Learning Qualitative Models From Example Behaviours

Enrico W. Coiera *
Department of Computer Science, University of New South Wales

P.O. Box 1 , Kensington 2033 N.S.W., Australia
email: ric@cheops.eecs.unsw.au

1 Introduction

Qualitative models provide the domain knowledge for
qualitative reasoning systems, and the automatic gener-
ation of such models is an important knowledge acqui-
sition task. Qualitative Simulation is a key qualitative
reasoning technique. It is proposed that simulation sys-
tems like Kuipers’ QSIM [Kuipers 86] contain a powerful
description language, based as they are on qualitative
mathematics, for the automation of model capture. A
simulation system uses qualitative models and mathe-
matical knowledge to generate behaviours. The Gen-
model program described here uses the same knowledge
as a description language to proceed in the opposite di-
rection, from behaviours to models.

It is assumed that a set of dynamic qualitative system
behaviours are available to form a training set of posi-
tive examples. These behaviours are either presented by
a domain expert or are extracted from numerical data by
curve fitting or other techniques. The program’s task is
to search for qualitative relationships between functions
that will permit the example behaviour. These relation-
ships together form a model of the system that produced
the behaviours.

2 Related Work

In QSIM, a model is a collection of qualitative differen-
tial equations. Some work has been done on the auto-
mated discovery of quantitative equations [Langley 81]
[Falkenheimer 86], but the qualitative models used by
Kuipers and others have been hand-constructed by ex-
perts or derived from expert protocols [Kuipers 84]
[Forbus 88]. [Mozetic 87] reports a system for learning
qualitative models represented as non-recursive typed
Horn clauses. The system is given partial knowledge of
the model - its structure (components and connections),
along with some instances of the model’s behaviour.
Genmodel does not require structural information,
just component names and behaviours. Because it de-
scribes data in qualitative terms, it does not force a

*This work was carried out in part with the support of a New
South Wales Government Medical Research Training Scholarship,
and has also been assisted in part by a research award from the
Medical Engineering R ch Organi

tion

‘best’ solution like the quantitative equation learning
programs. Assuming the data is error free, qualitative
equations are correct, not just approximate. The qual-
itative constraint language allows the qualitative form
of general polynomial equations, including functions like
exponentiation and log, to be discovered. This is because
qualitative differential equations can map onto many
different ordinary differential equations. Genmodel as-
sumes that data is error free.

3 Background Knowledge

The qualitative mathematical formalism used in QSIM
can be viewed as a description language for model devel-
opment. The language contains the background knowl-
edge needed to generate models, and specifies:

Form of Functions QSIM specifies that qualitative
functions are real valued parameters which vary con-
tinuously over time and are continuously differen-
tiable. The qualitative description of a function
value comprises a pair < gval,gdir >. The gqual
is a real value or real interval, and the g¢dir is the
sign of its time derivative. The qualitative behaviour
of a function is defined as the temporal sequence of
qualitative state values, and this is the form of the
examples used with the model generation system.

Permissible Function Relationships The permissi-
ble relationships between functions correspond to
the basic QSIM constraints. @ The constraints
as defined in [Kuipers 86] are: Add(f,g,h),
Mult(f,g,h), Minus(f,g), Deriv(f,q), M*(f,q)
and M~ (f, g).

The strong mathematical foundation of the language en-
hances its generality, and should allow it to be used in a
variety of domains.

4 Generating the Model

Given the QSIM description language, and some exam-
ples of a system’s behaviour, a space of possible rela-
tionships among the functions in the example is defined.

The task of the model generating program is to iden-
tify and narrow this space to leave only those constraint
relationships consistent with the examples.

Genmodel proceeds in the following stages:

Generate Landmark Lists Inspection of the example
behaviour allows landmark lists for each function to
be constructed. Each distinct state in an example
behaviour can produce sets of corresponding values.
Both these sets of values are required for the ap-
plication of the qualitative constraint language in
the following stages. [Kuipers 86] discusses this in
detail.

Generate Initial Search Space Given a set of func-
tions and their observed behaviour over time, a large
but finite number of qualitative constraints might
exist between the functions, assuming a closed
world. For n functions and m constraints that hold
between p functions, the potential search space for
relationships between functions is m"Cj,.

The QSIM description language is formed into a set
of productions. An exhaustive search of the possi-
ble constraint relationships between functions in an
initial example is performed. The productions are
used to generate all constraints encountered in the
search consistent with the example behaviour. For
example, QSIM’s derivative constraint is reformu-
lated into the production:

deriv(f,g) — f'(t) = g(t)

If the values of functions in the example behaviour
are consistent with the right hand side of the pro-
duction then the left hand relationship is gener-
ated between them as a possible model constraint.
For example, an example state contains functions
a and b with values f(a) =< a(l),inc > and
f(b) =< 0/o0,dec >. The relationship deriv(a,b)
is supported because b is positive, and thus corre-
sponds to the sign of the derivative of a ie inec.

Filtering Generated Constraints Each subsequent
example behaviour can potentially reduce the num-
ber of generated constraints by filtering those that
are not consistent with it. The productions are
now used to test the initially generated constraints
against the current example behaviour. Constraints
are deleted from the set of generated constraints
when no production can be found to support them
with the current example.

Removing Redundant Constraints Once all the ex-
amples have been processed, the remaining con-
straints form the desired model. Many of these con-
straints are redundant, and can be also filtered. For
example M*(a,b) and M*(b,a) specify the same
relationship, and one of these can be eliminated.
Similar redundancies exist for add, mult, minus and
M-

5 Learning the Bathtub

The Bathtub model can reach a steady partially filled
state with an open drain and constant water flow run-
ning into the bathtub. The example behaviour below
shows three distinct qualitative states. The state t(0)
corresponds to the initial state as water flows into the
tub, t(0)/t(1) is a transition state, and t(1) is the fi-
nal equilibrium. Each function is shown alongside its
qualitative description during the example state. The
functions are: amount of fluid in tub (amt), level of fluid
(lev), pressure of fluid (pre), drain (dra), out flow (out),
in flow (inf) and net flow (net). 70 constraints can be
found to support the initial state. Each further state
in the behaviour reduces the possible constraints in the
model, until only 8 are present at the end.

[example t(0)

amt 0 inc
lev 0 inc
pre 0 inc
dra open std
out 0 inc
if if(0) std
net 0 / inf dec]

Number of Constraints = 70

[example t(0) / t(1)

amt 0/ full inc
lev 0 / top inc
pre 0/ inf ine
dra open std
out 0/ inf ine
if i£(0) std
net 0 / inf dec]
Number of Constraints = 18
[example t(1)
amt full std
lev top std
pre pre(1) std
dra open std
out out(1) std
if i£(0) std
net 0 std]

Number of Constraints = 8
The Bathtub model generated by Genmodel is:

net)
net)
net)
net)

deriv(amt,
deriv(lev,
deriv(pre,
deriv(out,
mplus (amt, lev)
mplus (lev, pre)
add(out, net, if)
mult(pre, dra, out)

There are three extra constraints in the learnt model not
present in the target model:

deriv(lev, net)
deriv(pre, net)
deriv(out, net)

The models produced by Genmodel from positive ex-
amples are usually overconstrained because the search
is specific to general. The most specific model capa-
ble of producing the example behaviours is generated.
These extra constraints admit the example behaviour,
and could be filtered if examples were presented in which
these constraints were violated. When the models are
used with a qualitative simulator, they reproduce the
examples they were constructed from.

6 Adding Constraints with Neg-
ative Examples

When qualitative simulation is performed on a model,
extra behaviours may be produced that are unwanted.
These behaviours result either through the ambiguity
of the qualitative simulation language, or because the
model itself is underconstrained.

If the unwanted behaviours are treated as negative ex-
amples for the model generating program, and the model
is underconstrained, then the examples can be used to
identify additional constraints that will prohibit these
behaviours. In this case, the program looks for con-
straints that admit the desired behaviours (positive ex-
amples) but which do not admit the negative examples.

Genmodel’s strategy is:

e From a positive example, generate all possible con-
straints that are consistent with it.

e Test each of these constraints against the negative
behaviour.

e If the constraint admits the negative behaviour,
delete it.

e If the constraint fails to admit the negative be-
haviour, retain it as a new model constraint.

7 Results

Genmodel' has been tested on qualitative behaviours
produced from small models. It has not attempted to
generate models from real world data. Results for some
common models in the qualitative simulation literature
[Kuipers 84][Kuipers 86] are presented in Table 1.

It is clear from the table that Genmodel creates models
of approximately the same size as the target model, but
usually is unable to remove some constraints because of
insufficient examples. I

8 Conclusion

Genmodel’s search is exhaustive at present because of its
closed world assumption. For large search spaces heuris-

! Genmodel is written in UNSW Prolog V4.2, running under
Unix ©BSD 4.3 on a Pyramid 90X, and on Apollo DM3000
workstations

Model Number | Number Target Generated

of of Number of | Number of

Examples | States | Constraints | Constraints
Ball 1 5 2 2
Spring 1 8 =8 4
U Tube 2 6 6 14
Bathtub 1 3 5 8
Starling 2 6 13 25

Table 1: Genmodel’s Performance with Some Test Mod-
els

tic guides may be needed, such as those used with other
machine learning programs. Quantitative equation dis-
covery systems look for hidden variables in the data pre-
sented through the construction of intermediates. When
Genmodel is presented with behaviours from open world
systems, it will need to use such heuristics.

Since the Genmodel output is a model using descrip-
tors not present in the original observational statements,
the modelling process can be regarded as constructive
generalisation [Michalski 83]. The use of the monotonic
descriptor is discussed in Michalski’s paper (p 111). It
may be that other rules for constructive generalisation
are also applicable in Genmodel’s domain.

References

[Falkenheimer 86] B. C. Falkenheimer, R. S. Michalski, Inte-
grating Quantitative and Qualitative Dis-
covery: The ABACUS System, Machine
Learning, 1, (1986), 367-401.

K. D. Forbus, Intelligent Computer-Aided
Engineering, Al Magazine, (9), 1988, 23 -
36.

B. Kuipers, J. P. Kassirer, Causal Reason-
ing in Medicine: Analysis of a Protocol,
Cognitive Science, 8, (1984), 363 - 385,

B. Kuipers, Qualitative Simulation, Artifi-
cial Intelligence, 29, (1986), 289-338.

[Langley 81] P. Langley, Bacon.5:The
Discovery of Conservation Laws, Seventh
[JCAI (1981), 121 - 126.

R. S. Michalski, A Theory and Methodol-
ogy of Inductive Learning, in R. S. Michal-
ski, J. G. Carbonell, T. M. Mitchell (eds),
Machine Learning: An Artificial Intelli-
gence Approach, Paolo Alto, CA (1983).

1. Mozetic, The Role of Abstractions in
Learning Qualitative Models, Proceedings
of the Fourth International Workshop on
Machine Learning, (1987), 242 - 255.

[Forbus 88]

[Kuipers 84]

[Kuipers 86]

[Michalski 83]

[Mozetic 87)

	page 1
	page 2
	page 3

