
Building Qualitative Models of Thermodynamic Processes

John W . Collins
Qualitative Reasoning Grou p

Beckman Institute, University of Illinoi s
405 North Mathews St .

Urbana, IL 6180 1

Abstrac t

This paper describes a qualitative domain theory developed for modeling fluids and thermodynamics

scenarios in On . This work builds on the domain models of [4], adding process definitions for pumps (fo r
liquids), compressors (for gasses), and a phase-change process for condensation .

The model includes a complete qualitative account of the thermodynamic behavior of fluids associate d
with each type of process . It allows significant flexibility and composability in assembling new scenarios ;
the user need only describe the structural configuration to be modeled, and qPE does the rest . It has been
used to model a variety of fluid system scenarios, including a two-phase refrigeration system described i n
detail. Lessons learned from putting together a large qualitative model are discussed, hopefully preventin g

future model builders from falling into the same traps .

Area:

	

Commonsense Reasoning
Subarea : Qualitative Physic s
Type:

	

Science
Length: 5023 words

W
1 Introduction

This paper develops a qualitative domain model for thermodynamic and fluid systems, based on Qualitativ e

Process theory. This model contains a complete set of process definitions for modeling fluid flows (liquid

or gas, forced or free), heat flows, and phase transitions between the liquid and gaseous states . The mode l

has been applied to a variety of scenarios, including a refrigeration system, which is described here in detail .

We conclude with a discussion of the lessons learned as a result of putting together a large–scale qualitative

model . Before describing the model in deatail, some general modeling issues are discussed .

2 Modeling Issues

The development of a set of domain descriptions capable of modeling a wide variety of fluid and thermody-

namic scenarios requires careful consideration of several issues .

2 .1 Modularity

In order to manage complexity, the domain is partitioned into a set of relatively independent modules . For

example, heat flow is sufficiently different from other domains in thermodynamics to be considered a separat e

module . Yet no module is totally independent from the others ; heat flows involve physical objects, as d o

all other processes . In general each module is dependent on a set of lower modules, and may be used by

still higher modules . As a matter of pragmatics, each module is stored in a separate file so that only those

modules required for a particular scenario need be loaded .
Hierarchical representation offers the same benefits to qualitative reasoning as to the other AI disciplines :

compactness of representation together with a natural mechanism for generalization . Hierarchies are used

extensively in representing physical entities ; for example, a contained–liquid is a contained–stuff, which is a

physob . Quantities and other properties are inherited from the general class to the specific instance .

Hierarchical representations have also been applied to processes, though to a lesser extent . When two

process descriptions share a great deal in common, as with liquid flow and gas flow, a common abstrac t

process description may be defined to contain their intersection . Their differences may then be handled

using simple view or process descriptions . This reduces duplication, and thereby reduces the likelihood o f

introducing subtle bugs .

2 .2 Level of Detai l

Of all the modeling decisions, the most difficult has been choosing the appropriate level of detail . The first

step is to partition the world up into discrete objects . The coarseness of the partitioning will determine th e

coarseness (and efficiency) of the reasoning . For example, reasoning at the level of contained-liquids woul d

be too coarse if our goal were to understand sloshing . Here are a few other examples :

Modeling Idealizations : Should the model for liquid flow consider the acceleration of the liquid in the path ,

or settle for a equilibrium model which relates flow rate and pressures directly ?

Qualitative Approximations : Should the model include a quantity representing the conductance (or resis-

tance) of a fluid path, or simply define the flow rate as the qualitative difference in pressures acros s

the path. Having conductance provides a hook for adding a continuous model for valves, and avoid s

the direct comparison of quantities of different units (eg . flow-rate and pressure) .

1

3 A Tour of the Model
This section presents a tour through the model for the various domains, beginning with simple physica l

objects and concluding with a complex model of phase transitions . Space precludes including significan t

portions of the model in the body of the paper, so the complete listing is attached as an appendix .

3.1 Physical Objects
Since we are modeling a physical domain, all of our processes must necessarily involve physical objects . We

define an entity for physical objects, called physob, which describes the basic physical properties common

to all objects. For example, all physobs are given the quantities of mass, volume, heat and temperature ,

which are constrained to be non-negative . These properties are inherited by specific instances of physica l

objects, such as contained-liquids .

3 .2 Contained Liquid s
Hayes [6[has formalized two views for liquid objects: the contained-liquid view and the piece-of-stuff view .

A contained-liquid is defined as the liquid which exists within the confines of some container . The amount

of a contained-liquid can change, as when liquid flows in or out ; and can go to ZERO—in which case th e

contained-liquid vanishes. The contained-liquid re-appears when liquid (of the same substance) is added t o

the empty container. This view of liquids is the basis for nearly all qualitative models for fluids develope d

so far. An alternative view of fluids is provided by the piece-of-stuff ontology, which defines a fluid object a s

a particular collection of molecules whose mass is fixed but whose location may vary .

Contained-liquids are modeled as a specialization of a contained-stuff, which may be liquid or gas . A

contained-stuff exists whenever there is a non-ZERO amount of fluid in some container . When a contained-

liquid exists, it is a physob, and inherits mass, volume, temperature and heat .

The mass of the contained-liquid is equal to and determined by the amount of liquid substance in the

container.' The volume is qualitatively proportional (ocq+) to the mass of the contained-liquid, and has

the same sign ; that is, the two quantities have a Correspondence at ZERO .

Contained-liquids also have the quantity : level, which depends on volume . level has two interestin g

limit points : the bottom-height and top-height of the container, which correspond to empty and ful l

containers, respectively . In simpler models the level is not allowed to exceed the top-height of the

container; however this restriction is relaxed for the overflow model discussed below .

3 .3 Liquid Flow
Liquid flow occurs whenever an unobstructed fluid path connects two containers of liquid at different levels .

We ignore the dynamics involved in accelerating the mass of fluid in the path, and simply consider the flo w

rate as a monotonic function of the pressure drop across the path . Whenever a liquid flow process is active ,

its flow-rate positively influences the amount of liquid at the destination and negatively influences th e

amount of liquid at the source of the flow .

3.3 .1 Portals

The boundaries of a contained stuff are for the most part rigidly defined by the physical presence of it s

container . However, not all containers are completely closed. For instance, a container may have an ope n

'These two quantities differ in that mass disappears when the contained-liquid ceases to exist, and so can never equal ZERO .

2

top, or may have fluid paths (eg .,pipes) connected to it . These areas are characterized by the absenc e
of a physical wall defining the boundaries between the inside and outside of the container . Following the

terminology used by Hayes [6], we call these interfaces portals .
Portals are used in our model to define the connectivity of containers and fluid paths . Portals poses s

the quantities : pressure and temperature ; these may be viewed as belonging to the fluid (liquid or gas)
at the location of the portal . Portals also have a quantity : height, which is compared to the level of
the contained-liquid to determine the portal's submerged-depth . The liquid-flow process is augmented to

require that the portal at the source of the flow be submerged ; this is stronger than the contained-liqui d
requirement, since the portal need not be at the bottom of the container .

3 .3.2 Flow through Non-Level Paths

The pressure of a contained-liquid is a function of the level of the liquid . Since there is only a singl e

pressure quantity for each contained-liquid, it is clear that this quantity cannot represent the liquid' s

pressure as a function of depth ; rather it must represent the pressure at some arbitrary depth—such a s

the bottom of the container, or the arbitrary reference from which heights and levels are measured .
The pressure at a submerged portal is not necessarily equal to that of its submerging contained -

liquid, since the portal's height is not generally equal to ZERO . The portal's pressure is a function o f

its submerged-depth. The portal's pressure is also dependent on the pressure of any contained-gas which

occupies the same container .
It should be possible to determine the direction and rate of liquid flow by looking only at properties of

the portals at either end of the flow path . But the pressures at the portals of a non-level path do not b y

themselves determine the direction of flow; the additional force of gravity acting on the liquid in the path

may cause flow from lower to higher pressure .
The quantity head is introduced in order to properly account for flow through non-level paths . In classica l

fluid dynamics, head represents the height assumed by a column of fluid open to the atmosphere (or to a

vacuum). We ignore the component of head due to the velocity of the fluid, and qualitatively define hea d

as the sum of pressure and height . It is meaningful to refer to the head of a contained-liquid, since this

quantity does not change with depth . The liquid flow process will depend on the relative head at the tw o

ends of the flow path; flow will always occur from higher to lower head .

3 .3 .3 Thermal Properties of Liquid Flow

The model of liquid flow presented so far has ignored the effects of temperature differences between th e

source and destination of the flow . Unless the flow process can influence the heat of the contained-liquids ,

the heat will remain constant even as the liquid objects appear and disappear .
There are two obvious approaches to modeling thermal properties in liquid flow . We may either conside r

both intrinsic and extrinsic thermal quantities (i .e ., temperature and heat), or we may consider only .

the intrinsic quantity : temperature . Considering the latter approach first, temperature must be directl y

influenced by "heat flows" and other thermal processes ; the quantity heat is not included in the model .

Depending on the relative temperatures of the source and destination of liquid flow, the appropriate therma l

mix-in process instantiates to directly influence (up or down) the temperature at the destination . The

temperature at the source is uninfluenced . The direct influencer of temperature is a function of th e

difference in temperatures, as well as the flow-rate of the process instance (pi) and the mass of th e

contained-liquid at the destination :

Flow-Rate(pi)
Thermal-Rate(pi) =	 (Temp(source) - Temp(dest))

Mass(dest)

3

This approach pays a high price for excluding heat from the model. It seems unnatural for a liquid flo w

or heat flow process to require knowledge of the amount of liquid at the destination . In addition, we lose th e

sense of a thermal flow ; temperature is not moved from source to destination, nor does it obey conservatio n

laws .
A more elegant alternative is to define the temperature of a contained-liquid as a ratio of heat and

mass, which results in the following dependencies :

temperature ocQ+ heat ;

	

temperature ocQ_ mass

Heat and mass are directly influenced by various flow processes . This definition is consistent, but can

often result in ambiguity. For example, both heat and mass are decreasing at the source of a liquid flow and

increasing at the destination, so the net effect on the temperatures cannot be resolved given the ambiguou s

combination of the ocQ+ and ocQ_
This problem motivated the development of a technique for resolving ratios, which is described in detail i n

[2] . Basically the technique involves pairing up the influencers on numerator and denominator, and resolving

the net influence of each pai r in isolation. As long as no two pairs provide opposite influences, the derivative

of the ratio will be unambiguously resolved .
Augmented with this technique, QPE is powerful enough to reason that the temperature at the source o f

a liquid flow remains constant, while the temperature at the destination behaves according to the differenc e

in temperatures . This technique also solved another problem : recognizing that flow into an empty containe r

results in a contained-liquid at the same temperature as the flow coming in . By requiring that a ZERO-mas s

contained-stuff have constant temperature, it follows that the initial temperature will be the same as tha t

of the liquid flowing in (otherwise it would be changing, a contradiction) . This constraint also covers cases

of multiple flows of different temperatures into an empty container .

3.4 Pumped Flow

Pumps are used to drive fluid flow when gravity won't . The simplest qualitative model of a pump assume s

a constant (positive) flow rate, as long as there is liquid in the source container to be pumped . This mode l

corresponds to a positive–displacement pump.
Our domain model for pumps is based on the more common centrifugal pump, in which the flow rat e

depends on the pressure rise across the pump . The rate of flow decreases as the pressure rise increases, unti l

some maximum pressure is reached . Given a sufficiently high pressure rise, the pump will have a "negative "

flow.' The current model includes views to distinguish working, coasting and "losing" pumps, based on th e

pressure rise or drop across the pump. The thermal behavior of a pumped liquid is handled in the same wa y

as in the liquid flow process described above .

3 .5 Gasses

Many thermodynamic systems of interest involve gasses . Unfortunately, gasses introduce several new dif-

ficulties . Unlike liquids, which are incompressible, gasses expand to fill their container . In the process o f

expanding or compressing, gasses are subject to doing work or being worked upon . These processes affect

the internal energy of the gas, which in turn affects its temperature and pressure . This section describes th e

qualitative model developed to account for the behaviors of gasses in fluid systems .

•

	

2 This model of a pump is equivalent to a constant displacement pump in parallel with a (restricted) flow path .

4

‘IP
3 .5.1 Open and Closed Container s

Because gasses expand to fill their container, it is necessary to introduce a new distinction for containers ,

namely : open vs . closed containers . 3 An open container is only capable of containing liquid, and is expose d
to the constant pressure of the atmosphere . A closed container may contain liquid or gas, or both . The

pressure in a closed container may vary, as determined by the amount of contained-gas present and how ho t

it is .

3.5.2 Contained-Gasses—Ideal Gas Law

As with liquids, contained-gasses are modeled as a specialization of contained-stuffs . Contained-gasses share

all the same quantities as contained-liquids, except that gasses do not have a level .

When a gas is sufficiently above its boiling point, its behavior is approximated by the ideal gas law :

PV=mRT= U

where P, V, m and T represent pressure, volume, mass and (absolute) temperature, respectively . R is the
gas constant for the substance in question ; U is the internal energy of the gas, which for simplicity will b e

referred to as heat .

Because QP theory requires a causal model, it is necessary to replace the constraint equation representatio n

of the ideal gas law with a set of directed influences . The first step in constructing such a model is to identify

the independent parameters among the quantities ; these are the inputs to the causal chains . In QP theory,
these are exactly the directly influenced quantities . As with liquids, it is reasonable to choose mass and

heat as independent parameters, since there are clearly-identifiable processes which directly influence these

quantities . In addition, volume is viewed as independent, since the volume of a contained-gas is determine d

by the volume of its container.'
Using these three quantities (i .e ., heat, mass and volume) as independent parameters, we can solve fo r

the remaining (dependent) quantities as follows :

P = U/V ; T = Ulm ;

The constant R is dropped from the representation, since it does not affect the qualitative behavior of a

gas. Note that the definition of temperature for a contained-gas is the same as for contained-liquids and all

other physical objects .
The expression for pressure may seem unintuitive, since it involves neither temperature nor mass . In-

tuitively when gas is added to a closed container, or when the contained-gas is heated, the pressure of th e

gas will increase . But in both cases heat is being added to the gas while its volume remains constant . The

model predicts that if the amount of the gas could be increased while its heat is held constant (say by addin g
gas at absolute zero temperature), then the pressure would remain unchanged ; this result does not conflic t
with an intuitive view based on a product of mass and temperature, since the temperature in the above cas e

would be decreasing, and the net influence on pressure would be ambiguous .

3.5.3 Gas Flow and Expansion

The flow of gasses is in many respects analogous to liquid flow . The gas flow process is driven by a pressur e
drop across a fluid path, and influences the amount of contained-gas at the source and destination of th e

3A familiar example of a closed container is a household pressure cooker .
'Expansion and compression processes have been developed to influence a container's volume .

5

c
flow. As with liquids, the dynamics of flow rate acceleration based on the inertia of the fluid are ignored, i n
favor of an equilibrium model of flow .

Unlike the model for liquid flow, gas flow involves an expansion of the fluid within the flow path . As the
gas expands, it does work on its surroundings, at the expense of some of its internal (heat) energy . If the
fluid path is in fact a turbine, then some of the energy of the gas may be converted to mechanical energ y
and used to do physical work . In this case, the energy of the gas arriving at the destination of the flow i s
less than the energy leaving the source . Since the mass flows are the same, the temperature of the gas mus t
drop across the path . In addition, gas flowing through a constriction will be cooler as it flows faster, since
it has exchanged thermal energy for kinetic energy .5

The process definition for gas flow through a restricted fluid path moves mass and heat from the source
of the flow to the destination . The amount of heat moved is greater than the original heat content of the
gas being moved, due to the work being done by the source on the destination . Thus the gas flow process
tends to reduce the temperature at the source and increase the temperature at the destination .

3.5.4 Compressed Gas-Flow—Compression

Like liquids, gasses can be made to flow from lower to higher pressures, through a compressor. Compressors ,
like pumps, can be modeled in a variety of ways . The simplest model of a compressor has a constant flo w
rate ; The process definition for this model would have no quantity conditions, and would be active wheneve r
there is a contained-gas at the compressor's inlet .

A more realistic model of a compressor determines the flow rate as proportional to the density of the
gas at the inlet . Properties at the outlet do not affect the flow rate in this model, which represents an idea l
positive-displacement (eg . piston/cylinder) compressor .

3.6 Liquid—Gas Phase Transition s

Many thermodynamic cycles of interest—including modern air conditioners and power plants—involve phase
changes between the liquid and the gaseous phase . Developing a realistic qualitative model for phase tran-
sitions proved to be particularly challenging .

The phase of a substance is primarily a function of its temperature ; each phase exists only within a certain
range of temperatures . When the temperature of a liquid reaches its upper limit—namely, the boiling poin t
of the substance—then boiling begins to occur ; when a gas is cooled to this same limit, condensation results .
The boiling point of a substance is not constant but increases with pressure ; thus boiling (and condensation)
occur at a higher temperature in a pressurized vessel (such as a car's radiator or a pressure cooker) tha n
in an open pan on a stove. Likewise, lukewarm water will boil in a vacuum, and superheated steam wil l
condense when subjected to sufficiently high pressure .

3 .6.1 Thermal Behavior of Phase Transition s

Correctly modeling the thermal aspects of a phase transition requires careful consideration . One usefu l
technique for reasoning about a complex process is to decompose it into an equivalent sequence of simpl e
events . For example, boiling may be decomposed in the following way :

1 . An infinitesimal piece of liquid is selected as the next candidate to undergo the transition from liquid
to gas . This infinitesimal piece of liquid is removed from the contained-liquid by subtracting out it s
mass and heat content from the corresponding properties of the contained-liquid .

5 These properties were the basis for some of the early refrigerators .

6

2. In order to convert the piece of liquid into a piece of gas, additional heat—known as the latent heat of
vaporization—is transferred to the piece of liquid .

3. As the phase transition proceeds, the piece-of-stuff expands, thereby expending energy (heat) as i t

does work on its surrounding contained-gas .

4. Finally, the piece of gas is added to the contained-gas by incrementing its mass and heat .

This reasoning technique has been similarly applied to the condensation process .

3 .6.2 Evaporation and Boiling

An important modeling issue for the boiling process concerns the source of the latent heat of vaporation .

One possible choice is to require the presence of an external heat source, whose temperature is above the

boiling point . Another option is to take the heat from the surrounding contained-liquid . These two modelin g

choices result in very different predicted thermal behaviors for the contained-liquid . In the first case the

temperature of the contained-liquid is unaffected, while in the second case it is negatively influenced .

A simple model of the boiling process is active whenever a contained-liquid is at its boiling point and

has a heat flow into it . The rate of boiling is proportional to the heat flow rate into the liquid . The boiling

process negatively influences the amount of liquid in the container and positively influences the amount o f

gas (of the same substance) in the container. This model corresponds to the first choice described above ,

where the boiling piece of liquid draws heat from an external heat source .
There are several problems with this model of boiling ; for example, the model requires that the net hea t

flow into the liquid be available as a quantity. There may be multiple heat flows into and out of the liquid ,

and only if the net effect is positive will boiling occur . Even if this quantity were available, it would b e

incorrect to define the boiling rate solely in terms of the net heat flow . In fact it is possible to boil a liquid

without adding any heat at all, simply by reducing the pressure and thus reducing the boiling point belo w

the current temperature of the liquid .
This problem is analogous to the overflow of a contained-liquid through the top of its open container . We

would like to enforce that the level of the contained-liquid never exceed the top-height of the container ,

and that the overflow rate equals the net rate of flow entering a full container . As with boiling, it is possibl e

to move the limit point of the overflow process, for example by raising or lowering a gate at the top of

the container. Thus overflow can occur without any flow into the container . The problem here is that th e

requirement that the level (temperature) of the liquid never exceed its limit point is an idealization . In reality

the fluid level must exceed the top height of the container for overflow to occur ; the difference between these

two quantities determines the rate of overflow .
This augmented model for overflow can be mapped back across the analogy to boiling . In the resulting

model, the rate of boiling is proportional to the amount by which the temperature of the liquid exceeds it s

boiling point . This model in some ways improves on previous models ; however, it is somewhat unintuitive .

To relieve the reader's unease, consider a slightly different perspective : a boiling liquid does not actuall y

have a single temperature ; rather it has a distribution of temperatures centered at some mean value . At

the molecular level, some molecules will be moving faster than others . If we view the boiling process as

Maxwell's demon grabbing and removing only the fastest molecules, then clearly the average temperatur e

of the liquid is reduced as a result . Thus it seems reasonable for the boiling process to remove the required

heat from the liquid .
Unfortunately, this model allows boiling to occur even when there is no heat flow into the liquid and the

boiling point is constant . While this phenomenon may actually occur, it is of such short duration that w e

would prefer not to include it in our model . In a real boiling liquid, the removal of latent heat from th e

7

Figure 1 : A two-phase refrigeration syste m

EVAP

	

CONDCOMP

liquid is sufficient to prevent it from heating up more than infinitesimally above the boiling point . Without
order of magnitude reasoning, however, there is no way to capture this constraint .

The boiling process directly influences the mass and heat of the two contained-stuffs . The two influences
on mass are equal and opposite, as required for conservation of matter. The latent heat of vaporization
must be added to the liquid as it boils, and is assumed to flow from the contained-liquid . The heat of the
contained-liquid is negatively influenced both by the removal of liquid and by the drain caused by the latent
heat of vaporization, so the net influence on the liquid's temperature is negative . This provides a stabilizin g
influence on the boiling liquid by pushing its temperature back below the boiling point .

3.6.3 Condensation

The inverse of the evaporation process is condensation, the transformation of gas into liquid . The only
difficult modeling issue for condensation is the recipient of the latent heat given up by the condensing gas .
We choose the contained-gas, since it surrounds a piece of gas as it condenses .

The condensation process directly influences the mass and heat of the two contained-stuffs . The two
influences on mass are equal and opposite, as required for conservation of matter . The same is not true fo r
heat, since the latent heat of vaporization must be removed from the gas as it condenses, and is assumed t o
flow into the contained-gas. This latent heat more than compensates for the heat of the condensate leavin g
the contained-gas, so the net influence on the heat of the contained-gas is positive . In general the latent
heat added to a condensing gas is sufficient to prevent it from cooling off more than infinitesimally below it s
boiling point . Again, order of magnitude reasoning would be required to conclude this fact .

4 An Example: Modeling a Refrigerator

The domain model described above has been applied to a variety of scenarios, ranging from a simple heat flo w
between two physobs to a complex refrigeration system . Modeling a refrigerator constitutes a significant test
of the domain theory, since it involves most of the defined process types . A two-phase refrigerator involve s
liquid and gas flow, heat flow, and phase transitions between the liquid and gaseous states .

Figure 1 depicts the configuration for a simple two-phase refrigeration system . For simplicity, the evap-
orator and condenser coils have been modeled as closed-containers rather than path-type heat exchangers .

8

The contained-liquid in the evaporator and the contained-gas in the condenser are in thermal contact wit h
their surroundings, so that heat flows can support the respective phase transitions . A compressor moves gas
from the evaporator to the condenser, and a simple fluid path serves as an expansion valve, allowing liquid
to return to the evaporator.

In order to maintain tractability for this complex model, the scenario was constrained to produce onl y
steady-state behaviors . The resulting envisionment consists of a single situation representing the norma l
operating mode of the refrigerator . The situation consists of six active process instances : a liquid flow ,
a compressed gas flow, two heat flows, and one of each phase transition process type. The steady-state
operation of the refrigerator can be described in terms of these processes as follows :

1. The pressure in the condenser is greater than that in the evaporator, so liquid flows through the
expansion valve into the evaporator .

2. The liquid immediately begins to evaporate, due to the low boiling point associated with the lo w
pressure in the evaporator . The rate of liquid flow exactly matches the rate of evaporation, thus main-
taining a constant amount of liquid in the evaporator. However, the heat carried into the evaporatin g
liquid by the flow through the expansion valve is less than the heat taken away by the evaporated gas .

3. In order to maintain constant temperature, a heat flow process from the refrigerator interior mus t
make up the difference. Thus the steady-state temperature of the liquid in the evaporator is lowe r
than the inside temperature of the fridge .

4. The gas in the evaporator is compressed and moved into the condenser . The work done by the
compressor raises the heat and temperature of the gas as it is compressed .

5. The gas is now hotter than room temperature, but below the higher boiling point in the high-pressur e
condenser . Condensation occurs .

6. As the gas condenses, it gives off heat, which flows into the room. The condensed liquid is now ready
to flow through the expansion valve, thus completing the cycle .

This scenario represents one of the largest models run by QPE to date . Although it created only ten vie w
instances and eight process instances, these resulted in 332 inequality relations among 173 numbers . QPE used
about ten minutes of processor time on a Symbolics 3600 to produce the highly-constrained envisionment .

5 Problems Encountered, Lessons Learne d

During the development of the model for thermdynamics described above, several recurring problems wer e
encountered. A sampling of these are outlined here .

5 .1 Changing Existence
Several problems arise when allowing for the appearance and disappearance of objects . For instance, becaus e
a contained-liquid does not exist when the amount of liquid in the container is ZERO, the liquid flow proces s
is not allowed to refer to any properties of the contained-liquid at the destination . Otherwise flow could no t
be initiated into an empty container .

9

5 .2 Causality

Dependencies in QP theory carry with them a causal direction . Qualitative proportionalities must run outward
from directly influenced quantities to the other (indirectly) influenced quantities ; since these relations are
viewed as imputing causality, loops among the qualitative proportionalities are not allowed . Qprop loops, as
they are affectionately known, sometimes creep into a domain model, and result in a hard error in QPE .

Qprop loops generally come in two varieties : self-loops and cycle loops. A self-loop occurs when a
dependency is expressed in two different ways (eg . X =Y k Y = X, or V = IR & I=V/R) . A cycle-loop
results from a chain of dependencies around a cycle of entities, as might occur when relating node voltage s

and component voltages in an electronic circuit .
One way to avoid certain gprop loops is to avoid having multiple copies of the same quantity. For

example, instead of having two equal and opposite forces, force-on(B,A) k force-on(A .B), use a single
quantity : force-between(A,B), whose actual effect depends on the orientation of the two objects .

5 .3 No Negation—by—Failur e

QPE requires that certain facts be known in every situation . Examples include existence of quantities and
conditions on individuals of views and processes . Ensuring that these facts are known can make an otherwis e
simple relation become very complicated . This is the source of one of the most common bugs among domain
models for QPE .

6 Discussion

The refrigerator example described above clearly demonstrates the composability afforded by Qualitativ e
Process theory and the domain descriptions presented in this paper . A simple structural description of a
refrigerator is automatically expanded into a set of process instances and a qualitative behavioral description ;
this in turn may serve as the basis for generating other types of descriptions, or for solving a variety o f
engineering-type problems (see [1] for details) .

This paper has discussed the issues involved in developing a large-scale qualitative model of a real-world
domain . It is hoped that other researchers in Qualitative Reasoning may benefit from this discussion, b y
avoiding the kinds of mistakes made in developing the model .

References
[1] Collins, J . and Forbus, K. "Reasoning about Fluids via Molecular Collections", in Proceedings of th e

National Conference on Artificial Intelligence, Seattle, July, 1987 .

[2] Collins, J . "Qualitative Algebra in QPE", in preparation .

[3] de Kleer, J . and Brown, J . "A Qualitative Physics based on Confluences", Artificial Intelligence, 24 ,
1984 .

[4] Forbus, K. "Qualitative Process Theory" Artificial Intelligence, 24, 1984 .

[5] Forbus, K. "The Problem of Existence", in Proceedings of the Cognitive Science Society, 1985 .

[6] Hayes, P. "Naive Physics 1 : Ontology for Liquids", in Hobbs, J . and Moore, B . (Eds .), Formal Theories
of the Commonsense World, Ablex Publishing Corporation, 1985 .

10

[7]

[8]

Kuipers, B. "Common Sense Causality : Deriving Behavior from Structure", Artificial Intelligence, 24 ,
1984 .

Kuipers, B. "Abstraction by Time-Scale in Qualitative Simulation", in Proceedings of the National

Conference on Artificial Intelligence, Seattle, July, 1987 .

[9] Weld, D. "Switching Between Discrete and Continuous Process Models to Predict Genetic Activity" ,
MIT Artificial Intelligence Lab TR-793, October, 1984 .

[10] Williams, B . "Qualitative Analysis of MOS Circuits", Artificial Intelligence, 24, 1984 .

[11] Iwasaki, Y., and Simon, H . "Causality in Device Behavior", Artificial Intelligence, 29, 1986 .

11

APPENDIX
Thermodynamics Domain Theory 1 ; ; ;

	

-+- Mode : Lisp Package : QPE ; Syntax : Common-lisp ;
2

1 ; ; ; -+- Mode : Lisp ; Syntax : Common-lisp ; ; Package : QPE -+ - 3 ;;;; Heat Flo w
2 4
3 ; ;;; PAysobs : 6 ;;;Type ., of Quamtitiee :

; ;; All pAyacd object., are endowed voids ccrtase ama tesa6lc properties : 6 ;; TEMPERATURES:
5 7 (defQuantity-Type Temperature Individual)

;; AMOUNTS:6 8 (defQuantity-Type Teap-diff Individual)
7 (defQuantity-Type Mau Individual) 9 ;; RATES:
8 (defQuantity-Type Heat Individual) 10 (defQuantity-Type Hut-Flow-Rate Individual)
9 ;; TEMPERATURES: 11 ;; COEFFICIENTS :

10 (defQuantity-Type Temperature Individual) 12 (defQuantity-Type Thermal-Conductance Individual)
11 (dsfQuantity-Type Moil Individual) 1 3
12 ;; PRESSURES : 14 ;; Entities:
lJ (defQuantity-Type Pressure Individual) 16 (defentity Temperature-sourc e
14 ;; VOLUMES : 16 (aimple-physob ?self)
15 (defQuantity-Type Volume individual) 17 (quantity (temperature ?self)))
16 1 8
17 (defentity physob (defentity Temperature-sink
18 (simple-physob ?self) 20 (simple-pbysob ?self)
19 ;; Mau cAaracterutu u lAot st Aa. a member of'sestities : 21 (quantity (temperature ?self)))
20 (quantity (Mass ?self)) 2 2
21 (quantity (Temperature ?self)) 23 (defentity Heat-Path
22 (quantity (Pressure ?self)) 24 (quantity (thermal-conductance ?self))
23 (quantity (Volume ?self)) 25 (greater-than (A (thermal-conductance ?self)) ZERO))
24 (quantity (Tbail ?self)) 26
25 ;; Ilene are s few atata-tmdepeedest rwlatwwAips : 27 ;; Processor
26 (Q- (temperature ?self) (I• (Heat ?self) (Mass ?self))) 28 (defprocess (Hut-Flow ?arc ?dst ?path)
27 (not (less-than (A (Heat ?self)) ZERO)) 29 Individuals ((?arc :type simple-physob)
28 (not (less-than (A (Mass ?self)) ZERO)) 30 (?dat :type simple-physob)
29 (greater-than (A (Temperature ?self)) ZERO)) 31 (?path :type heat-Path
30 32 :conditions (Heat-Connection ?path ?arc ?dot)))

(defentity simple-pbysob

	

; wed for ample Amt-flow cramp/u .31 33 Preconditions ((heat-aligned ?path))
32 (quantity (heat ?self))) 34 QuantityConditiose ((greeter-than (A (temperature ?sac))
33 35 (A (temperature ?det))))

(adb :rule :intern (((pbysob ?ob)

	

.

	

:TRUE))34 36 Relations ((quantity Temp-diff)
35 (adb :rnogood (((equal-to (a (heat ?oh)) ZERO)

	

.

	

:FALSE) 37 (quantity Heat-floc-rate)
36 ((equal-to (a (amount-of ?oh)) ZERO)

	

.

	

:TRUE)))) 38 (Q- Temp-diff (- (temperature ?arc)

	

(temperature last)))
39 (Q- Heat-Flow-Rate (+e Temp-diff (thermal-conductance ?path))))
40 Influences ((I♦ (Heat ?dst)

	

(A Heat-flow-rate))
41 (I-

	

(Heat ?arc)

	

(A Heat-flow-rate))))

2

1 ReplenuA as infinite sosrct : 1 °°°

	

-•- Mode : Lisp ; Syntax : Common-lisp ; Package : QPE -• -
2 (defprocess 1Hut-Replaoiah TM) 2 ,, ; Contained Stuff,
3 Individuals ((Tart :type Temperature-source) 3 ;;; Contained.liquid, & contained-gasses arc Feneraiued to contained-stuffs .
4 (Thf :type (Process-Instaau Beat-Flow) 4
b :conditions (Thf SRC Tort))) 6 ; ;; USES: PAy,o b
6 QuantityCooditions ((active Thf)) 6
7 Influences ((I• (Heat Tsrc)

	

(A (Beat-Flow-Rate Thf))))) 7 AMOUNTS:
8 8 (defQuantity-Type Amount-of-in Constant Constant Individual)
9 ;; Relieve an infinite sink : fl (defQuantity-Type Head Individual)

10 (defprocess (but-Relieve Thf) 10
11 Individuals ((7dst :type Temperature-sink) 11 LEVELS:
12 (TM :type (Process-Instance Hsst-Flow) 12 (dafQuantity-Type Level Individual)
13 :conditions (TM MIT UM))) 13 (dsfQuantity-Type Fluid-Level Individual)
14 QuantityConditions ((active Thf)) 14 (delQuantity-Type Bottom-Height Individual)
15 Influences ((I- (Heat 'Mat)

	

(A (Heat-Flow-Rate Thf))))) 15 (defQuantity-Type Top-height Individual)
16 (defQuantity-Type Height Individual)
1 7
18 ;; Ralf for Amount-of-in :
19 (Rule :intern (((distinguish existence)

	

.

	

:TRUE)
20 ((container 7c)

	

.

	

TRUE)
21 ((substance Ts)

	

.

	

TRUE)
22 ((state 7st)

	

.

	

:TRUE))
23 (adb :rassert!

	

((quantity (amount-of-in Ts Pat 7c))

	

.

	

:TRUE))
24 (adb :rssssrtl

	

((less-than (a (amount-of-in is Pat Pc)) zero) :FALSE)))
25
26 (Rule

	

:intern (((Consider all contained-stuffs)

	

.

	

:TRUE)
27 ((distinguish existence) .

	

:FALSE))
28 ((container Tc)

	

.

	

TRUE)
29 ((substance Ts)

	

.

	

:TRUE)
30 ((state 7st)

	

.

	

:TRUE))
31 (edb :rassartl

	

((contained-stuff (C-8 7s Tst Tc))

	

.

	

:TRUE)))
3 2
33 Aa,ertion, for Atmoap .eric Pru,vrc :
34 (assert!

	

'((exists ATMOSPHERE)

	

.

	

TRUE))
35 (assert!

	

°((quantity (pressure ATMOSPHERE))

	

,

	

:TRUE))
36 (assert!

	

'((greater-than (A (pressure ATMOSPHERE)) ZERO)

	

:TRUE))

3

	

4

1

	

,;; Mums :
2

3

	

;; ; Define Contasnd-Stega :
4

	

(defentity (Contained-Btu!! (C-S ?sub Tat ?can))
6

	

(pbysob (C-S ?sub Tat ?can))
6

	

(((C-S Taub ?at ?can) SUBSTANCE Taub) . :TRUE)

7

	

(((C-8 Taub Tat ?can) STATE Tat) . :TRUE)
8

	

(((C-S ?sub Tat ?can) CONTAINER ?can) . :TRUE)
9

	

(function-epic thoil-fun
10

	

(Qprop (Moil (C-8 isub ?et ?can))
11

	

(pressure (C-8 ?sub Tat ?can)))))
1 2

13

	

;;; Define Contained-liquids :
14

	

(defentity (Contained-Stuff (C-8 ?sub liquid ?can))
15

	

(Contained-Liquid (C-B Taub liquid ?can)))
1 6

17

	

(defentity (Contained-Liquid (C-8 ?sub liquid ?can))
18

	

; ; ; Gquida Ag es s novel quantity, keel .
19

	

(quantity (Level (C-8 Taub liquid ?can)))
20

	

(Qprop (level (C-S ?sub liquid ?can))

21

	

(Volume (C-8 ?sub liquid ?can)))
22

	

(Ordered-Corr .apoadenc.

23

	

((A (level (C-8 ?sub liquid ?can))) (A (bottom-height ?can)))
24

	

((A (value. (C-6 ?sub liquid ?can))) ZERO))
26

	

(Ordered-Correspondenc e
26

	

((A (level (C-8 ?sub liquid ?can))) (A (top-height ?can)))
27

	

((A (volume (C-6 ?sub liquid ?can))) (A (volume ?can))))
28

	

; ; ; Relate volume to atnount-of.
29

	

(Qprop (volume (C-8 Taub liquid ?can))
30

	

(amount-of (C-8 Taub liquid ?can)))
31

	

(Ordered-Corr .apondeuc e
32

	

((A (volume (C-S ?sub liquid ?can))) ZERO)
33

	

((A (mount-of (C-B ?sub liquid ?can))) ZERO))

34

	

(not (greater-than (A (volume (C-6 ?sub liquid ?can)))

36

	

(A (volume ?can))))
36

	

; ;; (Men(pressure 8 head from container :
37

	

(Q- . (pressure (C-8 ?sub liquid ?cast)) (pressure ?can))

38

	

(quantity (head (C-8 ?sub liquid ?can)))
39

	

(Q- (head (C-8 ?sub liquid ?can)) (head ?can))

40

	

(Q- (fluid-level ?can) (level (C-8 ?sub liquid ?can))))

1

	

; Define contained gasses :
2

	

(defestity (Contained-Stuff (C-S ?sub gas ?can))

3

	

(Contained-Gas (C-8 ?sub gas ?can)))

4

6

	

(dafantity (Contained-Caa (C-8 Taub gas ?can))

6

	

;; The pressure of a container is the same as that of its contained gas :
7

	

(Q- (pressure ?can) (pressure (C-B ?sub gas ?can)))

8

	

-;; TAe nest Q= empresses tie idealism law : PV = mRT = NEA T
9

	

(Q- (pressure (C-8 ?sub gas ?can)) (/0+ (boat (C-S ?nub gas ?can))

10

	

(volume (C-S ?sub gas Tcan)))))

1 1

12

	

;;; Define Open and Closed Containers :
13

	

(defentity containe r

14

	

;; Simple container geometry only has Aeights of bottoms and top s
16

	

(quantity (bottom-height ?self))

16

	

(quantity (top-height ?salt))

17

	

(greater-than (A (top-height ?self)) (A (bottom-height ?self)))

18

	

(quantity (head ?eel!))

19

	

(quantity (fluid-level ?self))

20

	

(not (lace-tbaa (A (fluid-level ?self)) (A (bottom-height ?self))))

21

	

(not (lees-tban (A (head ?eel!)) (A (fluid-level ?eel!))))

22

	

(Q- (bead ?self) (I. (fluid-level ?self) (pressure ?self)))

23

	

(quantity (volume ?self))

24

	

(greater-than (A (volume ',self)) ZERO)

26

	

(quantity (pressure ?self))

26

	

(not (lass-than (A (pressure ?self)) ZERO)))

27

28

	

(defentity Open-Container

29

	

(container ?sell)

30

	

(Q- (pressure ?self) (pressure ATMOSPHERE)))

3 1

32 (defentity Closed-Container

33

	

(container ?self))

34

36

	

, ; ; Visa for creating Contained-liquids and gasses :
36

37

	

(defvieu (Contained-Stuff (C-8 ?sub Tat ?can))

38

	

Individuals ((Tcare :type container)

39

	

(?sub :type substance)

40

	

(?st ;aype Kate

41

	

:conditions (scat . ?st) (distinguish existence)))

42

	

Preconditions ((Can-Contain-Suhstanca ?can ?sub Tat))

43

	

QuantityConditione ((greater-than (A (Amount-of-in ?sub ?st ?can)) ZERO))

44

	

Relations ((there-is-unique (C-S ?sub ?st ?can))

46

	

(Q- (amount-of (C-8 Taub ?st ?can)) (amount-of-in ?sub ?at ?can))))

5

	

6

	

1

	

; Ysews for fdl & empty coatainers :
2

	

3

	

(rule :intern (((container ?can) . :TRUE))

	

4

	

(adb :raasertl ((Full ?can) . :FALSE))) ; Temporary patch

6

	

6

	

(defview (Empty ?can)

	

7

	

Individuals ((?can :type container)

	

8

	

(?sub ; :type substanc e

	

9

	

conditions (substance ?sub) (distinguish empty containers)))

	

10

	

QuantityComditions ((equal-to (A (amount-of-in ?sub liquid ?can)) ZERO))

	

11

	

Relations ((allow empty containers)

	

12

	

(equal-to (A (fluid-level ?can)) (A (bottom-height ?can)))

	

13

	

(qprop (fluid-level ?can) (amount-of-in ?sub liquid ?can))))
1 4

	

15

	

(rule in (((allow empty containers) . :FALSE))

	

16

	

(adb : :rasurtl ((distinguish empty containers) . :TRUE)))
1 7

	

18

	

(defview (Evacuated ?can)

	

19

	

Individuals ((?can type closed-containe r

	

20

	

conditions (not (full ?can))

	

21

	

(distinguish evacuated containers))

	

22

	

(Taub type substance))

	

23

	

QuantityConditionn ((equal-to (A (amount-of-in ?sub gas ?can)) ZERO)

	

24

	

(not (equal-to (A (volume (C-B ?sub LIQUID ?can)))

(A (volume ?can)))))

	

26

	

Relations ((allow evacuated containers)

	

26

	

(equal-to (A (pressure ?can)) zero)

	

27

	

(qprop (pressure ?can) (amount-of-in ?sub gas ?can))))
28

	

29

	

(rule in (((allow evacuated containers) . :FALSE))

	

30

	

(raseertl ((distinguish evacuated containers)

	

:TRUE)))
3 1

	

32

	

(defview (Full ?can)

	

33

	

Individuals ((?can ; :type container

	

34

	

conditions (container ?can)

	

35

	

(distinguish full containers))

	

36

	

(?sub type substance)

	

37

	

(Tel :bind (C-6 ?sub LIQUID ?can)))

	

38

	

QuantityConditiou ((equal-to (A (volume ?cl)) (A (volume ?can))))

	

39

	

Relations ((allow full containers)))
4 0

	

41

	

(rule :in (((allow full containers) . :false))

	

42

	

(raesartl ((distinguish full containers) . :TRUE)))

	

1

	

Rules for defining volume of a contained-gas

	

2

	

(rule intern (((Contained-Gss ?C-G) . :TRUE)

	

3

	

((?C-C CONTAINER ?can) . TRUE)

	

4

	

((?C-C SUBSTANCE ?sub) . TRUE)

	

6

	

((Empty ?can) . :TRUE))

	

6

	

(rjustify ((gas-only iC-C ?sub ?can) . TRUE)

	

7

	

(((contained-gas ?C-G) . TRUE)

	

8

	

((empty ?can) . :TRUE))

	

9

	

EMPTY-CAN)

	

10

	

(rjustify ((gas-only ?C-C ?sub ?can) . FALSE)

	

11

	

(((contained-gas ?C-C) . FALSE))

	

12

	

OUT-OF-CAS)

	

13

	

(rjustify ((gas-only ?C-G ?sub ?can)

	

FALSE)

	

14

	

(((empty ?can) . :FALSE))

	

16

	

NOT-EMPTY))

1 6

	

17

	

(defpredicate (gas-only 7C-G ?sub ?can)

	

18

	

(equal-to (A (volume ?C-C)) (A (volume ?can)))

	

19

	

(Qprop- (volume 7C-C) (amount-of-in ?sub liquid ?can)) This line was

	

20

	

)

	

;commented out to volume of gao can be d redly influenced .
2 1

	

22

	

(rule intern (((Contained-Gas ?C-C) . :TRUE)

	

23

	

((7C-C CONTAINER ?can) . :TRUE)

	

24

	

((Contained-Liquid 7C-L) . :TRUE)

	

26

	

((7C-L CONTAINER ?can) . :TRUE))

	

26

	

(rjustify ((Gas-And-Liquid 7C-C ?C-L ?can) . :TRUE)

	

27

	

(((contained-gas ?C-C) . TRUE)

	

28

	

((contained-liquid 7C-L) . TRUE))

	

29

	

GAS-AND-LIQUID)

	

30

	

(rjustify ((Gas-And-Liquid ?C-G ?C-L ?can) . :FALSE)

	

31

	

(((contained-gas ?C-C) . FALSE))

	

32

	

OUT-OF-GAS)

	

33

	

(rjustify ((Gas-And-Liquid ?C-C 7C-L ?can) . :FALSE)

	

34

	

(((contained-liquid 7C-L) . FALSE))

	

35

	

OUT-OF-LIQUID))
3 6

	

37

	

(defpredicate (gas-and-liquid ?C-C 7C-L ?can)

	

38

	

(+Qre). (volume ?can) (volume ?C-C) (volume 7C-L)))

	

39

	

WAy not.. (Q= (volume ?C-G) (- (volume ?can) (volume ?C-L))) FFF ?

	

40

	

ANSWER : So volume of gas can be directly influenced . Needed for Resolving Ratios .
4 1

	

42

	

Rule to deduce temperature of newly-formed contained-stuff :

	

43

	

(rule intern (((contained-stuff 7C-$) . TRUE))

	

44

	

(rjustify ((s (d (temperature ?C-S))) . 0)

	

45

	

(((equal-to (A (amount-of ?C-S)) ZERO)

	

:TRUE))

	

46

	

INITIAL-TEMPERATURE-LAY))

7

	

8

1 	 - Nods : Limp ; Syntax : Common-lisp ; Package: QPE -• - 1 Install functson-epece between portals /haring 0 path (or a contatnerY) :
2 2 ;(adb :rule (((Portal-of ?portal ?can)

	

.

	

:TRUE))
3 ; ; ;; Domain information for PORTALS : 3 (reertl ((function-spec-prod ?can ?portal) .

	

:TRUE)))
4

6 ;; ; Quantity types 6 (adb :rule :in (((fluid-connection ?F-P ?pl ?p2)

	

.

	

:TRUE))
6 6 (raseertt

	

((generic-fluid-connection ?P-P ?pl ?p2)

	

.

	

:TRUE)))
7 (defQuantity-Type Fluid-level Individual) 7

B (defQuantity-Type Nax-Haight Individual) 8 (adb :rule

	

in (((pump (pump ?pi ?p2))

	

.

	

:TRUE))
9 (detQuantity-Type Bottom-Height Individual) 9 (let ((?name (intern (format nil "PUMP-PROM-'A-TO- 'A" ?pl ?p2))))

10 (dot Quantity-Type Top-height Individual) 10 (rassertl ((generic-fluid-connection ?nano ?pl ?p2)

	

.

	

:TRUE))))
11 (dsfQuantity-Type Haight Individual) 1 1

12 ;(defQuantity-Type Submerged-Depth Individual) 12 (adb :rule

	

in (((coaprsesor (comp ?p1 ?p2))

	

.

	

:TRUE))
13 (defQuantity-Type Head Individual) 13 (1st ((?name (intern (format nil •COMPRESSOR-FROM-'A-TO-'A" ?pl ?p2))))
14 14 (raessrtl ((generic-fluid-connection ?name ?pi ?p2)

	

.

	

:TRUE))))
16 ; Define Portals: 1 6

16 (dafentity Portal 16 '''(adb :rule (((function-spec-prod ?name ?can)

	

.

	

:TRUE))
17 (quantity (temperature half)) 17 (multiple-value-bind (ignore ?full-name ?value ?arguments)
18 (quantity (pressure ?sell)) 18 (pare-explicit-function
19 (quantity (bead ?self)) 19 '(.(intern (format nil "CAN-HEAD-FUN-'A" ?name))

20 (quantity (height ?self))) 20 (Qprop (head •?can)

	

(fluid-level .?can))

21 21 (Qprop (head .?can) (pressure .?can))))

22 (defpredicate (Portal-of ?portal ?can) 22 (ruaertl ((has-function ?can ?full-name)

	

.

	

:TRUE))
23 (portal ?portal) 23 (oval °(install-explicit-functioo-specs ' .?full-nave ° .?value ' .?arguments))))

24 (container ?can) 2 4
25 (not (greater-than (A (bottom-height ?can)) (A (height ?portal)))) 25 Instal(function-specs between containers sharing a path :
26 (not (lsse-than (A (top-height ?can)) (A (height ?portal)))) 26 (rule :intern (((generic-fluid-connection ?name ?pl ?p2)

	

.

	

:TRUE)
27 (Q

	

(head ?portal) (head ?can))) 27 ((Portal-of ?pi ?caul)

	

:TRUE)
28 28 ((Portal-of 7p2 ?can2)

	

.

	

:TRUE))
29 (defpredicate (Dry-Portal-of ?portal ?can) 29 ;; Install 'fanctson-spec' between the heads for two connected containers:

30 (Q- (pressure ?portal) (pressure ?can))) 30 (ruaertl ((RCorrepondenc e

31 31 ((A (head ?caul))

	

(A (head ?can2)))
32 (del predicate Submerged-Portal 32 ((A (fluid-level ?mini))

	

(A (fluid-level ?cant)))
33 ((A (pressure ?caul)) (A (pressure ?can2))))

	

:TRUE))3 3
34

(Q- (pressure ?self) (- (head ?self) (height pelf))))
34

.
(raassrtI ((RCorrepondec e

36 (Rule :intern (((dry-portal ?portal)

	

.

	

:TRUE) 36 ((D (head ?cant))

	

(0 (head ?cant)))
36 ((portal-of ?portal ?can)

	

.

	

:TRUE)) 36 ((D (fluid-level ?caul))

	

(D (fluid-level ?cant)))
37 (rjetify ((Dry-Portal-of ?portal ?can)

	

.

	

:TRUE) 37 ((D (pressure ?canl))

	

(D (pressure ?can2))))

	

.

	

:TRUE))

38 (((dry-portal ?portal)

	

.

	

:TRUE)) 38 ; ; Now do the same for the pr saxes of the two portals :

39 :DRY-PORTAL) 39 (rassertl ((RCorrepondenc e

40 (rjustily ((Dry-Portal-of ?portal ?cu)

	

.

	

:FALSE) 40 ((A (pressure ?pl))

	

(A (pressure ?p2)))

41 (((dry-portal ?portal)

	

:FALSE)) 41 ((A (head ?pi))

	

(A (bed ?p2)))
42 :ROT-DRY-PORTAL)) 42 ((A (height ?pi))

	

(A (height ?p2))))

	

.

	

:TRUE))
43 (raeertl ((RCorrepondeuce

	

;heights never change .
44 ((D (pressure ?pi)) (D (pressure 7p2)))
45 ((D (head ?pl))

	

(D (head ?p2))))

	

.

	

:TRUE)))

9

	

10

1

	

; ; V1owi for Portals :
2 (dewier (Submerged-Portal ?portal)

3

	

Individuals ((?can :typo container)
4

	

(?c-1 :type contained-liquid

6

	

:form (C-8 Taub LIQUID ?can))

6

	

(?portal :type porta l
7

	

:conditions (portal-of ?portal ?can)

8

	

(distinguish submerged portals)))

9

	

QuantityCouditions ((greater-than (A (lsvel ?c-l)) (A (height ?portal))))

10

	

Relations ((Q- (fluid-level ?portal) (level ?c-l))))
1 1

12

	

(defvier (Mot-Quite-Submerged-Portal ?portal)

13

	

Individuals ((?can :type container)
14

	

(Tc-1 :type contained-liqui d

16

	

. :fora (C-S ?sub LIQUID ?cam))

16

	

(?portal :type portal

17

	

:conditions (portal-of ?portal ?can)

18

	

(distinguish submerged portals)))

19

	

QuantityConditions ((not (greater-than (A (level Tc-))) (A (height ?portal)))))

20

	

Relations ((Q- (fluid-level ?portal) (level ?c-l))))

2 1

22

	

(defvier (Very-Dry-Portal ?portal)

23

	

Individuals ((?can :type container)

24

	

(?portal :type portal

26

	

:conditions (portal-of ?portal ?can)

26

	

(distinguish submerged portals)))

27

	

QuantltyConditions ((equal-to (A (amount-of-in water liquid ?can)) ZERO))

28

	

Relations ((equal-to (A (fluid-level ?portal)) (A (bottom-height ?can)))))

29

30

	

;;; Those two roles replace the tAne suns shove . ()my good for portals at the lop or bottom of ti c

can .
31

	

(Rule :intern (((distinguish submerged portals) . :TRUE)

32

	

((portal ?portal) . :TRUE)

33

	

((container ?can) . :TRUE)

34

	

((portal-of ?portal ?cam) . :TRUE))

35

	

(rjustify ((Dry-Portal ?portal) . :TRUE)

36

	

(((Very-Dry-Portal ?portal) . :TRUE))

37

	

:BONE-DRY)

38

	

(rjustify ((Dry-Portal ?portal) . :TRUE)

39

	

(((Not-Quite-Submerged-Portal ?portal) . :TRUE))

40

	

:SURFS-UP)

41

	

(rjustify ((Dry-Portal ?portal) . :FALSE)

42

	

(((Not-Quite-Submerged-Portal ?portal)

	

:FALSE)

43

	

((Very-Dry-Portal ?portal) . :FALSE))

44

	

:MUST-BE-YET-BY-NOV))

	

1

	

(Rule :intern (((distinguish submerged portals)

	

:FALSE)

	

2

	

((portal ?portal) . :TRUE)

	

3

	

((container ?can) . :TRUE)

	

4

	

((portal-of ?portal ?can) . :TRUE)

	

6

	

((substance ?sub) . :TRUE))

	

6

	

(rjustify ((Dry-Portal ?portal) . TRUE)

	

7

	

(((Empty ?can) . :TRUE))

	

8

	

:N0-LIQUID)

	

9

	

(rjustify ((Dry-Portal ?portal) . TRUE)

	

10

	

(((equal-to (a (height ?portal)) (a (top-height ?can))) . :TRUE)

	

11

	

((Full ?can) . :FALSE))

	

12

	

NOT-FULL)

	

13

	

(rjustify ((Dry-Portal ?portal) . :FALSE)

	

14

	

(((Submerged-Portal ?portal) . :TRUE))

	

16

	

VET-NOT-DRY)

	

16

	

(rjustify ((Submerged-Portal ?portal) . :TRUE)

	

.17

	

(((equal-to (a (bottom-height ?can))

(a (height ?portal))) . :TRUE)

	

18

	

((greater-than (a (amount-of-in ?sub LIQUID ?can))

ZERO) . TRUE))

	

19

	

:SUBMERGED)

	

20

	

(rjustify ((Submerged-Portal ?portal) . TRUE)

	

21

	

(((Full ?can) . :TRUE))

	

22

	

FULL-CAN)

	

23

	

(rjustify ((Submerged-Portal ?portal) . FALSE)

	

24

	

(((Dry-Portal ?portal) . :TRUE))

	

26

	

DRY-NOT-VET)

	

26

	

(rnogood (((Submerged-Portal ?portal) . FALSE)

	

27

	

((Dry-Portal ?portal) . FALSE))

	

28

	

:YET-IOR-DRY))

11

	

12

;;; Process aocaio ary
(defproces■ (Liquid-flow ?arc-port ?dst-port ?path)

Individuals ((?arc-port :type subaerged-portal)

(?arc-can :type containe r
:conditions (portal-of ?arc-port ?src-can))

(?dst-port :type portal)

(?dot-can :type containe r

:conditions (portal-of ?dst-port ?dst-can))

(?path :type Fluid-Path

:conditions (Fluid-Connection ?path ?arc-port ?dot-port))

(?sub :typo substance)

(?src-cl type contained-liqui d

fora (C-S ?sub LIQUID ?arc-can))

(?dot-cl bind (C-S ?sub LIQUID ?dst-can)))

Preconditions ((aligned ?path))

QuaatityConditions ((greater-than (A (head ?arc-port))

(A (head ?dst-port))))

Relations ((quantity flow-rate)

(quantity heat-flow-rate)

(Q- flow-rate (- (bead ?src-port) (head ?dst-port)))
(Q- beat-flow-rate (es flow-rate (temperature ?src-cl)))

(Q, (temperature ?src-port) (temperature ?src-cl))

(Q . (temperature ?dst-port) (temperature ?src-port)))

Influences ((I- (Amount-of-in ?sub liquid ?src-can) (A flow-rate))

(Is (Amount-of-in ?sub liquid ?dot-can) (A flow-rate))

(I- (heat ?src-cl) (A heat-flow-rate))

(I+ (heat ?dst-cl) (A heat-flow-rate))))

1

	

-•- Mods Lisp ; Syntax : Common-lisp ; Pont . : CPTFOUT,TR12I ; Package : QPE -< -

3

	

, ;; ; Doman IAcory for Lagoa Ffov:
4

6

	

; ;; USES : PAyaob, Comtsia 4-afrg, Portals .
6

7

	

,, ; Quantities:
8

9

	

; ; RATES:
10

	

(del Quantity-Type Flow-gate Individual)
11

	

(defQuantity-Type Meat-Flow-Rate Individual)

12

	

; ; LEVELS :
13

	

(detQuantity-Type Max-Haight Individual)

14

	

; ; COEFFICIENTS :
16

	

(dsfQuantity-Type Conductance Individual)

1 6

17

	

; ; ; Define fluid polA:
18

	

(defentity Fluid-Pat h

19

	

(quantity (sax-height ?self))
20

	

(quantity (conductance ?self))

21

	

(not (less-than (A (conductance ?self)) ZERO)))

2 2

23

	

(rule :INTERN (((fluid-connection ?path ?port(?port2)

	

:TRUE)

24

	

((portal-of ?port(?caul) . :TRUE)

26

	

((portal-of ?port2 ?can2) . :TRUE))

26

	

(reasertl ((container-path ?can). ?path) . :TRUE))

27

	

(reaswrtl ((container-path ?can2 ?path) . :TRUE)))

28

13

	

14

1
2
3

	

, ; ; ; Domain theory for Pumped Liquid Flow :
4

	

; ; ; USES: Physob, Contained-stuff, Portals .

	

1

	

.(defview (Same-temp-flow 71f)

	

2

	

Individual.. ((?arc-cl type contained-liqui d

	

3

	

form (C-S ?sub LIQUID ?src-can))

	

4

	

(?dst-cl :type contained-liqui d

	

5

	

:form (C-8 ?sub LIQUID ?dot-can))

	

6

	

(711 :type (process-instance liquid-flow)

	

7

	

conditions (71f 8RC-CL ?src-cl)

	

8

	

(T11 DST-CL ?dst-cl)

	

9

	

(distinguish flow temperatures)))

	

10

	

QuantityCoaditions ((active 711)

	

11

	

(equal-to (A (temperature ?src-cl))
(A (temperature ?dst-cl)))))

1 2

	

13

	

(defview (Hot-to-Cold-flow 711)

	

14

	

Individuals ((?src-cl type contained-liquid

	

16

	

form (C-8 ?sub LIQUID ?arc-can))

	

16

	

(7dat-cl :type contained-liquid

	

17

	

form (C-8 ?sub LIQUID 7dst-can))

	

18

	

(711 type (piece's-instance liquid-flow)

	

19

	

conditions (711 8RC-CL ?src-cl)

	

20

	

(711 DST-CL ?dst-cl)

	

21

	

(distinguish flow temperatures)))

	

22

	

QuantityConditionm ((active 711)

	

23

	

(greater-than (A (temperature ?src-cl))
(A (temperature ?dst-cl))))

	

24

	

Relation . ((allow temperature differences)))
26

	

26

	

(dafview (Cold-to-Hot-flow ilf)

	

27

	

Individuals ((?src-cl type contained-liquid

	

28

	

form (C-8 ?sub LIQUID ?src-can))

	

29

	

(?dst-cl type contained-liquid

	

30

	

:form (C-8 ?sub LIQUID ?dst-can))

	

31

	

(71f type (process-instance liquid-flow)

	

32

	

conditions (711 SRC-CL ?src-cl)

	

33

	

(711 DST-CL ?dot-cl)

	

34

	

(distinguish flow temperatures)))

	

35

	

QuantityConditions ((active 711)

	

36

	

(less-than (A (temperature ?arc-cl))

	

37

	

(A (temperature ?dst-cl))))

	

38

	

Relations ((allow temperature differences)))
3 9

	

40

	

(rule in (((allow temperature differences) . :FALSE))

	

41

	

(rassertl ((distinguish flow temperatures) . :TRUE)))

. . ; -•- Mods : Lisp ; Syntax : Common-limp ; Package : QPE -• -

6
6

	

; ; Quantities :
7

	

(del Quantity-Type Max-Head Individual)
8

	

(defQuantity-Type Max-Flow Individual)
9

	

(defQuantity-Type Flow-Rate Individual)
10

	

(dafQuantity-Type Heat-Flow-Rate Individual)
1 1
12

	

; ; ; Entities and predicates :
13

	

(defpredicate (Pump (pump ?arc-port ?dst-port))
14

	

(Q- (head (pump ?arc-port ?dst-port))
16

	

(- (head ?dst-port) (head ?src-port)))
16

	

(((Pump ? .rc-port ?dst-port) SRC-PORT ?src-port) . :TRUE)
17

	

(((Pump ?arc-port ?dst-port) DST-PORT ?dst-port) . :TRUE))
1 8
19

	

(defentity Pump
20

	

(quantity (max-flow ?self))
21

	

(greater-than (A (max-flow ?self)) ZERO)
22

	

(quantity (max-bead ?self))
23

	

(greater-than (A (sax-head ?self)) ZERO)
24

	

(quantity (bead ?self)))
2 6
26

	

;;; Views :
27

	

(defview (working-pump ?pump)
28

	

Individual• ((?pump :type pump
29

	

form (pump ?arc-port 7dat-port))
30

	

(7pf type (Process-instance pumped-flow)
31

	

conditions (?pf PUMP ?pump)
32

	

(distinguish working pump)))
33

	

QuantityConditionm ((Active 7pf)
34

	

(greater-than (A (head ?dot-port))
36

	

(A (bead ?src-port)))))
3 6
37

	

(defvi .w (coasting-pump ?pump)
38

	

Individuals ((?pump type pump
39

	

form (pump ?arc-port ?dot-port))
40

	

(7pf type (Process-instance pumped-flow)
41

	

conditions (?pf PUMP ?pump)
42

	

(distinguish working pump)))
43

	

QuantityConditiona ((Active 7pf)
44

	

(less-than (A (head ?dst-port))
46

	

(A (head ?src-port))))
46

	

Relations ((allow coasting pump)))

15

	

16

(rule :in (((allow coasting pump) . :FALSE))

(reaeaitl ((distinguish working pump) . :TRUE)))

• Prouuta :

(defprocsas (Pumped-Flow ?pump)

• Individual• ((?pueP :type PumP
:form (pump ?arc-port ?dst-port))

(Tsrc-can type container

:conditions (portal-of ?arc-port ?arc-can))

(7dat-can type container
conditions (portal-of ?dot-port ?dst-can))

(?src-cl type contained-liqui d

fora (C-8 ?sub LIQUID Tsrc-can))

(7det-cl bind (C-8 ?sub LIQUID ?det-can)))

QuantltyConditiona ((grater-than (A (amount-of-in ?sub liquid ?arc-can))

ZERO)
(lea-than (A (had ?pump)) (A (mar-head ?pump))))

Relations ((quantity flow-rate)

(Quantity beat-flow-rate)

(Qprop- flow-rate (head ?pump))
(Ordered-Correspondence

((A (mar-floe ?pump)) (A flow-rate))

((A (head ?pump)) ZERO))

(Ordered-Correepoadenc e
((A flow-rate) ZERO)

((A (eat-bead ?pump)) (A (head ?pump))))

(Q- (temperature ?src-port) (temperature ?src-cl))

(Q- (temperature ?dst-port) (temperature tsrc-port))

(Q- beat-flow-rate (•• flow-rats (tesperature ?src-cl))))

Influences ((I -

(I •

(I -

(I•

(amount-of-in ?sub liquid Tsrc-can)

	

(A flow-rate))

(amount-of-in ?sub liquid 7dst-can)

	

(A flow-rate))

(Heat Tarc-cl)

	

(A heat-flow-rate))

(Heat Tdat-cl)

	

(A beet-flow-rate))))

1

	

(defprocess (Loaio1-Pumped-Flow ?pump)

2

	

Individuals ((?pulp :type pump

3

	

:form (pump Tsrc-port ?dst-port))

4

	

(?src-can type containe r

6

	

conditions (portal-of Tart-port Tsrc-can))

6

	

(7dst-can :type containe r

7

	

:conditions (portal-of ?dst-port ?dst-can))

8

	

(?src-cl :type contained-liqui d

9

	

:form (C-8 ?sub LIQUID ?arc-can))

10

	

(Tdat-cl :bind (C-S ?sub LIQUID Tdet-can)))

11

	

QuantltyConditions ((greater-than (A (bead ?pump))

12

	

(A (mar-bead Tpuap))))

13

	

Relations ((quantity flow-rate)

14

	

(Quantity heat-flow-rate)

15

	

(Qprop flow-rate (bead ?pump))

16

	

(Ordered-Correspondence

17

	

((A flow-rate) ZERO)

18

	

((A (head ?pump)) (A (mar-bead ?pump))))

19

	

(Q- (teapuature ?arc-port) (temperature ?src-cl))

20

	

(Q (temperature ?dst-port) (temperature Terc-port))

21

	

(Q- boat-flow-rate (•• flow-rate (temperature ?src-cl))))

22

	

Influence• ((I- (amount-of-in ?sub liquid Tsrc-can) (A flow-rate))

23

	

(I• (amount-of-in ?sub liquid idat-can) (A flow-rate))

24

	

(I- (Heat ?src-cl) (A but-flow-rate))

25

	

(I• (Heat ?det-cl) (A beat-flow-rate))))

17

	

1 8

1 (defview (pumping-sane-Leap ?pf) 1 ,,,

	

-•- Node : Lisp Package : USER ; Syntax : Common-lisp ; Package : QPE -• -

2 Individuala ((?arc-cl type contained-liquid
3 :fora (C-B ?sub LIQUID ?arc-can)) 3 , ; ; ; Domain tAcory for Gar Flow :

(?dst-cl

	

type contained-liquid 6

6 fora (C-8 ?sub LIQUID ?dst-can)) 6 ; ; ; USES: PAyiob, Contained-,tug Portal, .

6 (Tpf

	

type (process-instance pumped-flov) 6

7 conditions (?pf SRC-CL ?src-cl) 7 , ; ; Quantities :

8 (?pf DST-CL ?dst-cl) 8

9 (distinguish flow temperatures))) 9 ; ;RATES :

10 10 (defQuantity-Typo Flow-Rate Individual)QuantityCoaditiona ((active ?pf)
11 (equal-to (A (temperature ?src-cl)) 11 (defQuantity-Type Best-Flow-Rats Individual)

(A (temperature ?dst-cl))))) 1 2

12 13 ; ; ; Entst.u :

13 14 (defentity Fluid-Pat h(defvise (pumping-hot-to-cold ?pf)
14 16 (quantity max-height ?self)Individuals ((?src-cl :type contained-liqui d
16 form (C-B Taub LIQUID ?arc-can)) 16 (quantity beat ?self)

16 17 (equal-to (D (beat ?self)) ZERO)(?dst-cl

	

type contained-liqui d
17 form (C-S ?sub LIQUID ?dst-can)) 18 (quantity temperature ?sell)

(?pf

	

type (process-instance pumped-flow)18 19 (greater-than (A (temperature ?self)) ZERO))

19 20
conditions (?pf SRC-CL ?src-cl)

20 (?pf DST-CI ?dst-cl) 2 1

21 (distinguish flow temperatures)))
22 QuantityConditions ((active ?pf)
23 (greater-than (A (temperature ?src-cl))

(A (temperature ?dst-cl))))
24 Relations ((allow temperature differences)))
25

(dsf view•(pumping-cold-to-hat ?pf)26
27 Individuals ((?src-cl

	

type contained-liqui d
28 :form (C-B ?sub LIQUID ?src-can))
29 (?dst-cl :type contained-liqui d
30 form (C-B ?sub LIQUID ?dst-can))
31 (?pf

	

type (process-instance pumped-flow)
32 conditions (?pf SRC-CL Tsrc-cl)
33 (?pf DST-CL ?dst-cl)
34 (distinguish flow temperatures)))
36 QuantityConditions ((active ?pf)
36 (less-than (A (temperature ?arc-cl))
37 (A (temperature ?dst-cl))))
38 Relations ((allow temperature differences)))
39

(rule

	

in (((allow temperature differences) .

	

:FALSE))4 0
41 (rassertl

	

((distinguish flow temperature,)

	

.

	

:TRUE)))

19

	

2 0

II

	

;; ; ;Process eocaldary :

2	 •	
3 (defproceas (Gas-flow tort-port ?dst-port)
4

	

Individuals ((?src-port type dry-porta l
6

	

conditions (portal-of tart-port ?arc-can))
6

	

(?dst-port :type dry-portal
7

	

conditions (portal-of Tdst-port ?dst-can))
8

	

(?patb :type Fluid-Pat h
9

	

:conditions (Fluid-Connection ?path ?src-port ?dot-port))
10

	

("sub :type substance)
11

	

(?src-cg :type contained-ga s
12

	

:fora (C-8 ?sub GAS 7src-can))
13

	

(7dst-cg :bind (C-8 ?sub GAB 7dat-can)))
14

	

Preconditions ((aligned ?path))
16

	

QuantityConditiona ((greater-than (A (pressure ?src-port))
16

	

(A (pressure ?dst-port))))
17

	

Relations ((Quantity flow-rate)
18

	

(Quantity beat-flow-rate)
19

	

(Quantity temperature)
20

	

(Q- flow-rate (- (pressure ?arc-port) (pressure ?dst-port)))
21

	

(Q- (temperature ?arc-port) (tesperature "src-cg))
22

	

(Qprop (temperature ?dst-port) (temperature ?arc-port))
23

	

;(Qprop- (temperature ?dst-port) flow-rate)
24

	

(lees-than (A (temperature ?dst-port)) (A (temperature ?sec-port)))
26

	

(Q- beat-flow-rata (•+ flow-rate temperature))
26

	

(greater-tban (A tesperature) (A (tesperature ?src-port)))
27

	

(Qprop temperature (temperature ?arc-port)))
28

	

Influences ((I- (Amount-of-in ?sub gas ?arc-can) (A flow-rate))
29

	

(I+ (Amount-of-in ?sub gas ldet-can) (A flow-rate))
30

	

(I- (Best ?src-cg) (A heat-flow-rate))
31

	

(I+ (Best (C-B ?sub GAS ?dst-can)) (A hest-floe-rate))))

1

	

, . . -•- Node : Lisp Packs's : QPE ; Syntax : Common-lisp ; -• -
2
3

	

„;; Domain tAdory for Compressed Gw Flow :
4
6

	

;;; USES: PAysob, Contained stuff, Portals .
6
7

	

;;;Quantities :
8

	

(defQuantity-Type Flow-Rate Individual)
9

	

(defQuantity-Type pressure Individual)
10

	

(defQuantity-Type Max-Pressure Individual)
1 1
12

	

;;; Entities and Predicates :
13

	

(defentity Compresso r
14

	

(quantity (aaz-pressure ?self))
16

	

(greater-than (A (sax-pressure ?self)) ZERO)
16

	

(quantity (pressure ?self)))
1 7
18

	

(defpredicate (Compressor (comp ?src-port 7dst-port))
19

	

(Q- (pressure (comp ?src-port Tdst-port))
20

	

(- (pressure ?dst-port)
21

	

(pressure hart-port)))
22

	

(((Comp ?arc-port ?det-port) SRC-PORT ?src-port) . :TRUE)

23

	

(((Comp ?arc-port ?dst-port) DST-PORT ?dst-port) . :TRUE))

2 4
26

	

(defview (working-compressor ?comp)
26

	

Individuals ((Tarc-port type portal)
27

	

(?dat-port type portal)
28

	

(?comp :type compresso r
29

	

:fora (comp ?src-port ?dst-port))
30

	

(7cf :type (Process-instanco compressor-flow)
31

	

:conditions (7cf COMP ?comp)))
32

	

QuantityConditions ((Active 7cf)
33

	

(greater-than (A (pressure ?dst-port))
34

	

(A (pressure ?src-port)))))
3 6
36

	

(defview (coasting-compressor ?comp)
37

	

Individuals ((?src-port type portal)
38

	

(?dst-port type portal)
39

	

(?comp :type compresso r
40

	

:form (comp ?sac-port ?det-port))
41

	

(7cf :type (Process-instanco compressor-flow)
42

	

:conditions (?cf COMP ?comp)))
43

	

QuantityConditions ((Active Tcf)
44

	

(leas-than (A (pressure ?dst-port))
46

	

(A (pressure hart-port)))))

21

	

22

1 ;;; Process eocalalary : 1 ,,,

	

-•- Node : Lisp Package : QPE ; Syntax : Common-lisp ; -• -
2 2

(dedprocaos (Compreaor-flow ?comp)3 3 , ; ; ; Domain thcpry for Boding :
4 Individuals ((isrc-port :type dry-portal
6 :conditions (portal-of ?src-port ?src-can)) 6 ; ; ; USES : PAyso6, Contained-stuff.
6 (Tdst-port :type dry-portal 6
7 :conditions 7 ,, ; Quantities :(portal-of ?det-port ?dot-can))

(?comp :type Compresso rI 8
9 :fora (cos', ?arc-port Tdst-port)) 9 (de:Quantity-Type Generation-Rate Individual)

10 (?sub :type substance) 10 (defQuantlty-Type Heat-Flow-Rate Individual)
11 (?arc-cg :type contained-gas 11 (defQuantity-Type Teapressure Individual)
12 :fora (C-8 ?sub GA8 ?arc-can)) 12 (defQuantity-Type Temp-Diff Individual)
13 (7dst-cg :bind (C-8 ?sub GAS Tdst-can))) 1 3
14 QuantityCooditions ((less-than (A (pressure ?comp)) 14 ;; ;; Process vocala/ary :
16 (A (max-pressure ?comp)))) 16 (defprocess (Boiling 7C-L)
16 Relations ((Quantity flow-rate) 16 Individuals ((?sub

	

type substance)
17 (Quantity hest-flow-rate) 17 (?can

	

type container
18 (Q- flow-rate (- (max-pressure ?comp) (pressure ?comp))) 18 :conditions (boiling-allowed-in ?can))
19 (Q- boat-flow-rate (s+ (flow-rate ?cf)

	

(temperature ?src-cg)))) 19 (7C-L

	

type Contained-Liqui d
20 Influences ((I- (Amount-of-in ?sub GAS Tsrc-can) (A flow-rate)) 20 fora (C-8 ?sub LIQUID ?can))
21 (I+ (Amount-of-in ?sub GAB ?det-can) (A flow-rate)) 21 (?C-G :bind (C-S ?sub CAS ?can)))
22 (I+ (Heat (C-8 ?sub GAS Tdat-can)) (A heat-flow-rate)) 22 QuantityConditione ((greater-than (A (temperature ?C-L))

	

(A (tboil ?C-L))))
23 (I- (Hest ?src-cg) (A best-flow-rats)))) 23 Relations ((quantity generation-rate)

24 (quantity temp-diff)
26 (quantity Heat-Flow-Rate)
26 (quantity Tespressure)
27 (Q- temp-diff (- (temperature ?C-L)

	

(tboil ?C-L)))
28 (Q- generation-rate (•+ temp-diff (amount-of ?C-L)))
29 (Qprop Tempreasure (temperature ?C-L))
30 (greater-than (A Tempressure) (A (temperature ?C-L)))
31 (not (less-than (A Tsspressure) (A (temperature ?C-C))))
32 (not (equal-to (A Tsspressure) (A (temperature ?C-G))))
33 (greater-than (A Tempressure) (A (pressure ?C-C)))
34 (Q- Heat-Flow-Rate (s + (generation-rate ?boil) Tempreaaure)))
35 Influences ((I- (Amount-of-in ?sub liquid ?can)

	

(A geoeratiou-rate))
36 (I+ (Amount-of-in ?sub gas ?can) (A generation-rate))
37 (I-

	

(heat ?C-L)

	

(A Heat-Floe-Rate))
38 (I+ (hest ?C-C) (A Heat-Flow-Rate))
39 (I+

	

(volume ?C-G)

	

(A (generation-rats ?boil)))))

23

	

24

1

	

(dafprocess (Condensation ?C-G)
2

	

' Individuals ((?sub :typo substance)

3

	

(7can :typo containe r
4

	

(condensation-alloesd-in ?can))

6

	

(?C-C :type contained-ga s
6

	

:fora (C-8 ?sub CAB ?can))
7

	

(?C-L :bind (C-8 ?sub LIQUID ?can)))

8

	

QuantityConditions ((less-than (A (teaperature ?C-C)) (A (tboil ?C-G))))
9

	

Relations ((quantity generation-rst .)
10

	

(quantity teap-diff)
11

	

(quantity Beat-Floe-Bat.)
12

	

(quantity Teaprsssure)
13

	

(Q- temp-diff (- (tboil ?C-G) (Temporatur . ?C-C)))
14

	

(Q- generation-rate (+• Taap-Diff (Na .. ?C-I)))
16

	

(Qprop Tsmpres .ure (Temperature ?C-G))
16

	

(less-than (A Tesperessure) (A (temperature ?C-C)))

17

	

(less-than (A Teaperessure) (A (tespsraturs ?C-L)))
18

	

(less-than (A Temperessure) (A (preasure ?C-L)))
19

	

(Q. Heat-Floe-Rats (+• (generation-rate ?boil) Tesperessure)))
20

	

Influences ((I- (Amount-of-in ?sub gas ?can) (A generation-rate))
21

	

(I+ (Amount-of-in ?sub liquid ?can) (A generation-rate))
22

	

(I- (heat ?C-G) (A Hut-Flow-Bate))
23

	

(I+ (hut ?C-L) (A Heat-Flow-Bate))
24

	

(I- (volume ?C-L) (A (generation-rate ?boil)))))

	

1

	

;; Rule for HEAT-CONNECTION given TOUCHES :

	

2

	

(adb :rule :intern (((heat-path ?path) . ;TRUE)

	

3

	

((container ?can) . TRINE)

	

4

	

((contained-stuff 70-5) . :TRUE)

	

6

	

((?C-8 CONTAINER ?can) . TRUE)

	

6

	

((Heat-Connection ?path ?sac (?part ?can))

	

:TRUE))

	

7

	

(rjustify ((Heat-Connection ?path ?arc ?C-S) . TRUE)

	

8

	

(((heat-path ?path) . TRUE)

	

9

	

((contained-stuff TC-8) . :TRUE)

	

10

	

((?C-S CONTAINER ?can)

	

TRUE)

	

11

	

((Heat-Connection ?path ?arc (?part ?can)) . TRUE)

	

12

	

((Touches ?C-S (?part ?can)) . :TRUE)))

	

13

	

(rjustify ((Heat-Connection ?path ?arc ?C-6) . FALSE)

	

14

	

(((heat-path ?path) . TRUE)

	

16

	

((contained-stuff ?C-S)

	

TRUE)

	

16

	

((?C-S CONTAINER ?can) . TRUE)

	

17

	

((Heat-Connection ?path ?arc (?part ?can)) . TRUE)

	

18

	

((Touches ?C-S (?part ?can)) . FALSE))))
1 9

	

20

	

; Now go the other way; from tAs cam out .

	

21

	

(adb :rule :intern (((heat-path ?path) . :TRUE)

	

22

	

((container ?can) . TRUE)

	

23

	

((contained-stuff ?C-S) . :TRUE)

	

24

	

((?C-S CONTAINER ?can) . TRUE)

	

26

	

((Hest-Connection ?path (?part ?can) ?dst)

	

:TRUE))

	

26

	

(rjustify ((Heat-Connection ?path ?C-S ?dst) . TRUE)

	

27

	

(((heat-path ?path) . TRUE)

	

28

	

((contained-stuff ?C-S) . :TRUE)

	

29

	

((?C-S CONTAINER ?can) . TRUE)

	

30

	

((Heat-Connection ?path (?past ?can) ?dot) . TRUE)

	

31

	

((Touches ?C-S (?part ?can)) . TRUE)))

	

32

	

(rjustify ((Hest-Connection ?path ?C-S ?dst) . :FALSE)

	

33

	

(((hest-path ?path) . TRUE)

	

34

	

((contained-stuff ?C-S) . :TRUE)

	

36

	

((?C-S CONTAINER ?can) . TRUE)

	

36

	

((Hest-Connection ?path (?part ?can) ?dst)

	

:TRUE)

	

37

	

((Touches ?C-S (?part ?can)) . FALSE))))

25

	

26

;; Ride for TOUCHES-BOTTOM :
(adb :rule . :intern (((container ?cam) . :TRUE)

((substance ?sub) . :TRUE))
(r)ustlfy ((Touches (C-B ?sub LIQUID ?can) (Bottom ?can)) . :TRUE)

(((greater-than (A (amount-of-in ?sub LIQUID ?can)) ZERO) . :TRUE)))
• (raaesrt ((Touches (C-8 ?sub GAB ?can) (Bottom ?can)) . FALSE))

(r)ustify ((Touches (C-8 ?sub GAB ?can) (Bottom ?can)) . FALSE)
(((Touches (C-8 ?sub LIQUID ?can) (Bottom ?cam)) . :TRUE)))

• (r)ustify ((Touches (C-B ?sub GAS ?can) (Bottom ?can)) . TRUE)
(((equal-to (A (amount-of-in ?sub liquid ices)) ZERO) . :TRUE)))

(r)ustily ((Touches (C-8 ?sub LIQUID ?can) (Bottom ?can)) . :FALSE)
(((Touches (C-8 ?sub GAB ?can) (Bottom ?can)) . :TRUE))))

; ; Rule for TOUCHES-TOP:
(adb :rule :intern (((container ?can) . :TRUE)

((substance ?sub) . :TRUE))
(r)ustify ((Touches (C-8 ?sub GAB ?can) (Top ?can)) . :TRUE)

(((greater-than (A (amount-el-in ?sub GAS ?can)) ZERO) - :TRUE)))
(r)ustify ((Touches (C-8 ?sub GAB ?cam) (Top ?can)) - :FALSE)

(((equal-to (A (amount-of-in ?sub GAS ?can)) ZERO) . :TRUE)))
(raasert ((Touches (C-B ?sub liquid ?can) (Top ?can)) . :FALSE)))

27

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

