∨ ψ)

• τ(〈T 〉ϕ) = τ(T ) ; τ(ϕ)

• τ([T ]ϕ) = −(τ(T ) ;−τ(ϕ)).

Relational terms obtained from formulas of logic QV include
both declarative information and procedural information pro-
vided by these formulas. The declarative part which repre-
sents static facts about a domain is represented by means of
a Boolean reduct of algebras of relations, and the procedural
part, which is intended to model dynamics of the domain, re-
quires the relational operations. In the relational terms which
represent the formulas after the translation, the two types of
information receive a uniform representation and the process
of reasoning about both statics and dynamics, and about rela-
tionships between them can be performed within the frame-
work of a single uniform formalism.

Theorem 1
For every QV-formula ϕ and for all object variables x and y,
the following conditions are equivalent:

1. ϕ is QV-valid.

2. xτ(ϕ)y is RLQV-valid.

4 Relational dual tableau for QV
In this section we present a dual tableau for the logic RLQV
that can be used for verification of validity of QV-formulas.
Relational dual tableaux are determined by the axiomatic sets
of formulas and rules which apply to finite sets of relational
formulas. The axiomatic sets take the place of axioms. The
rules are intended to reflect properties of relational operations
and constants. There are two groups of rules: decomposi-
tion rules and specific rules. Although most often the rules
of dual tableaux are finitary, the dual tableau system for logic

QV includes an infinitary rule reflecting the behaviour of an
iteration operation. Given a formula, the decomposition rules
of the system enable us to transform it into simpler formulas,
or the specific rules enable us to replace a formula by some
other formulas. The rules have the following general form:

(rule)
Φ(x)

Φ1(x1, u1, w1) | . . . |Φn(xn, un, wn) | . . .

where n ∈ J , for some (possibly infinite) set J , Φ(x) is
a finite (possibly empty) set of formulas whose object vari-
ables are among the elements of set(x), where x is a fi-
nite sequence of object variables and set(x) is a set of ele-
ments of sequence x; every Φj(xj , uj , wj), j ∈ J , is a fi-
nite non-empty set of formulas, whose object variables are
among the elements of set(xj) ∪ set(uj) ∪ set(wj), where
xj , uj , wj are finite sequences of object variables such that
set(xj) ⊆ set(x), set(uj) consists of the object variables that
may be instantiated to arbitrary object variables when the rule
is applied (usually to the object variables that appear in the
set to which the rule is being applied), set(wj) consists of
the object variables that must be instantiated to pairwise dis-
tinct new variables (not appearing in the set to which the rule
is being applied) and distinct from any variable of sequence
uj . A rule of the form (rule) is applicable to a finite set X
of formulas whenever Φ(x) ⊆ X . As a result of an applica-
tion of a rule of the form (rule) to set X , we obtain the sets
(X \Φ(x))∪Φj(xj , uj , wj), for every j ∈ J . A set to which
a rule is applied is called the premise of the rule, and the sets
obtained by the application of the rule are called its conclu-
sions. If the set J is finite, then a rule of the form (rule) is said
to be finitary, otherwise it is referred to as infinitary. Thus,
if J has n elements, then the rule of the form (rule) has n
conclusions.

A finite set {ϕ1, . . . , ϕn} of RLQV-formulas is said to be an
RLQV-set whenever for every RLQV-modelM and for every
valuation v inM there exists i ∈ {1, . . . , n} such that ϕi is
satisfied by v inM. It follows that the first-order disjunction
of all the formulas from an RLQV-set is valid in the first-order
logic. A rule of the form (rule) is RLQV-correct whenever for
every finite set X of RLQV-formulas, X ∪ Φ(x) is an RLQV-
set if and only ifX∪Φj(xj , uj , wj) is an RLQV-set, for every
j ∈ J , i.e., the rule preserves and reflects validity. It follows
that ‘,’ (comma) in the rules is interpreted as disjunction and
‘|’ (branching) is interpreted as conjunction.

RLQV-dual tableau includes decomposition rules of the fol-
lowing forms, for any object variables x and y and for any
relational terms S and T :

(∪)
x(S ∪ T )y

xSy, xTy
(−∪)

x−(S ∪ T )y

x−Sy | x−Ty

(∩)
x(S ∩ T )y

xSy |xTy
(−∩)

x−(S ∩ T )y

x−Sy, x−Ty

(−)
x−−Ty
xTy

(−1)
xT−1y

yTx
(−−1)

x−T−1y

y−Tx
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(; )
x(S ;T )y

xSz, x(S ;T )y | zTy, x(S ;T )y

for any object variable z

(−; )
x−(S ;T )y

x−Sz, z−Ty
(∗)

xT ∗y

xT iy, xT ∗y

for a new object variable z

(−∗) x−(T ∗)y

x−(T 0)y | . . . |x−(T i)y | . . .
for any i ≥ 0 where T 0 = 1′, T i+1 = T ;T i

Below we list the specific rules of RLQV-dual tableau.

For all object variables x, y, z and for every relational term
T ∈ RC:

(1′1)
xTy

xTz, xTy | y1′z, xTy

(1′2)
xTy

x1′z, xTy | zTy, xTy

For every ? ∈ C and for all object variables x and y:

(right)
xΨ?y

xΨ?z, xΨ?y
for any object variable z

For every T ∈ {R(z,n)} ∪ {R(vi,oj) | 1 ≤ i ≤ 3, 1 ≤ j ≤ 4} ∪
{Ψ?|? ∈ C} and for all object variables x and y:

(cut)
xTy |x−Ty

For all v, vr, vs ∈ L1, o, oj, oj+1, oj+2 ∈ L2, and for all object
variables x and y:

(r1 ⊆)
xR(v,o)y

xR(v,o)z, xR(v,o)y | zR(z,n)y, xR(v,o)y

for any object variable z

(r1 ⊇)
x−R(v,o)y

x−R(v,o)z, z−R(z,n)y, x−R(v,o)y

for a new object variable z

(r2 ⊆)
xR(z,n)y

xR(v,oj)z, xR(z,n)y | zR(v,oj+2)y, xR(z,n)y

for any object variable z and j ∈ {1, 2}

(r2 ⊇)
x−R(z,n)y

x−R(v,oj)z, z−R(v,oj+2)y, x−R(z,n)y

for a new object variable z and j ∈ {1, 2}

(r3)
xΨ(v,oj)y, xΨ(v,oj+1)y

zR(v,oj+1)x,K | zΨ(v,oj)y,K
for any object variable z

j ∈ {1, 2, 3} and K = xΨ(v,oj)y, xΨ(v,oj+1)y

(r4)
xΨ(vs,oj+1)y

zR(vs,oj+1)x, xΨ(vs,oj+1)y | zΨ(vr,oj)y, xΨ(vs,oj+1)y

for any object variable z and j ∈ {1, 2, 3} and r < s

(r5)
xΨ(vs,o)y, xΨ(v3,o)y

zR(vs,o)x,K | zΨ(vr,o)y,K

for any object variable z

s ∈ {2, 3} and r < s and K = xΨ(vs,o)y, xΨ(v3,o)y

(r6)
xΨ(vs,oj+2)y, xΨ(vs−1,oj+2)y

zR(vs,oj+2)x,K | zΨ(vr,oj)y,K

for any object variable z and j ∈ {1, 2}, s ∈ {2, 3},
r < s, and K = xΨ(vs,oj+2)y, xΨ(vs−1,oj+2)y

A set of RLQV-formulas is said to be an RLQV-axiomatic set
whenever it includes a subset of either of the following forms,
for all object variables x, y for every relational term T , for any
? ∈ C, and for any # ∈ C \ {?}:

(Ax1) {x1′x}

(Ax2) {x1y}

(Ax3) {xTy, x−Ty}

(Ax4)
⋃

?∈C{xΨ?y}

(Ax5) {x−Ψ?y, x−Ψ#y}

Let ϕ be an RLQV-formula. An RLQV-proof tree for ϕ is a
tree with the following properties:

• The formula ϕ is at the root of this tree.

• Each node except the root is obtained by an application
of an RLQV-rule to its predecessor node.

• A node does not have successors whenever its set of for-
mulas is an RLQV-axiomatic set or none of the rules is
applicable to its set of formulas.

Observe that the proof trees are constructed in the top-down
manner, and hence every node has a single predecessor node.

A branch of an RLQV-proof tree is said to be closed when-
ever it contains a node with an RLQV-axiomatic set of for-
mulas. A tree is closed iff all of its branches are closed. An
RLQV-formula ϕ is RLQV-provable whenever there is a closed
RLQV-proof tree for it which is then refereed to as its RLQV-
proof.
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4.1 Soundness
In order to prove that an RLQV-provable formula is RLQV-
valid it suffices to show that all the axiomatic sets are RLQV-
valid and all the rules of an RLQV-dual tableau preserve and
reflect validity of sets which are their premisses and conclu-
sions.

Proposition 1
1. The RLQV-rules are RLQV-correct.

2. The RLQV-axiomatic sets are RLQV-sets.

Due to Proposition 1, we obtain:

Theorem 2 (Soundness)
Let ϕ be an RLQV-formula. If ϕ is RLQV-provable, then it is
RLQV-valid.

Proof
Let ϕ be an RLQV-provable formula. Then, there exists an
RLQV-proof tree of ϕ such that each of its branches is closed,
that is it ends with an RLQV-axiomatic set of formulas. Thus,
by Proposition 1, going from the bottom to the top of the tree,
we conclude that the set of formulas at the root of the tree is
RLQV-valid. 2

4.2 Completeness

In order to prove that an RLQV-valid formula has an RLQV-
proof, we suppose that the formula does not have any RLQV-
proof and we construct a model falsifying a formula in ques-
tion.

A branch b of an RLQV-proof tree is said to be complete when-
ever it is closed or it satisfies the following RLQV-completion
conditions:

For all object variables x and y and for all relational terms S
and T :

Cpl(∪) (resp. Cpl(−∩)) If x(S ∪ T )y ∈ b (resp. x−(S ∩
T )y ∈ b), then both xSy ∈ b (resp. x−Sy ∈ b) and xTy ∈ b
(resp. x−Ty ∈ b), obtained by an application of the rule (∪)
(resp. (−∩)).
Cpl(∩) (resp. Cpl(−∪)) If x(S ∩ T )y ∈ b (resp. x−(S ∪
T )y ∈ b), then either xSy ∈ b (resp. x−Sy ∈ b) or xTy ∈ b
(resp. x−Ty ∈ b), obtained by an application of the rule (∩)
(resp. (−∪)).
Cpl(−) If x(−−T )y ∈ b, then xTy ∈ b, obtained by an
application of the rule (−).
Cpl(−1) If xT−1y ∈ b, then yTx ∈ b, obtained by an appli-
cation of the rule (−1).
Cpl(−−1) If x−T−1y ∈ b, then y−Tx ∈ b, obtained by an
application of the rule (−−1).
Cpl(; ) If x(S ;T )y ∈ b, then for every object variable z, ei-
ther xSz ∈ b or zTy ∈ b, obtained by an application of the
rule (; ).
Cpl(−; ) If x−(S ;T )y ∈ b, then for some object variable z,
both x−Sz ∈ b and z−Ty ∈ b, obtained by an application of
the rule (−; ).
Cpl(∗) If xT ∗y ∈ b, then for every i ≥ 0, xT iy ∈ b, obtained
by an application of the rule (∗);

Cpl(−∗) If x−(T ∗)y ∈ b, then for some i ≥ 0, x−(T i)y ∈ b,
obtained by an application of the rule (−∗).

For all object variables x and y and for every relational term
T ∈ RC:

Cpl(1′1) If xTy ∈ b, then for every object variable z, either
xTz ∈ b or y1′z ∈ b, obtained by an application of the rule
(1′1). Cpl(1′2) If xTy ∈ b, then for every object variable z,
either x1′z ∈ b or zTy ∈ b, obtained by an application of the
rule (1′1).

For every ? ∈ C and for all object variables x and y:

Cpl(right) If xΨ?y ∈ b, then for every object variable z,
xΨ?z ∈ b, obtained by an application of the rule (right).

For every T ∈ {R(v,o), R(z,n)} ∪ {Ψ?|? ∈ C} and for all
object variables x and y:

Cpl(cut) Either xTy ∈ b or x−Ty ∈ b, obtained by an appli-
cation of the rule (cut).

For all v, vr, vs ∈ L1, o, oj, oj+1, oj+2 ∈ L2, and for all object
variables x and y:

Cpl(r1 ⊆) If xR(v,o)y ∈ b, then for every object variable z
either xR(v,o)z ∈ b or zR(z,n)y ∈ b, obtained by an applica-
tion of the rule (r1 ⊆).
Cpl(r1 ⊇) If x−R(v,o)y ∈ b, then for some object variable
z both x−R(v,o)z ∈ b and z−R(z,n)y ∈ b, obtained by an
application of the rule (r1 ⊇).
Cpl(r2 ⊆) If xR(z,n)y ∈ b, then for every object variable z
either xR(v,oj)z ∈ b or zR(v,oj+2)y ∈ b, for j ∈ {1, 2}, ob-
tained by an application of the rule (r2 ⊆).
Cpl(r2 ⊇) If x−R(z,n)y ∈ b, then for some object variable
z both x−R(v,oj)z ∈ b and z−R(v,oj+2)y ∈ b, for j ∈ {1, 2},
obtained by an application of the rule (r2 ⊇).
Cpl(r3) If j ∈ {1, 2, 3} and both xΨ(v,oj)y ∈ b and
xΨ(v,oj+1)y ∈ b, then for every object variable z either
zR(v,oj+1)x ∈ b or zΨ(v,oj)y ∈ b, obtained by an application
of the rule (r3).
Cpl(r4) If j ∈ {1, 2, 3}, r < s and xΨ(vs,oj+1)y ∈ b, then for
every object variable z either zR(vs,oj+1)x ∈ b or zΨ(vr,oj)y ∈
b, obtained by an application of the rule (r4).
Cpl(r5) If s ∈ {2, 3}, r < s and both xΨ(vs,o)y ∈ b
and xΨ(v3,o)y ∈ b, then for every object variable z either
zR(vs,o)x ∈ b or zΨ(vr,o)y ∈ b, obtained by an application of
the rule (r5).
Cpl(r6) If j ∈ {1, 2}, s ∈ {2, 3}, r < s and both
xΨ(vs,oj+2)y ∈ b and xΨ(vs−1,oj+2)y ∈ b, then for every
object variable z either zR(vs,oj+2)x ∈ b or zΨ(vr,oj)y ∈ b,
obtained by an application of the rule (r6).

An RLQV-proof tree is said to be complete if and only if all of
its branches are complete. A complete non-closed branch of
an RLQV-proof tree is said to be open.

Note that every RLQV-proof tree can be extended to a com-
plete RLQV-proof tree, i.e., for every RLQV-formula ϕ there
exists a complete RLQV-proof tree for ϕ.
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Due to the forms of RLQV-rules, we obtain:

Fact 2
If a node of an RLQV-proof tree contains an RLQV-formula
xTy or x−Ty, for a relational term T ∈ RV ∪ RC, then all
of its successors contain this formula as well.

The above property enable us to have the following result.

Proposition 2
For every complete branch b of an RLQV-proof tree and for
all object variables x and y, the following hold:

1. If there is a relational term T such that xTy ∈ b and
x−Ty ∈ b, then b is closed.

2. If for every ? ∈ C there exists an object variable z such
that xΨ?z ∈ b, then b is closed.

3. If x−Ψ?y ∈ b and x−Ψ#y ∈ b, for some ?,# ∈ C such
that ? 6= #, then b is closed.

In order to prove completeness of RLQV-dual tableau, first,
we construct a branch structure Mb determined by an open
branch b of a complete RLQV-proof tree.

The branch structure is of the formMb = (W b,mb), where:

• W b =
⋃

?∈C ?
b, where ?b = {x ∈ OV |xΨ?y 6∈

b, for some y ∈ OV}
• mb(T ) = {(x, y) ∈ W b × W b |xTy 6∈ b}, for every
T ∈ RV ∪ RC
• mb extends to all the compound relational terms as in

the RLQV-models.

Proposition 3 (Branch Model Property) For every open
branch b of an RLQV-proof tree,Mb is an RLQV-model.

Let vb:OV→W b be a valuation inMb such that vb(x) = x,
for every x ∈ OV. Since W b = OV, the valuation vb is well
defined.

Proposition 4
For every open branch b of an RLQV-proof tree and for every
RLQV-formula ϕ, ifMb, vb |= ϕ, then ϕ 6∈ b.

Given an RLQV-branch modelMb, since mb(1′) is an equiv-
alence relation on W b, we may define the quotient model
Mb

q = (W b
q ,m

b
q) as:

• W b
q = {‖x‖|x ∈ W b}, where ‖x‖ is the equivalence

class of mb(1′) generated by x
• mb

q(T ) = {(‖x‖, ‖y‖)) ∈ W b
q ×W b

q |(x, y) ∈ mb(T )},
for every T ∈ RV ∪ RC
• mb

q extends to all the compound relational terms as in
the RLQV-models.

Since a branch model satisfies the extensionality property, the
definition of mb

q(T ) is correct.

Let vbq be a valuation inMb
q such that vbq(x) = ‖x‖, for every

object variable x.

Proposition 5

1. The modelMb
q is a standard RLQV-model.

2. For every RLQV-formula ϕ, Mb, vb |= ϕ if and only if
Mb

q, v
b
q |= ϕ.

Thus, we obtain:

Theorem 3 (Completeness)
Let ϕ be an RLQV-formula. If ϕ is true in all standard RLQV-
models, then ϕ is RLQV-provable.

Proof
Assume ϕ is true in all standard RLQV-models. Suppose there
is no any closed RLQV-proof tree for ϕ. Then there exists a
complete RLQV-proof tree for ϕ with an open branch, say b.
Since ϕ ∈ b, by Proposition 4, ϕ is not satisfied by vb in
the branch modelMb. By Proposition 5(2), ϕ is not satisfied
by vbq in the quotient model Mb

q . Since Mb
q is a standard

RLQV-model, ϕ is not true in all standard RLQV-models, a
contradiction. 2

Theorems 1, 2, and 3, imply:

Theorem 4 (Relational Soundness and Completeness)
For every QV-formula ϕ and for all object variables x and y,
the following conditions are equivalent:

1. ϕ is QV-valid.

2. xτ(ϕ)y is RLQV-provable.

Example 1 Let ϕ be a QV-formula of the following form:

ϕ = (v, o1)→ [⊗(v,o2)]((v, o1) ∨ (v, o2)).

The translation of ϕ into RLQV-term is:

τ(ϕ) = −Ψ(v,o1) ∪ −(R(v,o2) ;−(Ψ(v,o1) ∪Ψ(v,o2))).

Figure 1 shows RLQV-proof of the formula xτ(ϕ)y, which by
Theorem 4 proves QV-validity of ϕ. In each node of the tree
presented in the example we underline the formulas which
determine the rule that has been applied during the construc-
tion of the tree and we indicate which rule has been applied.
If a rule introduces a variable, then we write how the variable
has been instantiated. Furthermore, in each node we write
only those formulas which are essential for the application
of a rule and the succession of these formulas in the node is
usually motivated by the reasons of formatting.

5 Conclusions and future work
We presented sound and complete relational dual tableau for
verification of validity of QV-formulas. This system is a first
step in order to provide a general framework for improving
the capacity of reasoning about moving objects. The direction
of our future work is twofold. First of all, we will focus on
the extension of the logic by considering other spatial compo-
nents (relative position, closeness, etc.). On the other hand,
it would be needed a prover which is a decision procedure
based on the dual tableau presented in this paper.
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(∪)

x−Ψ(v,o1)
y, x−(R(v,o2)

;−(Ψ(v,o1)
∪Ψ(v,o2)

))y

?
(−; ) with a new variable z and (−)
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y, x−R(v,o2)

z, z(Ψ(v,o1)
∪Ψ(v,o2)

)y

?
(∪)

x−Ψ(v,o1)
y, x−R(v,o2)

z, zΨ(v,o1)
y, zΨ(v,o2)

y

�
��� (r3) with variable x

H
HHj

xR(v,o2)
z, x−R(v,o2)

z, . . .

closed
xΨ(v,o1)

y, x−Ψ(v,o1)
y, . . .

closed

Figure 1: RLQV-proof of QV-validity of the formula
(v, o1)→ [⊗(v,o2)]((v, o1) ∨ (v, o2)).
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J. Golińska-Pilarek. Dual Tableaux: Foundations,
Methodology, Case Studies, volume 36 of Trends in Logic.
Springer Science, 2011.

[Randell et al., 1992] D Randell, Z Cui, and A.G. Cohn. A
spatial logic based on regions and connection. Proceedings
of KR, pages 165–176, 1992.

[Rasiowa and Sikorski, 1960] H. Rasiowa and R. Sikorski.
On gentzen theorem. Fundamenta Mathematicae, 48:57–
69, 1960.

[Stolzenburg et al., 2002] F. Stolzenburg, O. Obst, and
J. Murray. Qualitative velocity and ball interception. Lec-
ture Notes in Artificial Intelligence, 2479:283–298, 2002.

[Tarski, 1941] A. Tarski. On the calculus of relations. Jour-
nal of Symbolic Logic, 6:73–89, 1941.

[Van de Weghe et al., 2005] N. Van de Weghe, B Kuijpers,
P. Bogaert, and P. De Maeyer. A qualitative trajectory cal-
culus and the composition of its relations. Lecture Notes
in Computer Science, 3799:60–76, 2005.

QR2011: 25th International Workshop on Qualitative Reasoning

41




