
Learning Qualitative Models From Example Behaviours

Enrico W. Coiera *
Department of Computer Science, University of New South Wale s

P.O . Box 1 , Kensington 2033 N .S .W., Australia
email: ric@cheops.eecs.unsw.au

1 Introduction
Qualitative models provide the domain knowledge for
qualitative reasoning systems, and the automatic gener-
ation of such models is an important knowledge acqui-
sition task . Qualitative Simulation is a key qualitativ e
reasoning technique . It is proposed that simulation sys-
tems like Kuipers ' QSIM [Kuipers 86] contain a powerful
description language, based as they are on qualitativ e
mathematics, for the automation of model capture . A
simulation system uses qualitative models and mathe-
matical knowledge to generate behaviours . The Gen-
model program described here uses the same knowledg e
as a description language to proceed in the opposite di-
rection, from behaviours to models .

It is assumed that a set of dynamic qualitative syste m
behaviours are available to form a training set of posi-
tive examples . These behaviours are either presented b y
a domain expert or are extracted from numerical data b y
curve fitting or other techniques. The program's task is
to search for qualitative relationships between function s
that will permit the example behaviour . These relation-
ships together form a model of the system that produced
the behaviours .

2 Related Work
In QSIM, a model is a collection of qualitative differen-
tial equations . Some work has been done on the auto-
mated discovery of quantitative equations [Langley 81]
[Falkenheimer 86], but the qualitative models used b y
Kuipers and others have been hand-constructed by ex-
perts or derived from expert protocols [Kuipers 84]
[Forbus 88]. [Mozetic 87] reports a system for learnin g
qualitative models represented as non-recursive typed
Horn clauses . The system is given partial knowledge o f
the model - its structure (components and connections) ,
along with some instances of the model's behaviour .

Genmodel does not require structural information ,
just component names and behaviours . Because it de-
scribes data in qualitative terms, it does not force a

This work was carried out in part with the support of a New
South Wales Government Medical Research Training Scholarship ,
and has also been assisted in part by a research award from th e
Medical Engineering Research Organisation.

`best ' solution like the quantitative equation learning
programs. Assuming the data is error free, qualitative
equations are correct, not just approximate. The qual-
itative constraint language allows the qualitative form
of general polynomial equations, including functions like
exponentiation and log, to be discovered . This is becaus e
qualitative differential equations can map onto man y
different ordinary differential equations . Genmodel as-
sumes that data is error free .

3 Background Knowledge

The qualitative mathematical formalism used in QSI M
can be viewed as a description language for model devel -
opment . The language contains the background knowl-
edge needed to generate models, and specifies :

Form of Functions QSIM specifies that qualitativ e
functions are real valued parameters which vary con-
tinuously over time and are continuously differen-
tiable. The qualitative description of a function
value comprises a pair < qval, qdir > . The qva l
is a real value or real interval, and the qdir is the
sign of its time derivative . The qualitative behaviou r
of a function is defined as the temporal sequence o f
qualitative state values, and this is the form of the
examples used with the model generation system.

Permissible Function Relationships The permissi-
ble relationships between functions correspond to
the basic QSIM constraints .

	

The constraint s
as defined in [Kuipers 86] are : Add(f, g, h) ,
Mult(f, g, h), Minus(f, g), Deriv(f, g), M+ (f, g)
and M- (f, g) .

The strong mathematical foundation of the language en-
hances its generality, and should allow it to be used in a
variety of domains .

4 Generating the Mode l
Given the QSIM description language, and some exam-
ples of a system's behaviour, a space of possible rela-
tionships among the functions in the example is defined.

1

The task of the model generating program is to iden-
tify and narrow this space to leave only those constrain t
relationships consistent with the examples .

Genmodel proceeds in the following stages :

Generate Landmark Lists Inspection of the exampl e
behaviour allows landmark lists for each function t o
be constructed. Each distinct state in an exampl e
behaviour can produce sets of corresponding values .
Both these sets of values are required for the ap-
plication of the qualitative constraint language i n
the following stages . [Kuipers 86] discusses this in
detail.

Generate Initial Search Space Given a set of func-
tions and their observed behaviour over time, a larg e
but finite number of qualitative constraints might
exist between the functions, assuming a closed
world . For n functions and m constraints that hol d
between p functions, the potential search space fo r
relationships between functions is m°Cp .
The QSIM description language is formed into a se t
of productions . An exhaustive search of the possi-
ble constraint relationships between functions in a n
initial example is performed . The productions ar e
used to generate all constraints encountered in th e
search consistent with the example behaviour . For
example, QSIM's derivative constraint is reformu-
lated into the production :

deriv(f,g)

	

f ' (t) = g(t)

If the values of functions in the example behaviou r
are consistent with the right hand side of the pro-
duction then the left hand relationship is gener-
ated between them as a possible model constraint .
For example, an example state contains function s
a and b with values f (a) =< a(1), inc > and
f (b) =< 0/oo, dec > . The relationship deriv(a, b)
is supported because b is positive, and thus corre-
sponds to the sign of the derivative of a ie inc .

Filtering Generated Constraints Each subsequent
example behaviour can potentially reduce the num-
ber of generated constraints by filtering those tha t
are not consistent with it . The productions are
now used to test the initially generated constraint s
against the current example behaviour . Constraints
are deleted from the set of generated constraints
when no production can be found to support the m
with the current example .

Removing Redundant Constraints Once all the ex-
amples have been processed, the remaining con-
straints form the desired model . Many of these con-
straints are redundant, and can be also filtered . For
example M+ (a,b) and M+(b,a) specify the same
relationship, and one of these can be eliminated .
Similar redundancies exist for add, mult, minus and
M - .

5 Learning the Bathtub
The Bathtub model can reach a steady partially fille d
state with an open drain and constant water flow run-
ning into the bathtub . The example behaviour below
shows three distinct qualitative states . The state t(0)
corresponds to the initial state as water flows into th e
tub, t(0)/t(1) is a transition state, and t(l) is the fi-
nal equilibrium . Each function is shown alongside it s
qualitative description during the example state . The
functions are : amount of fluid in tub (amt), level of flui d
(lev), pressure of fluid (pre), drain (dra), out flow (out) ,
in flow (inf) and net flow (net) . 70 constraints can b e
found to support the initial state . Each further stat e
in the behaviour reduces the possible constraints in th e
model, until only 8 are present at the end .

[example t(0)
amt

	

0

	

inc

1ev

	

0

	

inc

pre

	

0

	

inc

dra

	

open

	

std

out

	

0

	

inc

if

	

if(0)

	

std

net

	

0 / inf

	

dec]

Number of Constraints = 70

[example t(0) / t(1)

amt

	

0 / full

	

inc

1ev

	

0 / top

	

inc

pre

	

0 / inf

	

inc

dra

	

open

	

std

out

	

0 / inf

	

inc

if

	

if(0)

	

std
net

	

0 / inf

	

dec]

Number of Constraints = 18

[example t(1)
amt

	

full

1ev

	

top

pre

	

pre(1)

dra

	

open

out

	

out(1)

if

	

if(0)

net

	

0

Number of Constraints = 8

The Bathtub model generated by Genmodel is :

deriv(amt, net)

deriv(lev, net)
deriv(pre, net)

deriv(out, net)

mplus(amt, 1ev)

mplus(lev, pre)

add(out, net, if)

mult(pre, dra, out)

There are three extra constraints in the learnt model no t
present in the target model :

deriv(lev, net)

deriv(pre, net)

deriv(out, net)

std
std

std

std

std
std

std]

2

Model Number
o f

Examples

Number
of

States

Target
Number of
Constraints

Generated
Number of
Constraints

Ball 1 5 2 2
Spring 1 8 3 4
U Tube 2 6 6 1 4
Bathtub 1 3 5 8
Starling 2 6 13 25

Table 1 : Genmodel's Performance with Some Test Mod-

els

tic guides may be needed, such as those used with othe r
machine learning programs . Quantitative equation dis-
covery systems look for hidden variables in the data pre-
sented through the construction of intermediates . When
Genmodel is presented with behaviours from open worl d
systems, it will need to use such heuristics .

Since the Genmodel output is a model using descrip-
tors not present in the original observational statements ,
the modelling process can be regarded as constructive
generalisation [Michalski 83] . The use of the monotoni c
descriptor is discussed in Michalski's paper (p 111) . I t
may be that other rules for constructive generalisatio n
are also applicable in Genmodel's domain .

References
[Falkenheimer 86] B. C. Falkenheimer, R. S . Michalski, Inte-

grating Quantitative and Qualitative Dis-
covery: The ABACUS System, Machine
Learning, 1, (1986), 367-401 .

[Forbus 88] K . D . Forbus, Intelligent Computer-Aided
Engineering, AI Magazine, (9), 1988, 23 -
36 .

[Kuipers 84] B . Kuipers, J . P. Kassirer, Causal Reason-
ing in Medicine : Analysis of a Protocol,
Cognitive Science, 8, (1984), 363 - 385 .

[Kuipers 86]

	

B . Kuipers, Qualitative Simulation, Artifi-
cial Intelligence, 29, (1986), 289-338 .

[Langley 81] P . Langley, Bacon .5 :Th e
Discovery of Conservation Laws, Sevent h
IJCAI, (1981), 121 - 126 .

[Michalski 83] R. S . Michalski, A Theory and Methodol-
ogy of Inductive Learning, in R . S . Michal -
ski, J . G. Carbonell, T . M. Mitchell (eds) ,
Machine Learning : An Artificial Intelli-
gence Approach, Paolo Alto, CA (1983) .

[Mozetic 87] I . Mozetic, The Role of Abstractions i n
Learning Qualitative Models, Proceeding s
of the Fourth International Workshop o n
Machine Learning, (1987), 242 - 255 .

The models produced by Genmodel from positive ex-
▪ amples are usually overconstrained because the searc h

is specific to general . The most specific model capa-
ble of producing the example behaviours is generated .
These extra constraints admit the example behaviour ,
and could be filtered if examples were presented in whic h
these constraints were violated . When the models are
used with a qualitative simulator, they reproduce th e
examples they were constructed from.

6 Adding Constraints with Neg-
ative Examples

When qualitative simulation is performed on a model ,
extra behaviours may be produced that are unwanted .
These behaviours result either through the ambiguit y
of the qualitative simulation language, or because th e
model itself is underconstrained .

If the unwanted behaviours are treated as negative ex-
amples for the model generating program, and the mode l
is underconstrained, then the examples can be used t o
identify additional constraints that will prohibit thes e
behaviours . In this case, the program looks for con-
straints that admit the desired behaviours (positive ex-
amples) but which do not admit the negative examples .

Genmodel's strategy is :

• From a positive example, generate all possible con-
straints that are consistent with it .

• Test each of these constraints against the negativ e
behaviour .

• If the constraint admits the negative behaviour ,
delete it .

• If the constraint fails to admit the negative be-
haviour, retain it as a new model constraint .

7 Results
Genmodel i has been tested on qualitative behaviours
produced from small models . It has not attempted to
generate models from real world data . Results for some
common models in the qualitative simulation literatur e
[Kuipers 84][Kuipers 86] are presented in Table 1 .

It is clear from the table that Genmodel creates models
of approximately the same size as the target model, bu t
usually is unable to remove some constraints because of
insufficient examples .

8 Conclusion
Genmodel's search is exhaustive at present because of it s
closed world assumption. For large search spaces heuris -

1 Genmodel is written in UNSW Prolog V4.2, running under
Unix ©BSD 4 .3 on a Pyramid 90X, and on Apollo DM3000
workstations

3

	page 1
	page 2
	page 3

