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Abstract

Solving design and analysis problems in physical worlds requires the representation
of large amounts of knowledge. Recently, there has been much interest in explicitly
making assumptions to decompose this knowledge into smaller Models. A crucial aspect
of problem-solving paradigms based on such models is that they include methods to
automatically, and efficiently, change models when the initial choice is found to be
in error. We represent physical domains as Graphs of Models, where models are the
nodes of the graph and the edges are the assumptions that have to be changed in
going from one model to the other. This paper describes the methods used in the
Graphs of Models paradigm for changing models. The methods are based on the facts
that errors contain information on how parameter values are to be changed and that
assumption changes contain information on how they affect parameter values. This

knowledge can be represented qualitatively, penmttmg fast m.ferepg_e mec.hamsms that
provide powerful model changing behaviors.
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1 Introduction

An important aspect of real-world problem solving is the ability to represent, and rea-
son with, large amounts of domain knowledge. . For example, intelligent analysis of the
transmission shown in figure 1 requires thorough knowledge of about three sophisticated
textbooks (e.g. [10],[3],[4]). Unfortunately, declaratively representing large amounts of
knowledge leads to several problems; e.g. many knowledge-base operations, such as infer-
ence and checking consistency, are typically exponential in the size of the knowledge-base.
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Figure 1: A Gear Train Transmission

One approach to dealing with the complexity of large scientific and engineering domains
is to make assumptions on the world. Making assumptions permits the decomposition of
large domains into several smaller knowledge-bases called models ([12], [6]). A model may
be used in lieu of the larger domain knowledge-base if its assumptions lead to an acceptable
approximation of the world.

The goal of the decomposition is to simplify problem-solving by permitting analysis in
the simplest model that is an acceptable approximation of the world. Ideally, the appro-
priate model should be identified before the start of analysis. However, in many cases,
the inadequacy of a model becomes evident only through trial and error. Therefore, it is
crucial that problem-solving paradigms based on models include mechanisms for automat-
ically and efficiently selecting a better model when analysis in the current model is found
to be in error. i

In our paradigm, called Graphs of Models, models are linked by directed edges. The -
edges specify how the assumptions of the source model change in going to the destination
model. Figure 2 shows a part of a simplistic graph of models for the domain of transmis-
sions. Our paradigm includes methods that automatically change models when the current
model is inadequate. A brief example will help motivate our methods.

Let us start an analysis of our transmission (figure 1) using Model; of figure 2. Model,
makes the assumptions that there are no frictions in the world, that all objects are
rigid, that energy is conserved, and that all masses are uniformly distributed. As
Model; is not an acceptable approximation of the world, it predicts a rotational acceleration
value that is higher than the experimentally observed value. This error, or conflict, invokes
a reasoning process in which Model; first analyses the conflict to find that the error is due
to forces that have not been accounted for. Next, Model; uses domain knowledge about
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Figure 2: A Partial Graph of Models for Transmissions

its assumptions to find that an assumption change, or transition, from no frictions to
coulomb frictions introduces new forces that cause accelerations to decrease. Finally,
Model; finds the edge that best matches this assumption change, Edge;, and transfers
control to the model at the end of this edge.

This process requires four abilities. The ability to detect conflicts, the ability to deter-
mine how parameters must change in order to eliminate conflicts, the ability to represent
how assumption transitions affect parameters in the world, and the ability to use this
knowledge in selecting the next model.

We introduce the notions of delta-vectors to capture the qualitative nature of parametric
changes that will eliminate conflicts', and parameter-change rules to capture domain-level
knowledge about how assumption transitions affect values of parameters. A simple infer-
ence mechanism uses delta-vectors and parameter-change rules to decide which assump-
tions to change. Intuitively, delta-vectors may be seen as goals that have to be achieved,
assumption transitions as the actions that will satisfy these goals, and parameter-change
rules as the post-conditions of these actions. The mechanisms are qualitative in that they
are based on the (+ - 0) calculus of [5] and [7]. They have been used in four implemen-
tations of Graphs of Models in the domains of Mechanics, Thermodynamics, Fluids, and
Geometric Structure.

Section 2 presents more details about Graphs of Models. Section 3 describes conflicts
and how we detect them. Section 4 describes delta-vectors and how they are computed.
Section 5 describes how parameter-change rules represent knowledge about assumptions
and Section 6 describes the inference methods used for changing assumptions. We end the

paper with a few of the many questions that we still have to address and the relationship
of our work to others.

1For this paper we will assume that all conflicts arise from incorrect values or expressions for physical
parameters.



2 Graphs of Models

Making assumptions on the world permits organized reformulations of domain knowledge
that are much like models in the scientific or engineering sense of the term. A model, in
our paradigm, may make fifteen to twenty assumptions and consists of two parts. The first
performs analysis within the model and the second deals with changing assumptions. A
brief description of the first part follows. The second part is the focus of this paper.

(defrule netl
(rigid-object =object =time)
(net-torque =object =7 =axisl =time)
(net-angular-acceleration =object =a =axisl =time)

+
(moment-of-inertia =object =] =axisl =time) @ ° °
Y < +

(net-acceleration-equation =object =eqn =vars =time) o
(compute =eqn ‘‘=a==r/=I'’)
(compute =vars ‘‘[=al’’))

Figure 3: A Rule and an Influence Net

The analysis part of a model contains a knowledge-base of rules in a first-order-like
language. The rules are exactly the rules of physics found in textbooks. The rule in figure 3
describes the simple a = } law of rotational dynamics; a is rotational acceleration, 7 is
net-torque and I is rotational inertia. The language is based on a sorted calculus and
the predicates are strongly typed. The sorts constitute the ontology of the world and are
organized into a hierarchy. The last parameter of every predicate is a temporal variable that
refers to a time point or interval over which the proposition is valid. The temporal entities
are supported by a powerful single time line reasoner described in [14]. The language
supports expressions that may be executed by LISP or passed to MACSYMA[8] for further
evaluation; values of parameters are numerical values or symbolic expressions. Analysis
consists of natural deduction that is tightly controlled by model-specific heuristics.

The principal advantage of a model is its specificity. A model addresses a relatively
narrow scope of phenomena. Typically, models are much smaller than the entire domain
knowledge. It is relatively easy to represent the knowledge that is valid within a model.
Further, the specificity helps define very efficient model-specific analysis methods. Some
apparent contradictions to these claims turn out to be deceptive. For example, Maxwell’s
equations and Navier-Stokes equations are very compact and appear to define all the
domain knowledge for electrodynamics and fluid flow respectively. However, it is very hard
to use either sets of equations, in practical analysis, without making several assumptions
on the world.

Domain knowledge is represented as a Graph of Models. The typical Graph may have
tens of models. The Graph of Models of a domain is complete; all models have edges
to all other models. A typical edge has around five assumption transitions. For each
model, the edges leading to other models are grouped into priority classes. The priorities
allow a “distance” measure in a complete graph by specifying the order in which the edges
are searched when changing models; “near” edges are searched before “far” edges. The
Graph of Models of a domain is sparse; the graph does not contain models for every
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combination of assumptions in the domain. The models that are contained in a Graph
of Models are called “materialized models”, other combinations of assumptions are called
“non-materialized models”. It is obviously better to dynamically reconfigure models based
on the exact set of assumptions required. Unfortunately, early work on reformulation of
theories shows that this is not easy to do ([17], [9]).

3 Conflicts

In our current approach conflicts can occur in three ways: Empirically, Internallly, and
through Inter-domain interaction. An Empirical conflict is a mismatch between the value of
a parameter predicted by a model and the value measured in the world. Empirical conflicts
arise in experimentally verifying a model’s predictions; e.g., the conflict, described earlier,
in the acceleration of the transmission. Internal conflicts occur when a value derived
within a model violates one of the model’s assumptions. For example, Model; makes
the Conservative Systems and the Rigid Bodies assumptions. If the Rigid Bodies
assumption is inappropriate, the predicted values for energy will violate the Conservative
Systems assumption. Inter-Domain Conflicts occur when multiple domains interact in
analysing a device and two or more domains disagree over the value of a common parameter
2].

Parameters can be numerical values or constraints. Hence conflicts take one of the fol-
lowing forms: Numerical-Numerical, where both values are numerical; Numerical- Constraint,
where one value is numerical and doesn'’t satisfy the constraint; and Constraint- Constraint,
where both values are constraints that are unequal.

Detecting empirical conflicts is a straightforward process. At the end of the analysis
session the system asks the user to verify its predictions. The user gives the system his/her
set of values for the parameters and the system compares its predictions against the user’s
measurements. Detecting internal conflicts is a little more difficult and requires knowledge

about the assumptions in the form of consistency rules (section 5.1). The detection of
inter-domain conflicts is described in [2].

4 Delta-Vectors

Delta-vectors represent represent the qualitative changes, to parameters values, that will
eliminate a conflict. A delta-vector is an ordered pair; the first element is the name of
the parameter in conflict and the second element is a qualitative vector representing the
required change. This follows our representation of vectors as a magnitude and a direction
unit vector. In our example the delta-vector for the acceleration of the transmission is
(a,(— (000))) where the minus sign (—) signifies that the magnitude of the acceleration
is to be reduced and the (000) signifies the direction of the acceleration is correct. When

more than one parameter is found to be in conflict, the delta-vectors are stored as a list
called the delta-list.

4.1 Computing Delta-Vectors

Delta-vectors are first computed for the parameters actually in conflict. This delta-list is
called the base-delta-list. The same mechanisms are used for computing delta-vectors for
empirical, internal, and inter-domain conflicts.



Computing delta-vectors in a Numerical-Numerical conflict consists of computing the
difference of the empirical vector and the predicted vector and taking the signs of the result.
In our example if Model; predicts a = (10.34 (000)) and a is measured to be (8.27 (000)),
the delta-vector is (a, (— (000))). ‘

There are two types of Numerical-Constraint conflicts. In one the constraint is Causal;
i.e. it is an equation or inequality that is established by a model to compute a parameter
in terms of others. It is usually derived from a physical law. In our example, Model; sets
up the equation a = 7 to compute a. The other constraint is Implicit, a physical principle
that must be satisﬁe(i by the parameters of the model. Examples are the conservation of
energy and momentum in Mechanics and pv = nRT in Thermodynamics. Implicit conflicts
are usually internal conflicts. Note that the difference between causal and implicit is in
how a constraint is used by a model, and is not inherent in the constraint.

If a predicted causal constraint fails to match a measured value, the model has already
used the constraint to compute its value for the parameter while detecting the conflict.
This value is used to set up a vector-vector conflict with the measured value. For example,
Model; predicts a = 4. Empirically a is (0.43 (000)) for 7 = (27.0 (000)), and I = 34.0. In
detecting the conflict Model; has already computed o/ = (0.79 (000)) for 7 = (27.0 (000))
and I = 34.0. Model; treats o/ as the predicted value and o as the measured value in a
vector-vector conflict. The resulting delta-vector (a,(— (000))). Note that delta-vectors
say nothing about how a constraint is to be changed; they only indicate how the value of
a parameter is to be changed.

The method fails when the measured value is outside the domain of the constraint; e.g.
when the constraint is y = /9 — z2, and the value measured is (5,5). In such situations
the model exploits the fact that delta-vectors can only specify the quadrant? into which,
or the axis along which, the change should be made; where the quadrants are with respect
to the measured value. Delta-vectors are computed by setting up artificial vector-vector
conflicts between the measured value and artificial predicted values. The artificial predicted
values are generated by finding intersections of the lines that pass through the measured
point, parallel to the axes, with the predicted constraint. Each point of intersection is an
artificial value. Intersections beyond a region pre-defined by the user are ignored. If no
intersections are found the constraint lies entirely within a quadrant and a single artificial
point is generated by assigning values arbitrarily to the parameters of the constraint. In
our example, the lines y = 5 and ¢ = 5 do not intersect the constraint. Hence an arbitrary
value, say (0, 3), on the constraint is selected and is set up as a vector-vector conflict with
(5,5). This results in a delta-vector of (y,(+)).

Detecting constraint-constraint interactions, if the constraints are linear, is polyno-
mial; if the constraints are algebraic the problem is exponentially space complete; if the
constraints include transcendentals the problem is uncomputable. Currently our models
handle the very limited classes of constraint-constraint conflicts in which one constraint is
strictly greater than the other. However, many constraints fall into a few specific classes
for which special purpose routines can check for differences in order, coefficients, phase,
etc. For example, special purpose heuristics can resolve constraints on currents propagated
through a circuit [16]. Similarly, many constraints on a single transcendental variable, e.g.
zsin(f) < k, can be handled with a quadrant calculus that assigns signs to the transcen-
dental functions in each quadrant; e.g., sin(#) will be represented as (4 4 ——) for the four
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quadrants. We are in the process of developing such algorithms.
In computing delta-vectors for implicit numerical-constraint conflicts the model di-

rectly generates artificial predicted values to compute the delta-vectors. The first stage is
ommitted due to the the lack of a causal relationship.

The preceding discussion assumed that the model generated only one constraint that
consisted of a simply-connected portion of space. The methods generalize easily to multiple
constraints if a simply-connected feasible solution space exists. Disconnected pieces, e.g.
zy = 1, are handled by the artificial vector-vector conflict method with the points of
intersection being computed by a stepwise sweep of a line passing through the measured
value. The resolution of the angular step is decreased iteratively until points of intersection
are found.

The methods generalize to more dimensions. The discussion also assumed that the
model predicted a constraint that was not satisfied by a measured value. The same methods
apply if the model predicts a value that does not satisfy a constraint measured in the world.

4.2 Extending the Delta-List

The model also has to account for errors in intermediate parameters used in deriving the
actual parameter in conflict. For example, an error in 7, an intermediate parameter, will
cause an erroneous value for a. The base-delta-list is extended to include these parameters
and the final list is called the eztended-delta-list.

Our models maintain a detailed proof graph of the analysis. Backtracking through
this graph finds all the parameters that affect the parameters in conflict. Each model
also explicitly represents known parameter dependencies; e.g., force affects acceleration,
that in turn affects velocity, etc. These dependencies are represented as influences, [7], in
semantic nets called Influence Nets (I-Nets), figure 3. The required change (or delta vector)
of the parameter in conflict is propagated through the I-net to determine the corresponding
changes in intermediate parameters. I-nets help finesse the problem of back-propagating
a change through complex equations.

In our example, the extended-delta-list is: {({a,(—(000))), (r,(—(000))), (I,+)} where
a was the only parameter in the base-delta-list.

5 Consistency Rules and Parameter-Change Rules

Assumptions affect the behaviors we expect to see in the world. For example, the coulomb
frictions assumption requires that if two objects are in contact at a surface a force prevents
relative sliding of the objects, that systems are dissipative, that heat be generated, and it
also specifies the orders of magnitude of these effects. We represent two kinds of knowledge
about assumptions, Consistency Rules and Parameter-Change rules.

5.1 Consistency Rules

Often, for an assumption to be valid, the parameters must satisfy given consistency con-
straints. For example, in Model;, the conservative systems assumption requires that the
energy within the system being analyzed remain constant. The ideal gases assumption
specifies a fixed constraint between the pressure, the volume, the mass, and the tempera-
ture of gases in the world. The laminar flow assumption in fluid dynamics requires that
the Reynolds number of the flow remain below 2300. These constraints are represented as



consistency rules that are checked periodically throughout analysis. An inconsistency is
an internal conflict (discussed in section 3) and invokes the model changing apparatus.

(Defrule add-friction-1
(solid-object =ol =i1l)
(solid-object =02 =il)

iﬂ:tari (+)
(surface-of-contact =0l =02 =surfi =i1)

(net-force =ol =nf1 =il) et
(force-component =nfl =surfl =f, =i1)
= i —

(parameter-change = f, =dvector; =il)
(compute =dvector; (+)))

Figure 4: A Parameter-Change Rule

5.2 Parameter-Change Rules

Parameter-change rules represent the qualitative effect of assumption transitions on pa-
rameter values. Transitions typically have four to six parameter-change rules. The rule in
figure 4 is taken from the no-frictions to coulomb-frictions transition. It asserts that
if two objects are in contact at a surface, there is an increase in the component of the
net-force along the surface of contact. The antecedents of the rule describe the configura-
tion of the objects and define f, to be the component of net-force parallel to the surface
of contact. The parameter-change predicate in the consequent says that f, changes by
amount dvector;. The compute predicate tells how to compute the amount of the change;
the amount of the change is (+), a qualitative increase in f, under the transition. When
applied to gear train transmissions, this rule represents an overall decrease in the effective
force used to transmit torques. A simpler rule, useful in our example, states that if two
gears are meshed there is a decrease in the magnitude of the net-torque on both gears.

The antecedents of rules describe situations in which parameters are affected by the
assumption transition. The language of the antecedents is exactly the same as the do-
main language. The situation is quite specific in describing the conditions under which
the parameter-change may occur; this permits problem-specific selections of assumption
transitions. In our example, the antecedents required objects to be in contact. Hence, the
transition can be rejected when the object of interest is not in contact with another object
but a decrease in its net-force is still required.

The consequents describe the parameters that change and how they change. The lan-
guage of the consequents introduces the parameter-change predicate. The parameter
change may be simple, as in a qualitative (=) or (+), or complex, as in any LIsSP or MAC-
SYMA statement in the compute predicate. The consequent may introduce a parameter
that is not part of the vocabulary of the current model. For example, a simple no fric-
tions model of dynamics may not include heat. Such parameter-change rules are used for
matching against assertions from other domains or from the user. In our experience, the
situations in the antecedents can get complex but the computations in the consequent stay
as simple as the inner product of vectors.



6 Selecting a Better Model

Recall that the edges away from a model are grouped into priority-classes. Selecting a
better model consists of stepping through these classes, searching each for an acceptable
edge. For each step, the delta-vectors specify the desired changes in parameter values, the
assumption transitions are actions that realize these goals, and the parameter-change rules
specify how the transitions affect parameter values. The final step, invoked if no acceptable
edge exists, determines the combination of assumption transitions that best satisfies the
delta-list; this helps automate extending the Graph.

The model starts with the highest priority class of edges. The first step is to find those
assumption transitions that satisfy at least one element of the delta-list. Each edge consists
of a set of assumption transitions. Each transition has a set of associated parameter-change
rules. The model collects all these parameter-change rules into a temporary knowledge-
base. The model then matches every delta-vector in the delta-list against the rules in this
knowledge base. When the consequent of a rule specifies a parameter change that matches
a delta-vector, the model attempts to match the situation in the antecedent of the rule
against the current description of the device. If the antecedents match immediately, the
assumption transition associated with this rule is placed in the Candidate-Transition-
Set (CTS).® At the end of this backward-chaining the CTS contains all the assumption
transitions that satisfy at least one delta-vector. In our example, Model; has three edges
leading away from it and they are all in the same priority class. Two transitions match; no
frictions to coulomb frictions matches (r,(—(000))) and uniform-mass-distribution
to arbitrary-mass-distribution partly matches (I, +).

The model maintains a transition-satisfaction-list (TSL) for each assumption transition
in the CTS. The TSL of a transition specifies how well the transition satisfies each of the
delta-vectors in the delta-list. A TSL has as many elements as the delta-list has delta-
vectors. Each element is (+), (=), (0), or (C). A (+) in the nth place indicates that the
transition satisfies the nth delta-vector, a (—) that it violates it, a (0) that it doesn’t affect
it, and a (C) that it does change the parameter but the direction of change is unknown.
At this stage the elements of the TSLs are either (+)s, (C)s or (0)s because the backward-
chaining finds all the positive effects of the transitions. The TSLs are also divided into
two parts, one for the base and the other for the extended delta-lists. Recall that the
base-delta-list contains o and the extended-delta-list contains 7 and I. The TSL for the
frictions transition is {(a\0), (\+, I\0)} and the TSL for the mass-distributions
transition is {(a\0), (r\0, \C)}.

The model then finds all the negative effects of the transitions in the CTS by forward-
chaining through their parameter-change rules. This is also a one step process. These
violations are stored as (—)s in the TSL of the transitions. Our simple example does not
include any violations. The next step is to check if the I-Nets show that any non-(0) pa-
rameter in a TSL influences a (0) parameter in the same TSL. Such an influence may cause
the (0) parameter to be satisfied or violated by the transition. In our example, the I-Net in
figure 3 shows that 7, (+) in the frictions TSL, affects a, (0) in the same TSL, positively;
hence the transition also satisfies the delta-vector for @. The value for a in the frictions

3We require that the antecedents match immediately, with no further backward-chaining, because if the
powerful problem solving mechanism in the model did not discover the situation in the antecedent, it is
unfair that the assumption reasoner be asked to do so. However, it is clear that there will be cases where
the limitation will restrict the power of the system.



TSL is thus changed to (+) and the TSL now reads {(a\+), (r\+, I\0)}. Similarly, since
the I-Net shows that I affects a inversely, the TSL for the mass-distributions TSL now
reads {(a\C), (7\0, I\C)}. At this point the TSL of each transition in the CTS provides
a composite picture of how well the transition satisfies the delta-list.

The next step is to compute a similar composite picture of how well each edge satisfies
the delta-list. The edge-satisfaction-list (ESL) of each edge in the highest priority class is
computed by vector addition of the TSLs for each of the transitions in the edge; the rules
of addition are the standard rules of the (4, —,0) calculus with (0) being the ambiguous
condition (see [7], [5]). A (C) added to anything gives a (C). Like the TSLs the ESLs have
two parts, one for the base- and the other for the extended-delta-lists The ESLs for the three
different edges out of Model; are Edge;: {(a\+), (7\+, I\C)}, Edge2: {(a\0), (\0, I\0)},
and Edges: {(a\C), (r\+, I\C)}*

In evaluating the ESLs to select the next model, recall that the actual conflict involved
only those parameters in the base-delta-list. If the ESL for the base-delta-list of any edge
is perfect, i.e. all (+)s, the model at the end of that edge is placed in the Candidate Model
Set (CMS) for consistency checking. If the CMS is non-empty, the consistency rules of
each assumption in each model in the CMS are checked against known parameter values.
This eliminates moving to models which may satisfy the delta-list but are inconsistent with
the system being analyzed. Finally, one of the remaining models in the CMS is selected
arbitrarily. We do not have to look at edges in the other priority groups because we cannot
do better than a perfect ESL that meets all the consistency requirements. If the CMS is
empty, the TSLs are used in repeating the process for edge groups of lower priorities. In
our example, the ESL for Edge; satisfies it. Models, at the end of Edge; is placed in the
CMS. The current parameters satisfy the consistency rules of Model; and it is chosen as
the next model.

If no existing edge provides a perfect match, the model picks the next best match from
all its edges. ESLs are evaluated numerically: (+) = +1, (=) = -1, (C) = 0.5, and a
(0) = 0. Adding the elements of an ESL results in a numerical “goodness” value for the
edge.’ The models at the end of the edges with the highest goodness values are placed
in the CMS. The CMS is filtered for consistency, and the next model is selected from the
filtered CMS.

Before control is transferred to the selected model the model has the option of checking
all combinations of assumptions to see if a better match can be found. Recall that the
Graph of Models is sparse and hence does not include materialized models for every com-
bination of assumptions. Checking to see if a non-materialized model results in a better
match is useful for automating the process of extending a Graph of Models. Unfortunately
the process is NP-complete; it is reducible to test-set generation.

7 Conclusions and Future Work

Four implementations, albeit limited to domains containing four to eight models, in Ge-
ometric Structure, Thermodynamics, Mechanics, and Fluids, lead us to believe that the
Graphs of Models paradigm is a powerful approach to representing complex, scientific
and engineering domains. Much of the power of the paradigm comes from its meth-

4see figure 1.
5This is a very simplistic measure of “goodness” and we are testing its limitations.



ods for automatically changing models. The qualitative mechanisms of delta-vectors and
parameter-change rules provide powerful and efficient model changing behaviors.

However, the mechanisms are limited in many ways. One important limitation has
to do with the paucity of information in parameter-change rules. For example, humans
typically use much Order of Magnitude information while evaluating the effects of changing
assumptions. In our example, a human expert would compare the order of magnitude
of the change due to frictions with the difference between the predicted value and the
measured value of the acceleration. The difficulty with using existing approaches to order of
magnitude reasoning, e.g. [15], [11], or [13], is in setting the threshold for the comparisons.
These thresholds are problem-dependent and have to be set dynamically, an open problem
at this time.

The mechanisms are also limited by the simplistic nature of building and comparing
ESLs. Domains typically contain much more information about the utility of models in
a given situation. This information may be in terms of tests that can be carried out to
check the validity of a change, empirical likelihoods of assumption transitions, knowledge
about parameter behaviors as computed in the current model, and so on. The current
mechanisms make no use of any of this information. A large part of our future work will
focus on building representation and inference mechanisms for handling these types of
knowledge.

The use of assumptions to simplify problem-solving is not new. It is an inherent part of
science and engineering. In the Al literature, deKleer et.al.[5] emphasize the importance of
making modelling assumptions explicit and acknowledge that the problem of changing these
assumptions is an important one. Murthy et.al.[12] suggest the Graph of Models paradigm
but present few details on its internal workings. Falkenhainer et.al.[6] re-emphasize the
importance of using assumptions to decompose complex domains into simpler models but
do not indicate how control is transferred from one model to another. Theoretical ap-
proaches such as [9] and [17] have attempted to dynamically reconfigure theories based on
the exact set of assumptions required, but the results have been of limited applicability to
complex knowledge bases. For example, Subramanian [17] requires that the entire problem
be solved before deciding what parts of the knowledge base are irrelevant. Finally, in spite
of its limitations we believe that a rigorous (though empirical) approach such as the Graph
of Models paradigm provides a powerful technique for representing physical domains.
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