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1 Introductio n
The goal of comparative analysis [Forbus, 1984 ; Weld, 1987, 1988] is t o
determine how a perturbation to one aspect of a system affects the behavio r
of other aspects of the system, particularly when the system is incompletel y
known and described by a qualitative differential equation (QDE) model .

In terms of the QSIM representation for qualitative structure and be-
havior [Iiuipers, 1986], a predicted behavior is a sequence of qualitativel y
distinct sets of values for the variables in the QDE . The behavior implies a
set of relationships among the landmark values of the variables . The goal of
comparative analysis is to analyze these relations to determine the directio n
of effect of a perturbation to the value associated with a landmark p on th e
value associated with the landmark q :

C(p,q) = sign
(p) .

1 .1 Our Approach

Our approach here is "Qualitative Physics" (or "Qualitative Mathematics" )
rather than "Naive Physics ." A qualitative differential equation expresses a
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state of incomplete knowledge about the structure of a system that leave s
traditional numerical or analytical methods inapplicable to the problem, du e
to incomplete knowledge of monotonic functional relations or the landmar k
values in quantity spaces .

However, once a QDE expresses a . state of incomplete knowledge, w e
allow arbitrary (computable) algebraic or analytic reasoning to extract th e
strongest possible conclusion from the available knowledge . As discussed
by Struss [1988] and Kuipers [1988], the set of qualitative conclusions tha t
can be drawn from a given set of constraints are changed by the applica-
tion of truth-preserving algebraic manipulations such as the associative an d
distributive laws .

This is certainly a familiar phenomenon in physics, where much mathe-
matical work consists of reformulating the equations describing a situatio n
so that a desired conclusion can be drawn unambiguously . Within the quali-
tative reasoning community, this approach of applying sophisticated mathe-
matics to extract useful conclusions from incomplete knowledge is shared b y
(among others) : Dormoy [1988], Kuipers [1986], huipers & Chiu [1987], Lee
& Kuipers [1988], Raiman [1986], Sacks [1987, 1988], Struss [1988], Wel d
[1987, 1988], Williams [1988] .

Our approach appears to handle all the comparative analysis example s
discussed in the qualitative reasoning literature . It is a superset of Weld' s
[1987] rigorous method of comparative analysis, which in turn is a superse t
of Forbus' [1984] DQ analysis . The relationship with Weld's [1988] heuristi c
method of exaggeration is not clear . Dimensional analysis has also been used
for qualitative reasoning [Kokar, 1986] and comparative analysis [Bhaska r
and Nigam, 1988] . However, that method relies on a multiplicative form fo r
universal laws, and has problems distinguishing among multiple variable s
with the same dimensions and qualitatively different roles in the behavio r
of the mechanism .

1 .2 Overview

In this paper, we reduce the problem of comparative analysis to one o f
algebraic manipulation and simplification . There are several steps to thi s
reduction :

1 . Qualitative integral equations are required because they make explici t
relations among time-points and time-intervals that are implicit in th e
equivalent qualitative differential equations .
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2. Given the goal of determining C(p, q), a search process must find an
expression R(p, q ; r, s, t, . . .) that follows from the QDE, where all land-
marks other than p and q are constant .

• Where this is impossible, the goal can be broken into a conjunc t
of simpler subgoals :

C( p, q ) = C(p, r ) * C(r , q ) .

3. Given an expression R(p, q ; r, s, t, . . .), take the partial derivative wit h
respect to q and solve for 8pl0q . There are several approaches to thi s
differentiation, depending on the properties of the expression R .

4. The resulting expression for the partial derivative ap/8q can appear
awesomely complex, but frequently turns out to be relatively easy t o
simplify since only its sign is of interest, and not its actual value . This
simplification step also requires search of a space of truth-preservin g
transformation s

5. The result is

C(p,q) = sign (a)
.

2 Qualitative Integral Equations

Integral equations express the same information as differential equations, bu t
make explicit more of the objects that appear in the behavior . A qualitative
differential equation might include the derivative constraint ,

rate(t) = -amount(t) ,

which the qualitative simulator can use to predict behaviors at time-point s
to, t1, etc. A corresponding integral equation includes explicit reference t o
time-points and landmark values of variables :

pt ,
amount(t i ) = amount(to) + J rate(t) dt .

t o

In fact, this is just a restatement of the Fundamental Theorem of th e
Calculus. Since we are doing qualitative reasoning, and our knowledge abou t
the function rate(t) may include partially specified monotonic functions, we
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IF
cannot use the familiar inferential methods of the calculus to evaluate an
integral . On the other hand, we can use the definite integral as a descriptiv e
term, and many of the familiar theorems about definite integrals will be
useful axioms for our qualitative reasoning method . See the section o n
Simplification and Evaluation .

Note that although the above example involves integration over t, we
will have occasion to integrate with respect to other variables in the QDE .

The definite integral provides a new type of constraint, relating time -
points and landmark values explicitly with the variables for rate and amount .
Thus, quantity spaces (including time) are extended from purely ordina l
spaces to ones where the length of intervals can be considered .

3 Deriving the Qualitative Integral Equations

From the available constraints, derive the integral equation p = I(q) .

• For a QDE with following factorizable form :

-p = f( p )g( q ) ,vq

the corresponding QIR. is given by :

rp2 d 1, = fia y

p~ f(P)

	

g(q)dq

• For a conservative system, where QDEs are :

dt = y, and dt = F(x) ,

following relation must be satisfied (see Sec . 2 .2) :

y2
22

— yi = ~ F(x)dx
x i

This implies that for fixed initial values : x i and y l , y2 (= y) is a
function of x2 (= x) only. So the QDE : y = dx/dt, leads to followin g
QIR:

x z dxt2-tl J -
r i y
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. We also use the chain rule, to break a problem into tractable subcases :

Op _ Op Or
aq Or aq

So far we have restricted our considerations to the general forms given above .

4 Taking the Partial Derivative

Suppose we have found a way to express p as an integral expression involvin g

q ,

b
p = 1(q) _ j G(x,q)dx.

a

There are several ways of exploiting this integral equation to derive an ex-
pression for Op/Oq .

4 .1 The Easier Case

If things go well — i.e . we can integrate OG(x, q)/aq — we can use the
identity :

Op p — Ob

	

q) a~I G(a, q ) +
b aG~x, q) dx .

	

(2 )
q

	

a

	

q

4.2 The Not-So-Easy Cas e

If we are not so fortunate, we can still reason with the more complex equatio n

Op = 1 . 1 ( q+dq) — 1(q)
aq dq— O

	

dq

(1 )

(3)



correlation .text

	

DRAFT: February 27, 1989

	

6

5 Simplification and Evaluatio n

The partial derivative expressions look awesomely complex, especially whe n
one appreciates that G(x, q) and I(q) may themselves be substantial expres -
sions . However, it turns out that the sign of Up/coq can (at least sometimes )
be evaluated with surprising ease, by applying a set of qualitative integral
simplification rules .

5 .1 Definition s

Notation :
Suppose I = fa F(x)dx, where a and b are finite .

• {F} = "global sign" of F(x), where consistent over (a, b) .

• [I] = sign I = {F}

Qualitative integral rules
• If F(s) has a definite sign for x E (a,b) (except for isolated zeros )

then [I] = {F} = —, 0, or + .

• If F(x) has both + and — signs for x E (a, b) ,
then [I] = {F} = nil .

5 .2 Qualitative Simplification Rule s

1. Removal of positive multiplicatives

For g > 0, except for isolated zeros :

[I] = {fg} = {f} .

2. Elimination of common denominator s
For fl and f2 arbitrary functions and {g i ,g 2 } > 0 ,

[I ] = { fi - f2 } = {flg 2 - f2 gi }
gi

	

g2

3. Linearization of difference s
For f, g > 0 and monotonic function h ,

[I] = { h(f) — h(g )} = {f — g }
A useful specific case, when a > 0, is :

[I]={f°—ga}={f—g} .



c

	

correlation .text

	

DRAFT: February 27, 1989

	

7

5 .3 Ordinary Algebra With Integrals

1 . Partial derivative rules :

• Differential definition rule

• Integral derivative rule (for regular case )

• Chain rule

2 . Change limits of integrals :

• Displacement rule :

j b

•

	

Scaling rule :

f(x )dx = fo
1

f(cx) dx

3. Combining two integrals :

jfdx +j gdxb

	

=
fb (f+g)dx

To combine two integrals with different limits, use rule 2 to convert t o
a common range, e .g. 0 to 1 .

4. Combining ranges : If t i < t2 < t3 , then

t2

	

t3

	

t 3

f(t) dt + f f(t) dt = f f(t) dt .
2

b— a
f(x)(Ix = f

	

f(x + a)dx
0
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6 Examples

Many of our test examples (in this paper, all except the first) have bee n
taken from a family of related problems of motion in one dimension .

	

dy

	

dv

	

v _ dt

	

a _ dt

	

a= - k-k f(y )

• ODEs: f has an explicit algebraic form .

f = 1 . Constant gravity .
f = r- 2 . Decreasing gravity.

f = y . Simple spring .

- f = 9 . Pendulum: small amplitude approximation .
f = sin 9 . Pendulum : arbitrary amplitude .

f = s a . Rolling on a concave surface, a > 0 .

• QDEs : f is partially specified .

- f(y) = h1+ (y), increasing monotonic function .

- f(y) = M- (y), decreasing monotonic function .

6.1 Problem 1 .

"If water pours into the tank fast, it will take less time to fill" .

A . From QDE.to QIR:

• Denote water level : y, filling rate : cf(t), where c controls the overal l
rate. The QDE is :

dy =
cf( t ) •dt

• QIR: From tl, yl to t 2, y2,

t2

y2 - yl = c
J

f(t)dt
t ,

B . Define correlation problem : Fill the tank from time t i = 0 at arbi-
trary height y l , to time t 2 = T at the top h .

• To show : aT/ac < O .
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• Present QIR :
T

h — y 1 = c / f(t)dt
0

C . Evaluate correlation :

• Take partial derivative of present QIR with respective to c, keeping t1 ,
y i , h . fixed .

• Evaluate signs :

0 = (+) + (+)v(+), or c < 0

6.2 Problem 2 .

For the rising ball, where gravity decreases with height y, show Oh/0v, > 0 .

A . From QDEs to QIRs :

• QEDs:

a = — gf(y), a = dv/dt, v = dy/dt, with g > 0, f ' < O.

Notice a depends on y only, the system is conservative .

• QIRs :
dy

	

Y2 dy
v = dt

gives t 2 — t i = f V (I)
l

where dependence of v on y can be obtained through :

v2 — vi = -2g rye f(y)dy (II )Jy l

B . Define correlation problem :

• Present QIRs : From t i = 0, y l = 0, v l = v; to t 2 = t,. =3e, Y2 = h ,
v2 =0.

T
0

	

—

ac

	

aT
Jo f(

t )dt + c
~c f(T)
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– QIR-I' : (I) gives

fh dy
trice

	

v

* Evaluate v based on II :
* From y l = y, vl = v to y 2 = h, v 2 = 0, obtai n

h

v2 = -2g
f

f( y ) dy , or v = v( y , h ; g )
y

*

	

or Fi t = Fr(v, y, h ; g), wit h

Jo
h	 dy	

	

t rice =

	

v ( y , h ; g)

	

( I' )

y i = 0,V1 = Vi to y2 = h, v2 = 0,

v 2 =
2g f

f( y )dy

	

( 1I~ )
0

where FII,= FII1(v t , h ; g) .

• Define correlation problem :

– To determine : ah/tv t .
– QIR: Select Fir(v;, h ; g), i .e .

h
v? = 2gj f(y)dy .

C . Evaluate correlation :

• Take partial derivative of (II') with respect to v „

Oh
2v2 = 2g—f(h )

Ov t

• Evaluate signs :

	

Dh

	

Oh
(+) = (+)8v (+), or

az,
>0.

QIR-II' : From
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6 .3 Problem 3 :

For the rising ball, where gravity decreases with height y, to find a trise/ av i .

A. From QDEs to QIRs : All equations here are identical to those o f
problem 2 .

B. Define correlation problem :

• To determine atrise/av i > 0

. //• Apply chain rule : atri,e/ 0v, = ( Otri,e/Oh)(ah/O v i )

• ah/avi is already known .

• Proceed to determine atrise/ah) •

C . Evaluate correlation :

• QIR: Choose FI'(trise, h ; g), Le .

~ h 	 dy	trice =
Jo v(y, h, g )

•

	

Taking partial of F11 1 with respect to h, gives

Otrise _

	

1

	

1

	

Oh

	

v(h,h,g)+
. . .— 0 + . . . ,

problematic !

• Alternative strategy : To evaluat e

	

atrise

	

trise(h + dh) — t rise(h )
Oh dho

	

dh

Through the set of qualitative integral simplification rules give n
in Sec 4, it can be shown :

sign (atrihse) = sign. ( .1:LY) — f' (y)) , for 0 < y < h
//////

Since f' < 0 ,

sign atris e
avi

S2gn
at
ah
rise at

ah
rise = (+)(+) = +•
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OP

6 .4 Problem 4 :

Consider a spring system with restoring acceleration a = —c f (y), where
f' > 0, c > O . Find the effect on the period due to perturbation on th e
oscillation amplitude .

• It can be shown that the sign of correlation here is the same as that
of D t rise/ah. The latter problem is essentially solved in problem 3 . I t
gives :

sign aUh

	

= sign(( +

	

= ni l

• Disambiguate the sign : It turns out that more detail information on
f disambiguate the signs here :

sign (Dtrt 3e/ah) > 0, requires f" < 0 .

— sign (atTt 3 e/Dh) = 0, requires f" = 0 .
sign (Dtrise/Dh) < 0, requires f" > 0 .
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