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1 Introduction

The goal of comparative analysis [Forbus, 1984; Weld, 1987, 1988] is to
determine how a perturbation to one aspect of a system affects the behavior
of other aspects of the system, particularly when the system is incompletely
known and described by a qualitative differential equation (QDE) model.

In terms of the QSIM representation for qualitative structure and be-
havior [Kuipers, 1986], a predicted behavior is a sequence of qualitatively
distinct sets of values for the variables in the QDE. The behavior implies a
set of relationships among the landmark values of the variables. The goal of
comparative analysis is to analyze these relations to determine the direction
of effect of a perturbation to the value associated with a landmark p on the
value associated with the landmark ¢:

e (22
C(p,q) = sign (3.;) ;

1.1 Our Approach

Our approach here is “Qualitative Physics” (or “Qualitative Mathematics™)
rather than “Naive Physics.” A qualitative differential equation expresses a
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state of incomplete knowledge about the structure of a system that leaves
traditional numerical or analytical methods inapplicable to the problem, due
to incomplete knowledge of monotonic functional relations or the landmark
values in quantity spaces.

However, once a QDE expresses a state of incomplete knowledge, we
allow arbitrary (computable) algebraic or analytic reasoning to extract the
strongest possible conclusion from the available knowledge. As discussed
by Struss [1988] and Kuipers [1988], the set of qualitative conclusions that
can be drawn from a given set of constraints are changed by the applica-
tion of truth-preserving algebraic manipulations such as the associative and
distributive laws.

This is certainly a familiar phenomenon in physics, where much mathe-
matical work consists of reformulating the equations describing a situation
so that a desired conclusion can be drawn unambiguously. Within the quali-
tative reasoning community, this approach of applying sophisticated mathe-
matics to extract useful conclusions from incomplete knowledge is shared by
(among others): Dormoy [1988], Kuipers [1986], Kuipers & Chiu [1987], Lee
& Kuipers [1988], Raiman [1986], Sacks [1987, 1988], Struss [1988], Weld
(1987, 1988], Williams [1988].

Our approach appears to handle all the comparative analysis examples
discussed in the qualitative reasoning literature. It is a superset of Weld’s
[1987] rigorous method of comparative analysis, which in turn is a superset
of Forbus’ [1984] DQ analysis. The relationship with Weld’s [1988] heuristic
method of exaggeration is not clear. Dimensional analysis has also been used
for qualitative reasoning [Kokar, 1986] and comparative analysis [Bhaskar
and Nigam, 1988]. However, that method relies on a multiplicative form for
universal laws, and has problems distinguishing among multiple variables
with the same dimensions and qualitatively different roles in the behavior
of the mechanism.

1.2 Overview

In this paper, we reduce the problem of comparative analysis to one of
algebraic manipulation and simplification. There are several steps to this
reduction:

1. Qualitative integral equations are required because they make explicit
relations among time-points and time-intervals that are implicit in the
equivalent qualitative differential equations.
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2. Given the goal of determining C(p, q), a search process must find an
expression R(p, ¢;r,s,t,...) that follows from the QDE, where all land-
marks other than p and ¢ are constant.

e Where this is impossible, the goal can be broken into a conjunct
of simpler subgoals: '

C(p,q) = C(p,r)* C(r,q).

3. Given an expression R(p,q;r,s,t,...), take the partial derivative with
respect to ¢ and solve for 9p/dq. There are several approaches to this
differentiation, depending on the properties of the expression R.

4. The resulting expression for the partial derivative dp/dq can appear
awesomely complex, but frequently turns out to be relatively easy to
simplify since only its sign is of interest, and not its actual value. This
simplification step also requires search of a space of truth-preserving
transformations

5. The result is

- @)
C'(p,q)_mgn((,)qr :

2 Qualitative Integral Equations

Integral equations express the same information as differential equations, but
make explicit more of the objects that appear in the behavior. A qualitative
differential equation might include the derivative constraint,

d
rate(t) = —amount(t),
dt
which the qualitative simulator can use to predict behaviors at time-points
to, t1, etc. A corresponding integral equation includes explicit reference to
time-points and landmark values of variables:

131
amount(t; ) = amount(ty) + / rate(t) dt.
to

In fact, this is just a restatement of the Fundamental Theorem of the
Calculus. Since we are doing qualitative reasoning, and our knowledge about
the function rate(t) may include partially specified monotonic functions, we
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cannot use the familiar inferential methods of the calculus to evaluate an
integral. On the other hand, we can use the definite integral as a descriptive
term, and many of the familiar theorems about definite integrals will be
useful axioms for our qualitative reasoning method. See the section on
Simplification and Evaluation.

Note that although the above example involves integration over ¢, we
will have occasion to integrate with respect to other variables in the QDE.

The definite integral provides a new type of constraint, relating time-
points and landmark values explicitly with the variables for rate and amount.
Thus, quantity spaces (including time) are extended from purely ordinal
spaces to ones where the length of intervals can be considered.

3 Deriving the Qualitative Integral Equations

From the available constraints, derive the integral equation p = I(q).

e For a QDE with following factorizable form:

the corresponding QIR is given by:

P2 dp 92
i/ d
pn f(p) /-n 9(a)dq

e For a conservative system, where QDEs are:

dz dy
it and i F(z),

following relation must be satisfied (see Sec. 2.2):
2
y%—y%:?] F(I)d.’r
I

This implies that for fixed initial values: z; and y;, y2(= y) is a
function of z2(= z) only. So the QDE: y = dz/dt, leads to following

QIR:
%2 dx
tg — 21 = / a—
Y
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o We also use the chain rule, to break a problem into tractable subcases:

dp _ dpor

dq  Ordq

So far we have restricted our considerations to the general forms given above.

4 Taking the Partial Derivative

Suppose we have found a way to express p as an integral expression involving
q,

b
p=1I0)= [ G,qda. (1)
There are several ways of exploiting this integral equation to derive an ex-
pression for dp/dq.
4.1 The Easier Case

If things go well — i.e. we can integrate dG(z,q)/0q — we can use the
identity:

dp _ 9b da b 9G(z,q)
S0 = 5.0(b.9) - af‘“*“*’fa S, (2)

4.2 The Not-So-Easy Case

If we are not so fortunate, we can still reason with the more complex equation

ap i I(q+dq) - I(q)
- = m .
dq  dg—0 dq

(3)
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5 Simplification and Evaluation

The partial derivative expressions look awesomely complex, especially when
one appreciates that G(z,¢) and I(¢) may themselves be substantial expres-
sions. However, it turns out that the sign of dp/dq can (at least sometimes)
be evaluated with surprising ease, by applying a set of qualitative integral
simplification rules.

5.1 Definitions

Notation:
Suppose I = f: F(z)dz, where a and b are finite.

o {F} = “global sign” of F(z), where consistent over (a,b).
o [I]=sign I = {F}
Qualitative integral rules

e If F(z) has a definite sign for 2 € (a,b) (except for isolated zeros)
then [I] = {F} = -, 0, or +.

e If F(z) has both + and - signs for z € (a,b),
then [I] = {F} = nil.
5.2 Qualitative Simplification Rules

1. Removal of positive multiplicatives

For g > 0, except for isolated zeros:
[(I1= {fg} ={f}.
2. Elimination of common denominators

For f; and f; arbitrary functions and {g1,92} > 0,
f

=2 -2)= {2 - fogn)
L1 92

3. Linearization of differences

For f,g > 0 and monotonic function A,

(1] = {h(f) = h(g)} = {f - ¢}

A useful specific case, when a > 0, is:

M={f"-9"}={f-9}
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5.3 Ordinary Algebra With Integrals

1. Partial derivative rules:

e Differential definition rule
o Integral derivative rule (for regular case)

e Chain rule

2. Change limits of integrals:

e Displacement rule:

jb flz)da = e f(z +a)dz
a 0

¢ Scaling rule:

| farae = fol ezl g,

3. Combining two integrals:

'j:fd:c+]:gdx=]:{f+g)dx

To combine two integrals with different limits, use rule 2 to convert to
a common range, e.g. 0 to 1.

4. Combining ranges: If t; < t; < ta, then

" rde+ [ f(f)dt=[3 f) d.

t t2
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6 Examples

Many of our test examples (in this paper, all except the first) have been
taken from a family of related problems of motion in one dimension.

v=Z W22 a k)
¢ ODESs: f has an explicit algebraic form.
— f = 1. Constant gravity.
— f = r~2% Decreasing gravity.
— f =y. Simple spring.
— f =46. Pendulum: small amplitude approximation.
— f =sind. Pendulum: arbitrary amplitude.

— f = s%. Rolling on a concave surface, a > 0.
e QDEs: f is partially specified.

- f(y) = M*(y), increasing monotonic function.

- f(y) = M~ (y), decreasing monotonic function.

6.1 Problem 1.

“If water pours into the tank fast, it will take less time to fill”.

A. From QDE-.to QIR:

e Denote water level: y, filling rate: cf(t), where ¢ controls the overall

rate. The QDE is:
dy

pry =.¢f(t).

e QIR: From t;, y to t2, y2,
t2
ya-yn=c [ f(t)dt
131

B. Define correlation problem: Fill the tank from time t; = 0 at arbi-
trary height ¥, to time t; = T at the top h.

e To show: 8T /dc < 0.
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e Present QIR: 2
hey = c/ f(t)dt
0

C. Evaluate correlation:

e Take partial derivative of present QIR with respective to ¢, keeping t;,
Y1, hﬁ}ied

dec (T . oT
0=Ef0 f(t)dt + cS=f(T)

e Evaluate signs:

oT . .. aT
0=(+) + (+)E(+). or —c<0

6.2 Problem 2.
For the rising ball, where gravity decreases with height y, show dh/dv; > 0.
A, From QDEs to QIRs:
e QEDs:
a=-gf(y), a=dv/dt, v=dy/dt, with ¢ >0, f <O0.

Notice a depends on y only, the system is conservative.

e QIRs: 5 d
; vz
v = d_Z; gives t; —t; = f "f‘ (I)

wn

where dependence of v on y can be obtained through:
2 2 v2
v;—vy=-29 | f(ydy (II)

B. Define correlation problem:

e Present QIRs: From t; = 0, y3 = 0, v1 = v; to 12 = trise, Y2 = h,
vy = 0.
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— QIR-I": (I) gives

b —fhdy
rise = 5 B

* Evaluate v based on II:
* From y; =y, v; = v to y2 = h, vz =0, obtain

=
vt = —2gj f(y)dy, or v=v(y, h; g)
¥

x or Fpp = Fp(v, y, h; g), with
h dy
trise = | ———— (I
o= [ ot @
- QIR-II: Fromy; =0, v; = vitoyz = h, v2 =0,

h
v =2 A f(y)dy (11')

where Fip = Frp(vi, h; g).
e Define correlation problem:

— To determine: dh/dv;.
— QIR: Select Fip(vi, h; g),i.e.

h
v =29 [ fw)dy.
C. Evaluate correlation:

o Take partial derivative of (II') with respect to v;,

/
20, = 205 (h)

e Evaluate signs:

ah dh
(+) = (H@_m{H' or o > 0.
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6.3 Problem 3:

For the rising ball, where gravity decreases with height y, to find 8t,ise/0v;.

A. From QDEs to QIRs: All equations here are identical to those of
problem 2.

B. Define correlation problem:
e To determine dt,ise/dv; > 0.
e Apply-chain rule: 0tise/0v; = (Otrise/Oh)(Oh/DV;)
e 0h/0v; is already known.
e Proceed to determine 9t,;5./dh).

C. Evaluate correlation:

e QIR: Choose Fp/(trises h; g),i.e.

o
lrise = Y P B
0 'U(y, h, g)

e Taking partial of Fj;» with respect to h, gives

atriu n 1 4t _ ']_- 4
oh ~ wv(h,h,g) T T 0T

problematic!
e Alternative strategy: To evaluate

3rri:: = fini tn’se(h + dh) = tr:’ae{h)
Oh ~ dh—o dh

— Through the set of qualitative integral simplification rules given
in Sec 4, it can be shown:

sign (%) = sign (% - f"(y)) , for0<y<h

— Since f' <0,

6:,.,-3, b atrise atrise - _
ov, (Bh. ""oh )"(+)(+)"+'

sign
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6.4 Problem 4:

Consider a spring system with restoring acceleration a = —cf(y), where
f'' >0, ¢ > 0. Find the effect on the period due to perturbation on the
oscillation amplitude.

o It can be shown that the sign of correlation here is the same as that
of Otrise/Oh. The latter problem is essentially solved in problem 3. It
gives:

sign (?tri) = sign((+) = (+)) = nil
dh

e Disambiguate the sign: It turns out that more detail information on
f disambiguate the signs here:
— sign (Otrise/OR) > 0, requires f" < 0.
— sign (Otrise/OR) = 0, requires f" = 0.
— sign(0t,ise/0Oh) < 0, requires f" > 0.
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