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Abstract 

The human visual system relies heavily on categorical repre-
sentations, similar to the qualitative representations in com-
puting. Here we examine categorical topological relations be-
tween objects. When asked to detect changes between object 
arrangements, participants were better at detecting those 
changes that crossed hypothesized category boundaries, such 
as 'overlapping', or 'touching', compared to equally-sized 
changes that did not. These effects were magnified at in-
creased memory load, presumably because categorical rela-
tions forms a more efficient code. This finding, predicted by 
previous computational modeling work, suggests that cate-
gorical relations are critical for remembering and comparing 
complex images.  

Introduction 

Visual comparison plays a central role in our mental lives. 

We learn by comparing what we see to what we’ve seen be-

fore, whether it is an abstract scientific diagram or a com-

plex physical environment. As researchers, it is imperative 

that we better understand the representations and processes 

that guide visual comparison – how and when do we identify 

commonalities and differences? 

One key factor is the type of information being compared. 

Visual information can be divided into two types: metric and 

categorical. Metric information describes continuous val-

ues, such as an object’s location or orientation in space. Cat-

egorical, or qualitative, information divides the continuous 

world into discrete categories, indicating that an object is 

right of another, or that an object’s orientation is vertical. 

During comparison, it is easier to distinguish two stimuli if 

there is a categorical difference between them. For example, 

it is easier to distinguish blue from green than to distinguish 

two shades of green (Bornstein & Korda, 1984). This effect 

has been labeled categorical perception. 

Categorical perception of object properties like color has 

been heavily studied. However, categorical perception of re-

lations between objects has seen less attention. We address 

this omission, directly demonstrating that categorical rela-

tions support difference detection. The relations tested are 

drawn from previous computational modeling work, which 

has suggested a range of powerful qualitative relations for 

discretizing the continuous world (Randall, Cui, & Cohn, 

1992; Lovett & Forbus, 2011b). 

The work also introduces a new paradigm that varies stim-

ulus complexity, to examine its interaction with categorical 

perception. We find that as stimuli become more complex, 

participants increasingly rely on categorical relations. This 

finding suggests categorical relations may play a pivotal role 

in supporting difficult visual comparisons. 

We begin with background on the categorical/metric dis-

tinction, including evidence that these two information types 

are represented independently in the brain. We then describe 

computational modeling work which makes concrete pre-

dictions about the categorical relations used in visual com-

parison. We present two behavioral experiments which test 

the model predictions. We close by considering directions 

for future work. 

Background 

Metric representations, also known as coordinate or quanti-

tative, describe objects in a mental coordinate system anal-

ogous to the real world. Categorical representations, also 

known as qualitative, carve up this space into regions and 

apply labels to them. Categorical representations are redun-

dant, containing the same information found in metric rep-

resentations. However, research suggests people rely on cat-

egories to help them remember and compare images. 

For example, when participants are asked to remember a 

dot’s location in a circle and later generate it, their memories 

are biased by the quadrant in which the dot was located 

(Huttenlocher, Hedges, and Duncan, 1991). If the dot was in 

the upper left quadrant, then participants tend to generate a 

location skewed towards the center of the upper left quad-

rant. This suggests that participants integrate their metric 

and categorical representations of the dot’s location, using 

the two together to help them remember. 

Categorical perception of color suggests a similar integra-

tion (Bornstein & Korda, 1984). Color patches are designed 

such that the quantitative difference in their hues is always 



the same. In some cases they lay on either side of a category 

boundary (blue and green), while in other cases they are in 

the same category. Participants are better able to distinguish 

patches with different color categories, indicating that they 

use the categories to aid them in making the comparison.  

Categorical perception of object features has received sig-

nificant attention (e.g., color: Roberson, Pak, & Hanley, 

2008; Regier & Kay, 2009; size: Kosslyn et al., 1977; loca-

tion: Maki, 1982; angles: Rosielle & Cooper, 2001). How-

ever, to our knowledge only one study (Kim & Biederman, 

2012) has demonstrated categorical perception of between-

object relations. Here, participants performed a match-to-

sample task, where they had to distinguish an identical im-

age from a distractor image (Figure 1: Given the top image, 

decide which of the lower images is the same). It was easier 

to distinguish the distractor image if it contained a different 

categorical relation, e.g., one object was now resting on the 

other. However, the images were always tilted to different 

orientations. This may have biased participants towards us-

ing categorical information which is less orientation-de-

pendent. 

The categorical perception paradigm is valuable because 

it provides direct evidence that humans are encoding and 

comparing a particular set of visual categories. Thus, the 

lack of research on relational categorical perception is con-

cerning. It is also surprising, given the evidence that our 

brains may be hardwired to encode categorical relations. 

Distinct neural pathways for relational categories? 

Kosslyn and colleagues have argued that the right brain 

hemisphere specializes in metric spatial relations, while the 

left hemisphere specializes in categorical relations. This was 

first demonstrated with behavioral studies, showing that par-

ticipants judge coordinate relations (e.g., “Are the objects X 

inches apart?”) faster when stimuli are presented to the left 

visual field, connected to the right hemisphere. On the other 

hand, participants judge categorical relations (e.g., “Is one 

object above another?”) faster when stimuli are presented to 

the right visual field (Kosslyn et al., 1989). A larger set of 

follow-up studies have largely supported these findings, 

though the results have not always been consistent (see Ja-

ger & Postma, 2003 for a review).  

More recently fMRI studies have found that spatial judg-

ments generate activity in SPL (superior parietal lobule), 

with greater activation in the left hemisphere for categorical 

and in the right hemisphere for metric (Trojano et al., 2002; 

van der Ham et al., 2009). In addition, some categorical 

judgments trigger activation in the left IPL (inferior parietal 

lobule) (Trojano et al., 2002; Amorapanth, Widick, & 

Chaatterjee, 2010). The SPL and IPL are part of the dorsal 

stream, associated with encoding spatial location. 

Biederman and colleagues measured brain activity when 

participants compared images to determine if they were the 

same or different (Kim & Biederman, 2012; Hayworth, Les-

croart, & Biederman, 2011). Some differences changed a 

categorical relation, while others were purely metric. They 

found that categorical relation changes triggered activity in 

the lateral occipital complex (LOC), part of the ventral 

stream associated with object recognition. 

These two sets of findings suggest categorical relations 

may be encoded in disparate parts of the visual pipeline, 

used for locating objects in space and identifying the ob-

jects. If so, these relations may play a critical role in visual 

perception. In the following section, we describe computa-

tional modeling work addressing the question of how cate-

gorical relations are used.  

Evidence from qualitative spatial reasoning 

There is also evidence for relational categories from the field 

of qualitative spatial reasoning. In this field, researchers of-

ten develop spatial calculi, i.e., sets of categorical relations 

for describing space in a computational system. For exam-

ple, the RCC8 relations (Randall, Cui, & Cohn, 1992) de-

scribe topological relationships between pairs of two-di-

mensional objects. While most research in this area is not 

concerned with human cognition, Klippel et al. (2012) have 

demonstrated a sensitivity to RCC8 relations in humans.  

In the Klippel studies, participants are given a series of 

animations and asked to group them together however 

they’d like. The animations, which contain simple two-di-

mensional objects, all start the same, but they end on differ-

ent frames. In particular, they vary in the topological rela-

tion that exists between the objects in the final frame. The 

experiments find that animations that end on a common 

RCC8 relation tend to be grouped together, suggesting, for 

example, that participants make a categorical distinction be-

tween when two objects are touching at the edges, and when 

they are overlapping.  

While the evidence from the grouping studies is im-

portant, it is somewhat limited by the complexity of the 

task—given an instruction to group animations together, it 

is difficult to say what criteria people may use. Thus, the 

evidence may be strengthened by using a simple comparison 

task as in the categorical perception studies. 

Computational Modeling Work 

We previously used computational models to explore cate-

gorical relations and their role in visual problem-solving 
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Figure 1. Stimuli from Kim & Biederman (2012). 



(Lovett et al., 2009; Lovett & Forbus, 2011; Lovett & For-

bus, in prep). Figure 2 presents the types of problems ex-

plored. Each problem requires comparing images and think-

ing about their commonalities and differences.  

The models build on structure-mapping theory (Gentner, 

1983; Falkenhainer, Forbus, & Gentner, 1989), a domain-

general theory of comparison and analogy in humans. Struc-

ture-mapping compares two relational representations, 

aligning the common relational structure to identify corre-

sponding elements. It provides a fast, efficient way of to 

compare complex stimuli and identify commonalities and 

differences. For it to work on images, the images must be 

represented as a set of objects, categorical features for each 

object, and categorical relations between the objects (Sagi, 

Gentner, & Lovett, 2012). 

Considering the tasks in Figure 2, our hypothesis was that 

people would be guided by categorical features and rela-

tions, and thus when they compared the images, their atten-

tion would be drawn to categorical commonalities and dif-

ferences. To model the tasks, it was necessary to develop a 

categorical vocabulary, a set of features and relations that 

would be automatically encoded by the models during prob-

lem-solving. This vocabulary was chosen based on the con-

straints of the problem-solving tasks, as well as psychologi-

cal theories and previous modeling work.  

Figure 3 presents an example, three categorical relations 

for describing topology. The relations are: 1) Intersect: The 

edges of two objects intersect. 2) Overlap: There is a com-

mon region found within two objects. 3) Contains: One ob-

ject contains another. Note that these three relations make 

similar distinctions to the RCC8 relations, and indeed they 

were inspired by those relations. However, unlike RCC8, 

these relations are not mutually exclusive; for example, if 

one object contains another, they may or may not have 

edges that intersect. For a complete description of the cate-

gorical vocabulary used in the models, see (Lovett & For-

bus, 2011b).  

Overall, the models proved effective at matching human 

performance on the tasks. In addition, the models generated 

several predictions about categorical relations and how hu-

mans use them. Two of these predictions were: 

Prediction 1: The models make concrete predictions 

about which categorical relations people will encode. For 

example, they predict the Intersect/Overlap/Contains re-

lations described above.  

Prediction 2: The models predict that as a task becomes 

more difficult,  or as visual stimuli become more complex, 

people will increasingly rely on categorical relations. There 

are two reasons for believing this: a) Categorical relations 

can be compared quickly and efficiently via structure-map-

ping. Thus, they can guide individuals in finding the com-

monalities and differences in complex stimuli. b) Categori-

cal relations are encoded in a simple, abstract manner, using 

symbols such as intersect. Thus, they may be remembered 

more easily than precise metric values (Rosielle & Cooper, 

2001). As memory demands increase, categorical relations 

should be increasingly useful for recording an image’s crit-

ical features. 

Below, we describe two experiments designed to test 

these predictions, focusing on the three topological rela-

tions.   

Experiments 

We tested relational categorical perception using pairs of 

circles. The stimuli (Figure 4) were designed such that the 

smaller circle’s position changes the same amount between 

each adjacent pair. However, in some cases this results in a 

categorical change to the relations between the circles. For 

example, when the change causes the two circles to touch, 

an intersect relation now exists between them. 

Experiments 1 and 2 tested participants’ ability to notice 

a change between adjacent circle pairs in Figure 4. There are 

15 total pairs: the 8 pairs in Figure 4, and 7 more pairs cre-

ated by moving the smaller circle to the left of the large cir-

cle. There are 14 intervals between these adjacent pairs. Of 

these, 8 intervals introduce a categorical change (e.g., a 

change from contains to intersect + contains), and 6 inter-

vals are purely metric (e.g., the two adjacent pairs that are 

both intersect + overlap). 

A key question was whether the advantage for detecting 

categorical changes would increase with stimulus complex-

ity. For these experiments, we operationalized complexity 

as set size. Participants had to detect differences in one, two, 

or three circle pairs (Figure 5B). 
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Figure 3. Topological relations. 
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Figure 2. Visual problem-solving tasks. A) Geometric Analogy. B) 

Oddity Task. C) Matrix Problem. 



General Methods 

These experiments used a sequential same-different para-

digm. Figure 5A depicts a typical trial with two pairs. Par-

ticipants were cued to attend to two quadrants. After 500 ms, 

circle pairs appeared in each quadrant and were visible for 

2500 ms. There was a 1000 ms delay (with a mask for the 

first 250 ms), and then the two circle pairs reappeared. Par-

ticipants pressed one key if the pairs were the same, and an-

other key (with their other hand) if either pair was different. 

When participants were incorrect, the word “Wrong” ap-

peared on the screen for 1000 ms. During this time, if a pair 

actually had changed, the display flipped between the origi-

nal and changed pair repeatedly to highlight the difference 

the participant had failed to notice. 

Half the trials were different trials where one of the pairs 

changed, while the other half were same trials. Half the dif-

ferent trials were categorical differences, while the other 

half were purely metric differences. The difference appeared 

equally often in the four quadrants of the screen. Other fac-

tors were randomized: each trial used either the pairs in Fig-

ure 4 or the corresponding pairs with the smaller circle on 

the left. The non-critical pairs (the ones which appeared on 

the screen but did not change), were randomly chosen from 

this set, subject to the following constraint: no display 

should contain two instances of the same pair. 

The large and small circles were assigned different colors, 

either red/green or blue/yellow. This was to decrease the 

chance that they would be perceptual grouped as a single 

object. The colors of the circles, as well as the keys for re-

sponding “same” and “different,” were counter-balanced 

across participants. 

Experiment 1 

Experiment 1 contained two trial types: trials with a single 

pair, and trials with two pairs (Figure 5B). This provided in-

itial evidence for an interaction between categorical percep-

tion and stimulus complexity. The trial types were inter-

mixed over a total of 256 trials. Participants received one 

break, after the first 128 trials.  

15 Northwestern University students took part in this 

study for class credit.  

Results 

Figure 6 shows the accuracies across conditions. We ana-

lyzed accuracy on different trials via a two-way repeated 

measures ANOVA with number of pairs (one vs. two) and 

difference type (categorical vs. metric). There was a main 

effect for number of pairs, F(1,11) = 31.6, p < .001, partial 

η2 = .758, and a main effect for difference type, F(1,11) = 

43.8, p < .001, partial η2 = .693. These indicate that a) it was 

easier to spot a difference with only one pair, and b) it was 

easier to spot a categorical difference. This finding demon-

strates categorical perception of the topological relations. 

Finally, there was a significant interaction between num-

ber of pairs and difference type, F(1,11) = 17.7, p = .001, 

partial η2 = .559. This interaction matches the prediction 

and is apparent in Figure 6: as the number of pairs increased, 

there was a small cost for categorical differences, but a much 

greater cost for metric differences. 

Experiment 2 

Experiment 2 contained two trial types: trials with two pairs, 

and trials with three pairs. This allowed us to test how our 

predictions scale up with increased complexity (note that it 

would have been difficult to run all three set sizes in a single 

experiment due to time constraints). Due to the higher diffi-

culty level, participants received three breaks. The experi-

ment was otherwise the same as Experiment 1. 
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Figure 4. Experimental stimuli covering a range of topological relations. 
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Figure 5. A) Typical trial. B) Displays with one, two, or three circle pairs. 

 



15 participants, aged 18-35, took part in this study for $10. 

Results 

Figure 6 shows the accuracies across conditions. We ana-

lyzed accuracy on different trials via a two-way repeated 

measures ANOVA with number of pairs (two vs. three) and 

difference type (categorical vs. metric). There was a main 

effect for number of pairs, F(1,11) = 32.7, p < .001, partial 

η2 = .700, and a main effect for difference type, F(1,11) = 

35.2, p < .001, partial η2 = .715. Again, the task was easier 

when there were fewer pairs, or when the difference was cat-

egorical. 

There was a significant interaction between number of 

pairs and difference type, F(1,11) = 5.4, p = .036, partial η2 

= .278. Note, however, that the effect size was considerably 

smaller than in Experiment 1 (.559 vs. 278). In this experi-

ment, though the cost for increased stimulus complexity was 

greater for metric differences, there was also a high cost for 

categorical differences. 

Discussion 

Overall, the results demonstrate categorical perception of 

topological relations. Participants identified differences far 

more accurately when those differences changed the cate-

gorical relations between the circles. Furthermore, as pre-

dicted by the computational models, the reliance on categor-

ical relations increased when the stimulus complexity (the 

number of pairs) increased.  

Interestingly, the interaction was more pronounced going 

from one to two pairs than going from two to three. This 

may indicate a qualitative difference in participants’ strate-

gies for one vs. multiple pairs. Faced with only a single pair, 

participants may have encoded both categorical and metric 

information in detail, allowing them to detect both differ-

ence types with high accuracy (though post-hoc analysis 

found higher accuracy for categorical differences even here, 

t = 3.3, p = .005). Faced with two or three pairs, participants 

may have focused on the more easily remembered categori-

cal information, resulting in a large cost to detection of met-

ric differences. 

Mean accuracy for detecting metric differences with three 

pairs was only .567. This might appear to be near-chance 

performance. However, accuracy on same trials with three 

pairs was considerably higher, .826. This indicates a re-

sponse bias in the participants. We hypothesis that partici-

pants generally responded “same” if they were unable to de-

tect a difference, only responding “different” if the differ-

ence was salient. Thus, although participants only detected 

about half the differences in the hardest condition, they did 

not appear to be guessing. 

There was one additional finding of interest. After the ex-

periment, participants were asked if they used any particular 

strategy to perform the task. One third (5/15) of the partici-

pants in Experiment 2 reported that they named the different 

stimuli. For example, the rightmost two pairs in Figure 4 

might be named “near” and “far” based on the distance be-

tween the circles. This strategy appears to be an attempt to 

categorize the metric information, applying a label to it so 

that it can be remembered more easily. No participants re-

ported using this strategy in Experiment 1, perhaps because 

the task was easier. 

Conclusion 

These experiments help to bridge the gap between qualita-

tive representations in computational models and categori-

cal representations in humans. They provide evidence that 

humans encode topological relations categorically, and use 

them to remember and compare images. When images be-
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Figure 6. Mean accuracies in the two experiments. 
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come more complex, as with two or more shape pairs, peo-

ple rely more on the easily remembered categories, failing 

to notice changes in metric properties. The present paper fo-

cuses on the categorical/metric distinction predicted by 

computational models.  Further analysis is required to tease 

apart each individual relation’s contribution, e.g., the ease 

of remembering an overlap relation versus an intersect re-

lation.  

When remembering complex visual stimuli, individuals 

may rely on verbal memory to encode key features. In the 

future we plan to run this experiment with a verbal interfer-

ence task, where participants must repeat certain words in 

their mind throughout each trial. Verbal interference dis-

rupts verbal coding of visual features. We foresee two pos-

sible outcomes: A) The categorical advantage might in-

crease because participants can no longer assign names to 

metric properties (as some did in Experiment 2). B) The cat-

egorical advantage might decrease because relational cate-

gories, associated with symbolic processing in the left hem-

isphere (Kosslyn et al., 1989), might require the same cog-

nitive resources as are used in verbal rehearsal. The second 

outcome would be particularly illuminating, as it would tell 

us more about how categorical relations are encoded in the 

brain. 

We hope the present paradigm can be used more broadly 

beyond topological relations. We see this work as establish-

ing a template. By applying this template across a range of 

objects and relations, researchers can arrive at a better un-

derstanding of which categorical relations people encode 

and how those relations are used to support memory and 

comparison.  
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