RPW ‘89

Building Qualitative Models of Thermodynamic becesses

John W. Collins
Qualitative Reasoning Group
Beckman Institute, University of Illinois
405 North Mathews St.
Urbana, IL 61801

Abstract

This paper describes a qualitative domain theory developed for modeling fluids and thermodynamics
scenarios in QPE. This work builds on the domain models of [4], adding process definitions for pumps (for
liquids), compressors (for gasses), and a phase—change process for condensation.

The model includes a complete qualitative account of the thermodynamic behavior of fluids associated
with each type of process. It allows significant flexibility and composability in assembling new scenarios;
the user need only describe the structural configuration to be modeled, and QPE does the rest. It has been
used to model a variety of fluid system scenarios, including a two-phase refrigeration system described in
detail. Lessons learned from putting together a large qualitative model are discussed, hopefully preventing
future model builders from falling into the same traps.

Area: Commonsense Reasoning
Subarea: Qualitative Physics
Type: Science

Length: 5023 words

1 Introduction

This paper develops a qualitative domain model for thermodynamic and fluid systems, based on Qualitative
Process theory. This model contains a complete set of process definitions for modeling fluid flows (liquid
or gas, forced or free), heat flows, and phase transitions between the liquid and gaseous states. The model
has been applied to a variety of scenarios, including a refrigeration system, which is described here in detail.
We conclude with a discussion of the lessons learned as a result of putting together a large-scale qualitative
model. Before describing the model in deatail, some general modeling issues are discussed.

2 Modeling Issues

The development of a set of domain descriptions capable of modeling a wide variety of fluid and thermody-
namic scenarios requires careful consideration of several issues.

2.1 Modularity

In order to manage complexity, the domain is partitioned into a set of relatively independent modules. For
example, heat flow is sufficiently different from other domains in thermodynamics to be considered a separate
module. Yet no module is totally independent from the others; heat flows involve physical objects, as do
all other processes. In general each module is dependent on a set of lower modules, and may be used by
still higher modules. As a matter of pragmatics, each module is stored in a separate file so that only those
modules required for a particular scenario need be loaded.

Hierarchical representation offers the same benefits to qualitative reasoning as to the other Al disciplines:
compactness of representation together with a natural mechanism for generalization. Hierarchies are used
extensively in representing physical entities; for example, a contained-liquid is a contained-stuff, which is a
physob. Quantities and other properties are inherited from the general class to the specific instance.

Hierarchical representations have also been applied to processes, though to a lesser extent. When two
process descriptions share a great deal in common, as with liquid flow and gas flow, a common abstract
process description may be defined to contain their intersection. Their differences may then be handled
using simple view or process descriptions. This reduces duplication, and thereby reduces the likelihood of
introducing subtle bugs.

2.2 Level of Detail

Of all the modeling decisions, the most difficult has been choosing the appropriate level of detail. The first
step is to partition the world up into discrete objects. The coarseness of the partitioning will determine the
coarseness (and efficiency) of the reasoning. For example, reasoning at the level of contained-liquids would
be too coarse if our goal were to understand sloshing. Here are a few other examples:

Modeling Idealizations: Should the model for liquid flow consider the acceleration of the liquid in the path,
or settle for a equilibrium model which relates flow rate and pressures directly?

Qualitative Approzimations: Should the model include a quantity representing the conductance (or resis-
tance) of a fluid path, or simply define the flow rate as the qualitative difference in pressures across
the path. Having conductance provides a hook for adding a continuous model for valves, and avoids
the direct comparison of quantities of different units (eg. flow-rate and pressure).

3 A Tour of the Model

This section presents a tour through the model for the various domains, beginning with simple physical
objects and concluding with a complex model of phase transitions. Space precludes including significant
portions of the model in the body of the paper, so the complete listing is attached as an appendix.

3.1 Physical Objects

Since we are modeling a physical domain, all of our processes must necessarily involve physical objects. We
define an entity for physical objects, called physob, which describes the basic physical properties common
to all objects. For example, all physobs are given the quantities of mass, volume, heat and temperature,
which are constrained to be non-negative. These properties are inherited by specific instances of physical
objects, such as contained-liquids.

3.2 Contained Liquids

Hayes [6] has formalized two views for liquid objects: the contained-liguid view and the piece-of-stuff view.
A contained-liquid is defined as the liquid which exists within the confines of some container. The amount
of a contained-liquid can change, as when liquid flows in or out; and can go to ZERO—in which case the
contained-liquid vanishes. The contained-liquid re-appears when liquid (of the same substance) is added to
the empty container. This view of liquids is the basis for nearly all qualitative models for fluids developed
so far. An alternative view of fluids is provided by the piece-of-stuff ontology, which defines a fluid object as
a particular collection of molecules whose mass is fixed but whose location may vary.

Contained-liquids are modeled as a specialization of a contained-stuff, which may be liquid or gas. A
contained-stuff exists whenever there is a non-ZERQ amount of fluid in some container. When a contained-
liquid exists, it is a physob, and inherits mass, volume, temperature and heat.

The mass of the contained-liquid is equal to and determined by the amount of liquid substance in the
container.! The volume is qualitatively proportional (xg+) to the mass of the contained-liquid, and has
the same sign; that is, the two quantities have a Correspondence at ZERO.

Contained-liquids also have the quantity: level, which depends on volume. level has two interesting
limit points: the bottom-height and top-height of the container, which correspond to empty and full
containers, respectively. In simpler models the level is not allowed to exceed the top-height of the
container; however this restriction is relaxed for the overflow model discussed below.

3.3 Liquid Flow

Liquid flow occurs whenever an unobstructed fluid path connects two containers of liquid at different levels.
We ignore the dynamics involved in accelerating the mass of fluid in the path, and simply consider the flow
rate as a monotonic function of the pressure drop across the path. Whenever a liquid flow process is active,
its flow-rate positively influences the amount of liquid at the destination and negatively influences the
amount of liquid at the source of the flow. :

3.3.1 Portals

The boundaries of a contained stuff are for the most part rigidly defined by the physical presence of its
container. However, not all containers are completely closed. For instance, a container may have an open

1These two quantities differ in that mass disappears when the contained-liquid ceases to exist, and so can never equal ZERD.

top, or may have fluid paths (eg.,pipes) connected to it. These areas are characterized by the absence
of a physical wall defining the boundaries between the inside and outside of the container. Following the
terminology used by Hayes [6], we call these interfaces portals.

Portals are used in our model to define the connectivity of containers and fluid paths. Portals posess
the quantities: pressure and temperature; these may be viewed as belonging to the fluid (liquid or gas)
at the location of the portal. Portals also have a quantity: height, which is compared to the level of
the contained-liquid to determine the portal’s submerged-depth. The liquid-flow process is augmented to
require that the portal at the source of the flow be submerged; this is stronger than the contained-liquid
requirement, since the portal need not be at the bottom of the container.

3.3.2 Flow through Non-Level Paths

The pressure of a contained-liquid is a function of the level of the liquid. Since there is only a single
pressure quantity for each contained-liquid, it is clear that this quantity cannot represent the liquid’s
pressure as a function of depth; rather it must represent the pressure at some arbitrary depth—such as
the bottom of the container, or the arbitrary reference from which heights and levels are measured.

The pressure at a submerged portal is not necessarily equal to that of its submerging contained-
liquid, since the portal’s height is not generally equal to ZERO. The portal’s pressure is a function of
its submerged-depth. The portal’s pressure is also dependent on the pressure of any contained-gas which
occupies the same container.

It should be possible to determine the direction and rate of liquid flow by looking only at properties of
the portals at either end of the flow path. But the pressures at the portals of a non-level path do not by
themselves determine the direction of flow; the additional force of gravity acting on the liquid in the path
may cause flow from lower to higher pressure.

The quantity head is introduced in order to properly account for flow through non-level paths. In classical
fluid dynamics, head represents the height assumed by a column of fluid open to the atmosphere (or to a
vacuum). We ignore the component of head due to the velocity of the fluid, and qualitatively define head
as the sum of pressure and height. It is meaningful to refer to the head of a contained-liquid, since this
quantity does not change with depth. The liquid flow process will depend on the relative head at the two
ends of the flow path; flow will always occur from higher to lower head.

3.3.3 Thermal Properties of Liquid Flow

The model of liquid flow presented so far has ignored the effects of temperature differences between the
source and destination of the flow. Unless the flow process can influence the heat of the contained-liquids,
the heat will remain constant even as the liquid objects appear and disappear.

There are two obvious approaches to modeling thermal properties in liquid flow. We may either consider
both intrinsic and extrinsic thermal quantities (i.e., temperature and heat), or we may consider only.
the intrinsic quantity: temperature. Considering the latter approach first, temperature must be directly
influenced by “heat flows” and other thermal processes; the quantity heat is not included in the model.
Depending on the relative temperatures of the source and destination of liquid flow, the appropriate thermal
mix-in process instantiates to directly influence (up or down) the temperature at the destination. The
temperature at the source is uninfluenced. The direct influencer of temperature is a function of the
difference in temperatures, as well as the flow-rate of the process instance (pi) and the mass of the
contained-liquid at the destination:

Flow—Rate(pi)

Thermal-Rate(pi) = Mass(dest)

(Temp(source) — Temp(dest))

This approach pays a high price for excluding heat from the model. It seems unnatural for a liquid flow
or heat flow process to require knowledge of the amount of liquid at the destination. In addition, we lose the
sense of a thermal flow; temperature is not moved from source to destination, nor does it obey conservation
laws.)

A more elegant alternative is to define the temperature of a contained-liquid as a ratio of heat and
mass, which results in the following dependencies:

temperature x4 heat; temperature xg_ mass

Heat and mass are directly influenced by various flow processes. This definition is consistent, but can
often result in ambiguity. For example, both heat and mass are decreasing at the source of a liquid flow and
increasing at the destination, so the net effect on the temperatures cannot be resolved given the ambiguous
combination of the xg4+ and xg- .

This problem motivated the development of a technique for resolving ratios, which is described in detail in
[2]. Basically the technique involves pairing up the influencers on numerator and denominator, and resolving
the net influence of each pair in isolation. As long as no two pairs provide opposite influences, the derivative
of the ratio will be unambiguously resolved.

Augmented with this technique, QPE is powerful enough to reason that the temperature at the source of
a liquid flow remains constant, while the temperature at the destination behaves according to the difference
in temperatures. This technique also solved another problem: recognizing that flow into an empty container
results in a contained-liquid at the same temperature as the flow coming in. By requiring that a ZERO-mass
contained-stuff have constant temperature, it follows that the initial temperature will be the same as that
of the liquid flowing in (otherwise it would be changing, a contradiction). This constraint also covers cases
of multiple flows of different temperatures into an empty container.

3.4 Pumped Flow

Pumps are used to drive fluid flow when gravity won’t. The simplest qualitative model of a pump assumes
a constant (positive) flow rate, as long as there is liquid in the source container to be pumped. This model
corresponds to a positive—displacement pump.

Our domain model for pumps is based on the more common centrifugal pump, in which the flow rate
depends on the pressure rise across the pump. The rate of flow decreases as the pressure rise increases, until
some maximum pressure is reached. Given a sufficiently high pressure rise, the pump will have a “negative”
flow.? The current model includes views to distinguish working, coasting and “losing” pumps, based on the
pressure rise or drop across the pump. The thermal behavior of a pumped liquid is handled in the same way
as in the liquid flow process described above.

3.5 Gasses

Many thermodynamic systems of interest involve gasses. Unfortunately, gasses introduce several new dif-
ficulties. Unlike liquids, which are incompressible, gasses expand to fill their container. In the process of
expanding or compressing, gasses are subject to doing work or being worked upon. These processes affect
the internal energy of the gas, which in turn affects its temperature and pressure. This section describes the
qualitative model developed to account for the behaviors of gasses in fluid systems.

2This model of a pump is equivalent to a constant displacement pump in parallel with a (restricted) flow path.

3.5.1 Open and Closed Containers

Because gasses expand to fill their container, it is necessary to introduce a new distinction for containers,
namely: open vs. closed containers.> An open container is only capable of containing liquid, and is exposed
to the constant pressure of the atmosphere. A closed container may contain liquid or gas, or both. The
pressure in a closed container may vary, as determined by the amount of contained-gas present and how hot
it is.

3.5.2 Contained-Gasses—Ideal Gas Law

As with liquids, contained-gasses are modeled as a specialization of contained-stuffs. Contained-gasses share
all the same quantities as contained-liquids, except that gasses do not have a level.
When a gas is sufficiently above its boiling point, its behavior is approximated by the ideal gas law:

PV =mRT =U

where P, V, m and T represent pressure, volume, mass and (absolute) temperature, respectively. R is the
gas constant for the substance in question; U is the internal energy of the gas, which for simplicity will be
referred to as heat.

Because QP theory requires a causal model, it is necessary to replace the constraint equation representation
of the ideal gas law with a set of directed influences. The first step in constructing such a model is to identify
the independent parameters among the quantities; these are the inputs to the causal chains. In QP theory,
these are exactly the directly influenced quantities. As with liquids, it is reasonable to choose mass and
heat as independent parameters, since there are clearly-identifiable processes which directly influence these
quantities. In addition, volume is viewed as independent, since the volume of a contained-gas is determined
by the volume of its container,*

Using these three quantities (i.e., heat, mass and volume) as independent parameters, we can solve for
the remaining (dependent) quantities as follows:

P=U/V; T=U/m;

The constant R is dropped from the representation, since it does not affect the qualitative behavior of a
gas. Note that the definition of temperature for a contained-gas is the same as for contained-liquids and all
other physical objects.

The expression for pressure may seem unintuitive, since it involves neither temperature nor mass. In-
tuitively when gas is added to a closed container, or when the contained-gas is heated, the pressure of the
gas will increase. But in both cases heat is being added to the gas while its volume remains constant. The
model predicts that if the amount of the gas could be increased while its heat is held constant (say by adding
gas at absolute zero temperature), then the pressure would remain unchanged; this result does not conflict
with an intuitive view based on a product of mass and temperature, since the temperature in the above case
would be decreasing, and the net influence on pressure would be ambiguous.

3.5.3 Gas Flow and Expansion

The flow of gasses is in many respects analogous to liquid flow. The gas flow process is driven by a pressure
drop across a fluid path, and influences the amount of contained-gas at the source and destination of the

3A familiar example of a closed container is a household pressure cooker.
“Expansion and compression processes have been developed to influence a container’s volume.

flow. As with liquids, the dynamics of flow rate acceleration based on the inertia of the fluid are ignored, in
favor of an equilibrium model of flow.

Unlike the model for liquid flow, gas flow involves an expansion of the fluid within the flow path. As the
gas expands, it does work on its surroundings, at the expense of some of its internal (heat) energy. If the
fluid path is in fact a turbine, then some of the energy of the gas may be converted to mechanical energy
and used to do physical work. In this case, the energy of the gas arriving at the destination of the flow is
less than the energy leaving the source. Since the mass flows are the same, the temperature of the gas must
drop across the path. In addition, gas flowing through a constriction will be cooler as it flows faster, since
it has exchanged thermal energy for kinetic energy.® .

The process definition for gas flow through a restricted fluid path moves mass and heat from the source
of the flow to the destination. The amount of heat moved is greater than the original heat content of the
gas being moved, due to the work being done by the source on the destination. Thus the gas flow process
tends to reduce the temperature at the source and increase the temperature at the destination.

8.5.4 Compressed Gas-Flow—Compression

Like liquids, gasses can be made to flow from lower to higher pressures, through a compressor. Compressors,
like pumps, can be modeled in a variety of ways. The simplest model of a compressor has a constant flow
rate; The process definition for this model would have no quantity conditions, and would be active whenever
there is a contained-gas at the compressor’s inlet.

A more realistic model of a compressor determines the flow rate as proportional to the density of the
gas at the inlet. Properties at the outlet do not affect the flow rate in this model, which represents an ideal

positive-displacement (eg. piston/cylinder) compressor.

3.6 Liquid—Gas Phase Transitions

Many thermodynamic cycles of interest—including modern air conditioners and power plants—involve phase
changes between the liquid and the gaseous phase. Developing a realistic qualitative model for phase tran-
sitions proved to be particularly challenging.

The phase of a substance is primarily a function of its temperature; each phase exists only within a certain
range of temperatures. When the temperature of a liquid reaches its upper limit—namely, the boiling point
of the substance—then boiling begins to occur; when a gas is cooled to this same limit, condensation results.
The boiling point of a substance is not constant but increases with pressure; thus boiling (and condensation)
occur at a higher temperature in a pressurized vessel (such as a car’s radiator or a pressure cooker) than
in an open pan on a stove. Likewise, lukewarm water will boil in a vacuum, and superheated steam will
condense when subjected to sufficiently high pressure.

3.6.1 Thermal Behavior of Phase Transitions

Correctly modeling the thermal aspects of a phase transition requires careful consideration. One useful
technique for reasoning about a complex process is to decompose it into an equivalent sequence of simple
events. For example, boiling may be decomposed in the following way:

1. An infinitesimal piece of liquid is selected as the next candidate to undergo the transition from liquid
to gas. This infinitesimal piece of liquid is removed from the contained-liquid by subtracting out its
mass and heat content from the corresponding properties of the contained-liquid.

SThese properties were the basis for some of the early refrigerators.

2. In order to convert the piece of liquid into a piece of gas, additional heat—known as the latent heat of
vaporization—is transferred to the piece of liquid.

3. As the phase transition proceeds, the piece-of-stuff expands, thereby expending energy (heat) as it
does work on its surrounding contained-gas.

4. Finally, the piece of gas is added to the contained-gas by incrementing its mass and heat.

This reasoning technique has been similarly applied to the condensation process.

3.6.2 Evaporation and Boiling

An important modeling issue for the boiling process concerns the source of the latent heat of vaporation.
One possible choice is to require the presence of an external heat source, whose temperature is above the
boiling point. Another option is to take the heat from the surrounding contained-liquid. These two modeling
choices result in very different predicted thermal behaviors for the contained-liquid. In the first case the
temperature of the contained-liquid is unaffected, while in the second case it is negatively influenced.

A simple model of the boiling process is active whenever a contained-liquid is at its boiling point and
has a heat flow into it. The rate of boiling is proportional to the heat flow rate into the liquid. The boiling
process negatively influences the amount of liquid in the container and positively influences the amount of
gas (of the same substance) in the container. This model corresponds to the first choice described above,
where the boiling piece of liquid draws heat from an external heat source.

There are several problems with this model of boiling; for example, the model requires that the net heat
flow into the liquid be available as a quantity. There may be multiple heat flows into and out of the liquid,
and only if the net effect is positive will boiling occur. Even if this quantity were available, it would be
incorrect to define the boiling rate solely in terms of the net heat flow. In fact it is possible to boil a liquid
without adding any heat at all, simply by reducing the pressure and thus reducing the boiling point below
the current temperature of the liquid.

This problem is analogous to the overflow of a contained-liquid through the top of its open container. We
would like to enforce that the level of the contained-liquid never exceed the top-height of the container,
and that the overflow rate equals the net rate of flow entering a full container. As with boiling, it is possible
to move the limit point of the overflow process, for example by raising or lowering a gate at the top of
the container. Thus overflow can occur without any flow into the container. The problem here is that the
requirement that the level (temperature) of the liquid never exceed its limit point is an idealization. In reality
the fluid level must exceed the top height of the container for overflow to occur; the difference between these
two quantities determines the rate of overflow.

This augmented model for overflow can be mapped back across the analogy to boiling. In the resulting
model, the rate of boiling is proportional to the amount by which the temperature of the liquid exceeds its
boiling point. This model in some ways improves on previous models; however, it is somewhat unintuitive.

To relieve the reader’s unease, consider a slightly different perspective: a boiling liquid does not actually
have a single temperature; rather it has a distribution of temperatures centered at some mean value. At
the molecular level, some molecules will be moving faster than others. If we view the boiling process as
Maxwell’s demon grabbing and removing only the fastest molecules, then clearly the average temperature
of the liquid is reduced as a result. Thus it seems reasonable for the boiling process to remove the required
heat from the liquid.

Unfortunately, this model allows boiling to occur even when there is no heat flow into the liquid and the
boiling point is constant. While this phenomenon may actually occur, it is of such short duration that we
would prefer not to include it in our model. In a real boiling liquid, the removal of latent heat from the

Figure 1: A two-phase refrigeration system

EVAP COMP COND

s

EVALVE

| e A A T A’///é

liquid is sufficient to prevent it from heating up more than infinitesimally above the boiling point. Without
order of magnstude reasoning, however, there is no way to capture this constraint.

The boiling process directly influences the mass and heat of the two contained-stuffs. The two influences
on mass are equal and opposite, as required for conservation of matter. The latent heat of vaporization
must be added to the liquid as it boils, and is assumed to flow from the contained-liquid. The heat of the
contained-liquid is negatively influenced both by the removal of liquid and by the drain caused by the latent
heat of vaporization, so the net influence on the liquid’s temperature is negative. This provides a stabilizing
influence on the boiling liquid by pushing its temperature back below the boiling point.

':
LA
* A
i 2~
.
Z
%
Z
f/‘,"
=

3.6.3 Condensation

The inverse of the evaporation process is condensation, the transformation of gas into liquid. The only
difficult modeling issue for condensation is the recipient of the latent heat given up by the condensing gas.
We choose the contained-gas, since it surrounds a piece of gas as it condenses.

The condensation process directly influences the mass and heat of the two contained-stuffs. The two
influences on mass are equal and opposite, as required for conservation of matter. The same is not true for
heat, since the latent heat of vaporization must be removed from the gas as it condenses, and is assumed to
flow into the contained-gas. This latent heat more than compensates for the heat of the condensate leaving
the contained-gas, so the net influence on the heat of the contained-gas is positive. In general the latent
heat added to a condensing gas is sufficient to prevent it from cooling off more than infinitesimally below its
boiling point. Again, order of magnitude reasoning would be required to conclude this fact.

4 An Example: Modeling a Refrigerator

The domain model described above has been applied to a variety of scenarios, ranging from a simple heat flow
between two physobs to a complex refrigeration system. Modeling a refrigerator constitutes a significant test
of the domain theory, since it involves most of the defined process types. A two-phase refrigerator involves
liquid and gas flow, heat flow, and phase transitions between the liquid and gaseous states.

Figure 1 depicts the configuration for a simple two-phase refrigeration system. For simplicity, the evap-
orator and condenser coils have been modeled as closed-containers rather than path-type heat exchangers.

The contained-liquid in the evaporator and the contained-gas in the condenser are in thermal contact with
their surroundings, so that heat flows can support the respective phase transitions. A compressor moves gas
from the evaporator to the condenser, and a simple fluid path serves as an expansion valve, allowing liquid
to return to the evaporator.

In order to maintain tractability for this complex model, the scenario was constrained to produce only
steady-state behaviors. The resulting envisionment consists of a single situation representing the normal
operating mode of the refrigerator. The situation consists of six active process instances: a liquid flow,
a compressed gas flow, two heat flows, and one of each phase transition process type. The steady-state
operation of the refrigerator can be described in terms of these processes as follows:

1. The pressure in the condenser is greater than that in the evaporator, so liquid flows through the
expansion valve into the evaporator.

2. The liquid immediately begins to evaporate, due to the low boiling point associated with the low
pressure in the evaporator. The rate of liquid flow exactly matches the rate of evaporation, thus main-
taining a constant amount of liquid in the evaporator. However, the heat carried into the evaporating
liquid by the flow through the expansion valve is less than the heat taken away by the evaporated gas.

3. In order to maintain constant temperature, a heat flow process from the refrigerator interior must
make up the difference. Thus the steady-state temperature of the liquid in the evaporator is lower
than the inside temperature of the fridge.

4. The gas in the evaporator is compressed and moved into the condenser. The work done by the
compressor raises the heat and temperature of the gas as it is compressed.

5. The gas is now hotter than room temperature, but below the higher boiling point in the high-pressure
condenser. Condensation occurs.

6. As the gas condenses, it gives off heat, which flows into the room. The condensed liquid is now ready
to flow through the expansion valve, thus completing the cycle.

This scenario represents one of the largest models run by QPE to date. Although it created only ten view
instances and eight process instances, these resulted in 332 inequality relations among 173 numbers. QPE used
about ten minutes of processor time on a Symbolics 3600 to produce the highly-constrained envisionment.

5 Problems Encountered, Lessons Learned

During the development of the model for thermdynamics described above, several recurring problems were
encountered. A sampling of these are outlined here.

5.1 Changing Existence

Several problems arise when allowing for the appearance and disappearance of objects. For instance, because
a contained-liquid does not exist when the amount of liquid in the container is ZERO, the liquid flow process
is not allowed to refer to any properties of the contained-liquid at the destination. Otherwise flow could not
be initiated into an empty container.

5.2 Causality

Dependencies in QP theory carry with them a causal direction. Qualitative proportionalities must run outward
from directly influenced quantities to the other (indirectly) influenced quantities; since these relations are
viewed as imputing causality, loops among the qualitative proportionalities are not allowed. Qprop loops, as
they are affectionately known, sometimes creep into a domain model, and result in a hard error in QPE.
Qprop loops generally come in two varieties: self-loops and cycle loops. A self-loop occurs when a

dependency is expressed in two different ways (eg. X=Y &Y =X, or V=IR & I=V/R). A cycle-loop
results from a chain of dependencies around a cycle of entities, as might occur when relating node voltages
and component voltages in an electronic circuit.

~ One way to avoid certain qprop loops is to avoid having multiple copies of the same quantity. For
example, instead of having two equal and opposite forces, force-on(B,A) & force-on(A,B), use a single
quantity: force-between(A,B), whose actual effect depends on the orientation of the two objects.

5.3 No Negation—by—Failure

QPE requires that certain facts be known in every situation. Examples include existence of quantities and
conditions on individuals of views and processes. Ensuring that these facts are known can make an otherwise
simple relation become very complicated. This is the source of one of the most common bugs among domain
models for QPE.

6 Discussion

The refrigerator example described above clearly demonstrates the composability afforded by Qualitative
Process theory and the domain descriptions presented in this paper. A simple structural description of a
refrigerator is automatically expanded into a set of process instances and a qualitative behavioral description;
this in turn may serve as the basis for generating other types of descriptions, or for solving a variety of
engineering—type problems (see [1] for details).

This paper has discussed the issues involved in developing a large-scale qualitative model of a real-world
domain. It is hoped that other researchers in Qualitative Reasoning may benefit from this discussion, by
avoiding the kinds of mistakes made in developing the model.

References

[1] Collins, J. and Forbus, K. “Reasoning about Fluids via Molecular Collections”, in Proceedings of the
National Conference on Artifictal Intelligence, Seattle, July, 1987.

(2] Collins, J. “Qualitative Algebra in QPE”, in preparation.

[3] de Kleer, J. and Brown, J. “A Qualitative Physics based on Confluences”, Artificial Intelligence, 24,
1984,

[4] Forbus, K. “Qualitative Process Theory” Artificial Intelligence, 24, 1984.
[5] Forbus, K. “The Problem of Existence”, in Proceedings of the Cognitive Science Society, 1985.

[6] Hayes, P. “Naive Physics 1: Ontology for Liquids”, in Hobbs, J. and Moore, B. (Eds.), Formal Theories
of the Commonsense World, Ablex Publishing Corporation, 1985.

10

[7] Kuipers, B. “Common Sense Causality: Deriving Behavior from Structure”, Artificial Intelligence, 24,
1984.

(8] Kuipers, B. “Abstraction by Time-Scale in Qualitative Simulation®, in Proceedings of the National
Conference on Artificial Intelligence, Seattle, July, 1987. ’

[9] Weld, D. “Switching Between Discrete and Continuous Process Models to Predict Genetic Activity”,
MIT Artificial Intelligence Lab TR-793, October, 1984.

[10] Williams, B. “Qualitative Analysis of MOS Circuits”, Artificial Intelligence, 24, 1984.
[11] Iwasaki, Y., and Simon, H. “Causality in Device Behavior”, Artificial Intelligence, 29, 1986.

11

O N de e B e

APPENDIX
Thermodynamics Domain Theory

iii ~*= Mode: Lisp; Syntax: Common-lisp; ; Package: QPE -e-

iiii Phyaobs:
iis All physical objects are emdowsd with cert | ble propertics:

i+ AMOUNTS:

(defQuantity-Type Mass Individual)
(defQuantity-Type Heat Individual)

i TEMPERATURES:
(defQuantity-Type Temparature Individual)
(defQuantity-Typas Thoil Individual)

;i PRESSURES:

(defQuantity-Typa Pressure Individual)

;i VOLUMES:

(defQuantity-Type Voluse individual)

(defentity physob
(simple-physob Taelf)
i Mo charactersatic w that ol has & mumber of guantitics:
(quantity (Mass Tsslf))
(quantity (Temperature 7seli))
(quantity (Pressure Teelf))
(quantity (Voluse 7sslf))
(quantity (Thoil Tself))
iii There are a fow state-independent relationships:
(Q= (vemparature Teelf) (/+ (Heat Twelf) (Mass Teelf)))
(oot (less-than (A (Heat Tself)) ZERD))
(not (less-than (A (Mass Teelf)) ZERD))
(greater-than (A (Temparature Tself)) ZERD))

(defentity simple-pbyscb ; wsed for mmple heat-flow examples.
(quantity (heat 7self)))

(adb:rule :intern (((physob Teb) . :TRUE))

(adb:rmogoed ({(equal-te (a (heat Tob)) ZERD) . :FALSE)
((equal-to (s (wmount-of Tob)) ZERD) . :TRUE))))

O~ oW R e

iit ~*- Mode: Lisp Packsge: QFE; Byntax: Common-lisp; -e-
ioa Heat Flow

i Types of Quantities:
ii TEMPERATURES:
(defQuantity-Type Temperaturs Individual)
(defQuantity-Type Temp-diff Individual)
;i RATES:
(defQuantity-Type Heat-Flow-Rate Individual)
i COEFFICIENTS:
(defQuantity-Type Thermal-Conductance Individual)

i Entitves:

(defantity Temperaturs-source
(simple-physob Teelf)
(quantity (tempsrature Tsalf)))

(defentity Temperature-sink
(simple-physocb Teslf)
(quantity (temperature Tselt)))

(defentity Heat-Path
(quantity (thermal-conductance Teelf))
(greater-than (A (thermal-conductance Tself)) ZERD))

5 Proceases:
(defprocess (Heat-Flow 7src 7det Tpath)
Individusls ((Terc :type simple-physob)
(7det :typs simple-physob)
(7path :type Heat-Path

:conditions (Heat-Connection 7path Tarc 7dst)))

Preconditions ((beat-aligned Tpath))
QuantityConditions ({greater-than (A (temperature 7src))
(A (temperature 7dat))))
Relations ((quantity Temp-diff)
(quantity Heat-flow-rate)

(Q= Temp-diff (- (temperaturs 7src) (temperature 7dst)))
(Q= Heat-Flow-Rate (s+ Temp-diff (thermal-conductance Tpath))))

Influsnces ((I+ (Hest Tdst) (A Heat-flow-rate))
(I- (Heat Terc) (A Heat-flow-rate))))

L R T

5i; Replemush am infinste sowrce:
(defprocess (Hest-Raplenish Thi)
Individuals ((Terc :typs Temperature-source)
(Tht :type (Process-Instance Hest-Flow)
:conditions (Thf BRC Tarc)))
QuantityConditions ((active Thf))
Influsnces ((I+ (Heat 7Tsrc) (A (Heat-Flow-Rate 7ht)))))

;i Relvewe an imfinite nink:
(defprocess (Heat-Relieve Thf)
Individuals ((7dst :type Temperature-sink)
(Tht :type (Process-Instance Heat-Flow)
:conditions (Thf DET Tdst)))
QuantityConditions ((sctive Thi))
Influences ((I- (Heat Tdst) (A (Heat-Flow-Rate Thf)))))

L - B

i+vs -*= Node: Lisp; Syntax: Common-lisp; Package: QPE -=-
i1ty Contained Stuffs
ii; Contasned-hquids & d-gasses are g Iised to d-stuffs.

;ii USES: Physob

;i AMOUNTS:
(defQuantity-Type Amount-of-in Constant Constant Individual)
(defQuantity-Type Head Individual)

;: LEVELS:

(defQuantity-Type Level Individual)
(defQuantity-Type Fluid-Level Individual)
(defQuantity-Type Bottom-Height Individual)
(defQuantity-Type Top-height Individual)
{defQuantity-Typs Height Individual)

;i Rule for Amount-of-in;
(Rule :intern (((distinguish existence) . :TRUE)
((container 7c) . :TRUE)
((substance Ts) . :TRUE)
((atate 7st) . :TRUE))
(adb:rassert! ((quantity (amount-of-in 7s Tst 7c)} . :TRUE))

(adb:rassert! ((less-tban (a (amount-of-in Ts 7t 7c)) zera) .

(Rule :iotern (((Consider all contained-stuffs) . :TRUE)
; ((distinguish existence) . :FALSE))
((container 7c) . :TRUE)
((substance 7s) . :TRUE)
((etate Tet) . :TRUE))
(adb:rassert! ((contained-stuff (C-8 7s 7st 7c)) . :TRUE)))

;i Assertions for Atmosphenic Pressure:

(amsert! *((exists ATMOSPHERE) . :TRUE))

(assert! *'((quantity (pressure ATNOSPHERE)) . :TRUE))

(assert! *((greater-than (A (pressure ATHOSPHERE)) ZERD) . :TRUE))

:FALSE)))

LB IR S SR

i Emtaties:

iii Define Contasnsd-Sinffa:

(defentity (Contained-Btuff (C-8 Teub 7et Tcam))
{physob (C-8 Tsub Tat Tcan))
(((C-8 Toub Tet Tcan) BUBSTANCE Tsub) . :TRUE)
(((C-B Tsub 7Tet Tcan) BTATE Tet) . :TRUE)
(((C-8 Toub 7et Tcan) CONTAIMER Tcan) . :TRUE)
(function-spac thoil-fun

(Qprop (Tboil (C-8 Tsub 7st Tcan))
(pressure (C-8 Teub Tet 7can)))))

iii Define Contasmed-liguads:
(defentity (Contained-Btuff (C-B Teub liquid Tcan))
(Contained-Liquid (C-B Tsub liquid 7can)))

(defentity (Contaimed-Liquid (C-8 Teub liquid Tcan))
iii Laguids hawe a movel guanialy, lewel.
(quantity (Level (C-8 Tsub liquid Tcan)))
(Qprop (level (C-B Tsub liquid 7can))
(Volume (C-8 Teub liquid Tcan)))
(Ordared-Correspondsnce
((A (level (C-8 7Tsub liquid ?can))) (A (bottom-height ?can)))
((A (voluse (C-8 7Tsub liquid 7can))) ZERD))
(Ordered-Correspondence
((A (level (C-8 Tsub liquid Tcan))) (A (top-beight Tcanm)))
((A (volums (C-B Teub liquid Tcas))) (A (volums Tcanm))))
ii; Relate volumas to amount-of.
(Qprop (voluse (C-8 Teub liquid Tcan))
(amount-of (C-8 7sub liquid 7can)))
(Ordered-Correspondsnce
((A (volums (C-B Teub liquid Tcan))) IERD)
((A (amount-of (C-8 Tsub liquid Tcan))) ZERD))
(oot (grester-than (A (volume (C-8 Teub liquid Tcam)))
(A (volume Tcas))))
iii Inherut pressnre 8 head from comtamer:
(Q= (pressure (C-8 Tsub liquid 7can)) (pressure 7can))
(quantity (bsad (C-B Tsub liquid 7can)))
(Q= (head (C-8 7sub liquid Tcan)) (bead Tcan))
(Q= (fluid-level 7Tcan) (level (C-8 7sub liquid 7can))))

L L

;i Define contained gasses:
(defentity (Contained-Btuff (C-8 7sub gas Tcan))
(Contained-Gas (C-8 Teub gas Tcan)))

(defentity (Contained-Gas (C-B Teub gas 7can))
;i: The presaure of @ comtainer is the same as that of v contawned gas:
(g= (pressure 7Tcan) (pressure (C-8 Tsub gas Tcan)))
;ii The nest Q= ezpresses the vdeal gas law: PV = mRT = HEAT
(Q= (pressure (C-8 7sub gas 7can)) (/0+ (heat (C-8 Tsub gas 7can))
(volume (C-8 7sub gas Tcan)))))

ii; Define Open and Closed Contasners:

(defentity container
iii Symple contawner geometry only has heights of bottomas and tops
(quantity (bottom-height Teslf})
(quantity (top-beight Teelf))
(greater-than (A (top-beight Teslf)) (A (bottom-height Tself)))
(quantity (besd Tself))
(quantity (fluid-level Taelf))
(oot (less-than (A (fluid-level Teslf)) (A (bottom-beight Teelf))))
(ot (less-than (A (bead Tself)) (A (fluid-level Tselt))))
(Q= (bead Tmelf) (+ (fluid-level Tself) (pressure Tself)))
(quantity (voluse Tmalf))
(greater-than (A (volume "Tself)) ZERD)
(quantity (pressura 7Tself))
(oot (lese-than (A (pressure 7self)) ZER0)))

(defentity Open-Container
(container Taslf)
(g= (pressurs 7self) (pressure ATHOSPHERE)))

(defentity Closed-Container
(container Tself))

i1 Viaw for ereating Contaned-hguids and goases:

(defview (Contained-Btuff (C-8 Tsub Tet 7can))

Individuale ((7can :type contaimer)

(Tsub :type substancae)

(7et ;:type state

:conditions (state 7st) (distinguish existence)))
Preconditions ((Can-Contain-Substance Tcan 7sub Tst))
QuantityConditions ((grester-thas (A (Amount-of-in 7sub 7st 7can)) ZEROD))
Relations ((thers-is-unique (C-8 7sub 7Tt 7can))
(Q= (amount-of (C-8 7Taub 7et 7Tcan)) (amount-of-in 7sub 7st 7can))))

L - - R Y

10

12
13
14
15
16
17
18
19
20
i
2
F2]
u

; Views for full B emply containers:

(rule :intern (({(container Tcan) . :TRUE))
(adb:rassert! ({Full Tcan) . :FALSE))) ; Temporary patch

(defview (Empty Tcan)
Individuals ((Tcan :type comtainer)
(Teudb ;:type substance
:conditions (substance Teub) (distinguish empty containers)))
QuantityConditions ((equal-te (A (amount-of-im Tsub liquid 7can)) ZERD))
Relations ((allow empty containars)
(equal-to (A (fluid-level Tcan)) (A (bottom-height 7can)))
(qprop (fluid-level Tcan) (amount-of-im ?sub liquid 7can))}))

(rule :in (((allow empty comtaimers) . :FALBE))
(adb: :rassert! ((distinguish smpty containers) . :TRUE)))

(detview (Evacuated ?can)
Individuals ((7can :type closed-container
;conditions (mot (full Tcan))
(distinguish evacuated contsiners))
(Tsub :typs substance))
QuantityConditions ((equal-to (A (amount-of-in Teub gas 7can)) ZERO)
(oot (squal-to (A (volume (C-8 Tsub LIQUID 7can)))
(A (volume ?can)))))
Relations ((allow evacuated containers)
(equal-to (A (pressure Tcan)) zeroc)
{qprop (pressure Tcan) (amount-of-in 7sub gas 7can))))

(rule :in (((allow evacuated containers) . :FALSE))
(rassert! ((distinguish evacusted containers) . :TRUE)))

(defview (Full 7Tcan)
Individuale ((7can ;:type container
:conditions (container Tcan)
(distinguish full contaioers))
(7Tsub :typs substancs)
(7cl :bind (C-8 Teub LIQUID 7can)))
QuantityConditions ((equal-to (A (voluse 7cl)) (A (volume 7can))))
Relations ((allow full containers)))

(rule :in (((allow full containers) . :falss))
(rassert!] ((distinguish full containers) . :TRUE)))

0~ e W

iii Rules for defining volume of o contained.gas

(rule :intern (((Contained-Gas 7C-G) . :TRUE)
((7C-G CONTAINER Tcan) . :TRUE)
((7C-0 BUBBTANCE 7Tasub) . :TRUE)
((Empty 7can) . :TRUE))

(rjustity ((gas-only 7C-G Tsub Tcan) . :TRUE)
(({contained-gas 7C-G) . :TRUE)
((empty Tcan) . :TRUE))
:ENPTY-CAN)

(rjustify ((gas-only 7C-G 7eub Tcan) . :FALSE)
(({contained-gas 7C-G) . :FALSE))
:QUT-0F-GAB)

(rjustify ((gss-only TC-G Tsub Tcan) . :FALSE)
(((empty Tcan) . :FALSE))
:NOT-EMPTY))

(defpredicate (gas-only 7C-G Teub Tcaa)
(equal-to (A (volume 7C-G)) (A (volume 7can)))
i (Qprop- (volume 7C-G) (amount-of-in Teub liquid Tcan)) Thus line was
i commented oul 20 volume of gas can be directly influenced.

(rule :intern (((Contained-Gas 7C-G) . :TRUE)
((7C-0 CONTAINER 7can) . :TRUE)
((Contained-Liquid 7C-L) . :TRUE)
((7C-L CONTAINER 7can) . :TRUE))

(rjustify ((Gas-And-Liquid 7€-G 7C-L Tcan) . :TRUE)
{({contained-gas TC-G) . :TRUE)
((contained-1iquid 7C-L) . :TRUE))
:GAB-AND-LIQUID)

(rjustify ((Gas-And-Liquid 7C-G 7C-L 7can) . :FALSE)
({(contained-gas 7C-G) . :FALSE))
:0UT-0F-GAB)

(rjustify ((Gas-And-Liquid 7C-G TC-L Tcan) . :FALSE)

" (((contained-liquid 7C-L) . :FALSE))
:OUT-0F-LIQUID))

(defpredicate (gas-and-liquid TC-0 7C-L Tcan)
(+Qrel (volume 7can) (volume 7C-G) (volume 7C-L)))
; Why not: { @= (volume 7C-G) (- (volume 7can) (volume 7C-L))}) FPF7
; ANSWER: So volume of gas can be directly influenced. Needed for Resolving Hatios.

i1 Rule to deduce temperature of newly-formed contained-stuff:
(rule :intern (((contained-stuff 7C-8) . :TRUE))
(rjustify ((s (d (temperature 7¢-5))) . 0)
(((equal-to (A (amount-of 7C-§)) ZERD) . :TRUE))
:INITIAL-TENPERATURE-LAW))

LB -

iii ~®- Mode: Lisp; Byntax: Common-lisp; Package: QPE -e-
i Domain information for PORTALS:
iv Quantity types:

(defQuantity-Type Fluid-level Individual)
(defQuantity-Type Max-Height Individual)
(defQuantity-Type Bottom-Height Individual)
(defQuantity-Type Top-height Individual)
(defQuantity-Type Height Individual)

i (defQuantity-Type Bubmerged-Depth Individual)
(defQuantity-Type Head Individual)

iii Define Portala:

(defentity Portal
{quantity (temparaturs Teslf))
(quantity (pressure 7self))
(quantity (head Tself))
(quantity (beight Teelf)))

(defpredicate (Portal-of 7portal 7can)
(portal 7portal)
{container Tcan)
(not (greater-than (A (bottom-height Tcan)) (A (beight Tportal))))
(mot (lesa-than (A (top-beight Tcan)) (A (beight 7Tportal))))
(Q= (head Tportal) (bead 7Tcasm)))

{detfpredicats (Dry-Portal-of Tportal Tcam)
(@= (pressure 7portal) (pressurs Tcan)))

(defpredicate Bubmerged-Portal
(@~ (pressure 7Tself) (- (head Tself) (beight Teeli))))

(Rule :intern (((dry-portal Tportal) . :TRUE)

((portal-of Tportal Tcan) . :TRUE))

(rjustity ((Dry-Portal-of Tportal Tcan) . :TRUE)
(((dry-portal Tportal) . :TRUE))
:DRY-PORTAL)

{rjustity ((Dry-Portal-of Tportal Tcan) . :FALSE)
(((dry-portal 7portal) . :FALSE))
:NOT-DRY-PORTAL))

;i Inatall function-apecs between portals sharing a path (or a containerf):
i(adb:rule (((Portal-of Tportal Tcan) . :TRUE))
i (ressert! ((function-spec-pred Tcan Tportal) . :TRUE)))

(adb:rule :in (((fluid-comnsction TF-F Tpl Tp2) . :TRUE))
(rassert! ((generic-fluid-connsection TF-P Tpi Tp2) . :TRUE)))

(adb:rule :in (((pump (puap ?pi 7Tp2)) . :TRUE))
(let ((7name (intern (format mil "PUMP-FRON-"A-TO-"A* 7p1 7p2))))
(rawsert! ((generic-fluid-connection Toame Tpl 7p2) . :TRUE))))

(sdb:rule :in (((compressor (comp 7pl 7Tp2)) . :TRUE))
(let ((7name (intern (format mil "COMPRESSOR-FROM-"A-TO-"A" 7pi 7p2))))
(rassart! ((geperic-fluid-connection Toame Tpl Tp2) . :TRUE))))

***(adb:rule (((function-spec-pred Toame Tcan) . :TRUE))
(sultiple-value-bind (ignore 7full-pame 7valus Targuments)
(parse-explicit-function

‘(,(intern (format nil *CAL-HEAD-FUN-“A" Tname))

(Qprop (head ,Tcan) (fluid-level ,7canm))

(Qprop (bead ,7can) (pressure ,7can))))
(rassert! ((has-function Tcan 7full-pame) . :TRUE))

(eval '(install-explicit-function-specs *,7Tfull-name *,7Tvalue ', Targuments))))

;i Install funciion-speca between comtainers shaning o path:
(rule :intern (((generic-fluid-connection Toame 7pl 7p2) . :TRUE)
((Portal-ef 7pl 7canl) . :TRUE)
((Portal-of Tp2 Tcan2) . :TRUE))
ii Install *functron-specs® between the heads for two connected contaners:
(rassert! ((RCorrespondence
((A (bead 7canl)) (A (bead 7can2)))
((A (fluid-level Tcanl)) (A (fluid-level Tcan2)))
((A (pressure Tcanl)) (A (pressure Tcan2)})) . :TRUE))
(rassart! ((RCorrespondence
((D (head Tcani)) (D (bead Tcan2)))
((D (fluid-level Tcanl)) (D (fluid-level 7can2)))
((D (pressure Tcanl)) (D (pressure 7can2)))) . :TRUE))
;i Now do the same for the pressures of the two portals:
(rasserti ((RCorrespondence
((A (pressure Tp1)) (A (pressure 7p2)))
((A (bead 7p1)) (A (bead Tp2)))
((A (height 7p1)) (A (beight 7p2)))) . :TRUE))
(rasmert! ((RCorrespondence Aeights mewer change.
((D (premsure ?p1)) (D (pressurs 7p2)))
((D (bead 7p1)) (D (hend 7p2}))) . :TRUE)))

st Views for Portals:
(defview (Bubmerged-Portal Tportal)
Individuals ((Tcan :type centaimer)
(Tc-1 :types comtained-liquid
:form (C-8 Teub LIQUID Tcan))
(7portal :type portal
iconditions (portal-of Tportal 7can)
(distinguish submerged portals)))
QuantityConditions ((grester-than (A (level 7c-1)) (A (height 7portal))))
Relations ((Q= (fluid-leval Tportal) (level 7c-1))))

(defview (Not-Quite-Bubmerged-Portal Tportal)

Individuale ((Tcan :type containmer)

(Tc-1 :type comtained-liquid

. :form (C-§ Teub LIQUID 7can))
(Tpertal :typs portal
;conditions (portal-ef Tportal Tcam)
(distinguish submerged portals)))

ﬂunt.lt)‘condttuu ((not (grester-than (A (lavel 7c-1)) (A (height 7portal)))))
Relations ((Q= (fluid-level Tportal) (lavel 7c-1))))

(defview (Very-Dry-Portal Tportal)
Individuals ((Tcan :type comtainmer)
(Tportal :type portal
:conditicns (portal-of Tportal 7can)
(distinguish submerged portals)))
QuantityConditiens ((equal-te (A (amount-of-in water liquid Tcan)) IERD))
Relations ((equal-to (A (fluid-level Tportal)) (A (bottom-height ?can)))))

ii; These two rules replace the thres wews above. Ony good for portals at the top or bottom of the

(Rule :intern (((distinguish submerged portals) . :TRUE)
((portal Tpartal) . :TRUE)
((contaimer Tcan) . :TRUE)
((portal-of Tportal Tcam) . :TRUE))

(rjustify ((Dry-Portal Tportal) . :TRUE)
(((Very-Dry-Paortal Tportal) . :TRUE))
:BOKE-DRY)

(rjustify ((Dry-Portal Tportal) . :TRUE)
(((Mot-Quite-Bubmerged-Portal Tportsl) . :TRUE))
: BURFB-UP)

(rjustify ((Dry-Portal Tportal) . :FALSE)
(((Not-Quite-Bubmerged-Portal 7portal) . :FALSE)
{(Very-Dry-Portal Tportal) . :FALSE))
:NUST-BE-WET-BY-NOW))

11

18

19
0
n
12
23
24
56

271
a8

(Rule

:intern (((distinguish submerged portals) . :FALSE)
((portal 7portal) . :TRUE)
((container Tcan) . :TRUE)
((portal-of 7portal 7can) . :TRUE)
((substance Teub) . :TRUE))

(rjustify ((Dry-Portal Tportal) . :TRUE)
(({Empty 7can) . :TRUE))
:ND-LIQUID)

(rjustify ((Dry-Portal Tportasl) . :TRUE)

(((equal-to (a (beight 7portal)) (a (top-beight 7can))) .

((Full 7Tcan) . :FALSE))
:NOT-FULL)

(rjustify ((Dry-Portal Tportal) . :FALSE)
(({Bubmerged-Portal Tportal) . :TRUE))
:WET-NOT-DRY)

(rjustify ((Submerged-Portal ?portal) . :TRUE)
(((squal-te (a (bottom-height Tcan))

(s (height Tportal))) . :TRUE)
((greater-than (a (amount-of-im 7sub LIQUID 7can))
ZEROD) . :TRUE))
: SUBMERGED)

(rjustify ((Submerged-Portal Tportal) . :TRUE)
(((Full Tcan) . :TRUE))

:FULL-CAN)

{rjustify ((Bubmerged-Portal Tportal) . :FALSE)
(((Dry-Portal Tportal) . :TRUE))
;DRY-NOT-WET)

(rnogood (((Bubmerged-Portal 7Tportal) . :FALSE)
((Dry-Portal Tportal) . :FALBE))
:WET-XOR-DRY))

: TRUE)

L IR

i3+ =%~ Mode: Lisp; Byntax: Common-lisp; Fomts: CPTFONT,TR12I; Package: QPE -»- 1 iiii Process vocabulary
¥ 2 (defprocess (Liquid-flow 7src-port 7dst-port 7path)
iiii Doman theory for Laguid Flow: 3 Individuals ((7erc-port :typs submerged-portal)
4 (Tsrc-can :type container
iii USES: Physob, Contasned-stufl, Porials, 3 :conditions (portal-of 7Tsrc-port 7arc-can))
6 (7dst-port :type portal)
i Quantitiss: T (7dst-can :type container
] :conditions (portal-of Tdst-port 7dst-canm))
s+ RATES:] (7path :type Fluid-Path
(defQuantity-Type Flov-Rate Individual) 10 :conditions (Fluid-Connection Tpath Terc-port Tdst-port))
(defQuantity-Type Heat-Flow-Rate Individual) 11 (Tsub :type substance)
;i LEVELS: 12 (Terc-cl :type contained-liquid
(defQuantity-Type Max-Height Individual) 13 :form (C-8 7Tsub LIQUID 7?src-can))
;s COEFFICIENTS: 14 (?dat-cl :bind (C-8 7sub LIQUID 7dst-can)))
(defQuantity-Type Conductance Individual) 16 Preconditions ((sligned 7path))
16 QuantityConditions ((grester-than (A (bead 7src-port))
i1 Define fluid path: 17 (A (bead 7dst-port)))}
(defentity Fluid-Path 18 Relatioos ((quantity flow-rate)
(quantity (max-height Tself)) 19 (quantity beat-flow-rate)
(quantity (conductance Taelf)) 20 (Q= flow-rate (- (head Terc-port) (head 7dst-port)))
(pot (less-than (A (conductance Tself)) IERD))) 21 (Q= heat-flow-rate (+ flow-rate (temperature 7erc-cl)))
22 (Q= (temparatura 7src-port) (tesperature 7arc-cl))
(rule :INTERN (((fluid-commection Tpath Tportl Tport2) . :TRUE) 3 (Q= (tempsraturs Tdst-port) (tempsrature Tarc-port)))
({portal-of ?portl Tcaml) . :TRUE) 24 Influsnces ((I- (Amount-of-in Teub liquid Terc-can) (A flow-rate))
((portal-of Tport2 7cam2) . :TRUE)) 26 (I+ (Amount-of-in Teub liquid 7dst-can) (A flow-rate))
(rassert! ((container-path 7canl Tpath) . :TRUE)) 16 (I- (beat Tsrc-cl) (A beat-flow-rate))
(rassert| ((container-path 7canl 7path) . :TRUE))) a7 (I+ (beat 7dst-cl) (A heat-flow-rate))))

Lol - -0 B - B T X

-

{defview (Bame-temp-flow T1f)
Individusls ((Terc-cl :typs contained-liquid
:form (C-B Teub LIQUID 7src-can))
(7dat-cl :typs containad-liquid
iform (C-8 Teub LIQUID ?dst-can))
(711 :type (process-imstance liquid-flow)
:conditions (T1f BRC-CL Terc-cl)
(711 DET-CL Tdst-cl)
(distinguish flow temperaturss)))
QuantityConditicns ((active T1f)
(equal-to (A (temperaturs Terc-cl))
(A (temperaturs Tdat-cl1)))))

(defview (Hot-to-Cold-flow T1f)
Individuals ((7arc-cl :type contained-liquid
:form (C-8 Teub LIQUID Terc-can))
(Tdat-cl :type comtained-liquid
:form (C-8 Teub LIQUID Tdet-can))
(711 :type (process-instance liquid-flow)
:conditions (71f BRC-CL Terc-cl)
(711 DST-CL 7Tdet-cl)
(distinguish flow temperatures)))
QuantityConditicns ((active T1f)
(greater-than (A (temperaturs 7src-cl))
(A (temperature 7dat-c1))))
Relations ((allow temperature differences)))

(defview (Cold-to-Hot-flow T1f)
Individuals ((7src-cl :type contained-liquid
:form (C-8 7Tsub LIQUID Terc-can))
(Tdst-cl :type contained-liquid
:form (C-8 Teub LIQUID Tdst-can))
(711 :type (process-instance liquid-flow)
:conditions (711 BRC-CL Tarc-cl)
(711 DST-CL Tdet-cl)
(distinguish flow temparatures)))
QuantityConditions ((sctive T1f)
(less-than (A (temperature 7src-cl))
(A (temperaturs 7dst-cl))))
Relations ((allow temperaturs differences)))

(rule :in (((allow temperature differences) . :FALSE))
(rassert! ((distinguish flow temperatures) . :TRUE)))

15

LB B - T

vii =*- Mode: Lisp; Syntax: Common-lisp; Package: QPE -+-

iiii Domain theory for Pumped Liguid Flow:
sii USES: Physab, Contaned-atuff, Portals.

i; Quanitses:

(defQuantity-Typs Max-Head Individual)
(defQuantity-Type Max-Flow Individual)
(defQuantity-Type Flow-Rate Individual)
(defQuantity-Type Heat-Flow-Rate Individual)

iii Emtsties and predicates:
(defpredicate (Pump (pump Terc-port Tdst-port))
(Q= (bead (pump 7src-port Tdst-port))
(- (bead ?dst-port) (bead 7erc-port)))
(((Pump ?src-port ?dst-port) SRC-PORT 7src-port) . :TRUE)
(((Pump Tarc-port ?dst-port) DST-PORT 7dst-port) . :TRUE))

(defentity Pump
(quantity (max-flow 7self))
(greater-than (A (max-flow 7self)) ZERD)
(quantity (max-besd Teelf))
(greater-than (A (max-besd 7self)) ZERO)
(quantity (bead Teelf)))

iir Views:
(defview (working-pusp Tpusp)
Individuals ((Tpump :typs pump
iform (pump Terc-port Tdst-port))
(Tpt :type (P instance pumped-flow)
iconditions (7pf PUNP Tpump)
(distinguish working pusp)))
QuantityConditions ((Active 7pf)
(grester-than (A (bead Tdst-port))
(A (bead Tarc-port)))))

(defview (coasting-pump Tpump)

Individuals ((Tpump :type pump

:form (pump Terc-port 7dst-port))

(Tpf :uype (P instance pumped-flow)
iconditions (7pt PUMP Tpump)
(distinguish working pump)))

QuantityConditions ((Active 7pf)

(less-than (A (besd 7det-port))

(A (bead Tsrc-port))))

Relations ((allow coasting pump)))

16

LB

(rule :in (((sllow coasting pusp) . :FALSE))
(rassert! ((distinguish working pump). :TRUE)))

siv Procsases:
(defprocess (Pumped-Flow Tpuap)
Individuala ((7pusp :type pump
:form (pump Tarc-port Tdet-port))
(Terc-can :type coataimer
:conditions (partal-of Terc-port ?src-can))
(7det-can :type comtaimer
:conditions (pertal-of ?dst-port 7dst-casn))
(Terc-cl :type comtaimed-liquid
:form (C-8 Tsub LIQUID Terc-can))
(7det-cl :bind (C-8 Teub LIQUID Tdat-can)))
QuantityConditions ((greater-than (A (smount-of-im Tsub liquid 7src-can))
1ERD)
(less-than (4 (bead Tpump)) (A (saz-bead Tpusp})))
Relations ({quantity flow-rate)
(Quantity beat-flow-rate)
(Qprop- flow-rats (bhead Tpump))
(Ordersd-Correspond
((A (max-flow Tpusp)) (A flow-rate))
((A (bead Tpump)) IERD))
(Ordered-Correspondence
((A flow-rate) IERD)
((A (max-head Tpump)) (A (head Tpumpl)))
(Q= (tempersture 7arc-poert) (temperaturs ?src-cl))
{Q= (vempsraturs Tdst-port) (temperature Terc-pert))
(G= beat-flow-rate (*+ flow-rate (temperature ?src-cl))))
Iofluences ((I- (amount-of-in 7eub liquid Terc-can) (A flow-rate))
(I+ (amount-of-in Teub liquid 7Tdst-can) (A flow-rate))
(I- (Heat Terc-cl) (A best-flow-rate))
(I+ (Heat Tdst-cl) (A heat-flow-rats))))

17

O ®m =~ oW -

(defprocess (Losing-Pumped-Flow Tpusp)
Individuals ((Tpusp :type pump
:farm (pusp Terc-port 7dst-port))
(7erc-can :type container
:conditions (portsl-of 7Tsrc-port 7src-can))
(7dst-can :type container
:conditiens (portal-of ?dst-port dst-can))
(Terc-cl :type contained-liquid
:form (C-8 Teub LIQUID Terc-can))
(7dst-cl ;bind (C-8 7sub LIQUID Tdet-can)))
QuantityConditions ((greater-than (A (head Tpump))
(A (max-head Tpump))))
Relations ((quantity flow-rate)
(Quantity beat-flow-rate)
(Qprop flov-rate (bead Tpusp))
(Drdered-Correspondence
((A flow-rate) IERD)
((A (head Tpump)) (A (max-head Tpump))))
(Q= (temperature Terc-port) (temperature ?arc-cl))
(Q= (temparature 7dst-port) (temperature ?arc-port))
(Q= heat-flow-rate (s+ flow-rate (tempersturs 7src-cl))))
Influences ((I- (amount-of-in 7sub liquid terc-can) (A flow-rate))
(I+ (amount-of-in Teub liquid 7dst-can) (A flow-rate))
(I- (Heat Terc-cl) (A beat-flow-rate))
(I+ (Heat Tdat-cl) (A beat-flow-rate))))

Co - - I B S

[

(defview (pumping-sase-temp 7pf)
Individusls ((Terc-cl :typs comtained-liquid
iform (C-8 Teub LIQUID 7arc-can))
(7dst-cl :type contaimed-liquid
:form (C-8 7sub LIQUID 7dst-can))
(Tpt :typa (process-instance pusped-flow)
:conditions (Tpf BRC-CL Terc-cl)
(7pt DST-CL 7dst-cl)
(distinguish flov temparatures)))
QuantityConditions ((active Tpi)
(equal-to (A (temparature Terc-cl))
(A (temperature 7dst-cl)))))

(deiview (pumping-hot-te-cold Tpf)
Individusls ((Terc-cl :typs contained-liquid
:form (C-8 Tsub LIQUID Tsrc-cam))
(7dat-cl :type contained-liquid
:form (C-8 Tsub LIQUID Tdet-can))
(7pt :type (process-instance pumped-flow)
:conditions (7pf BRC-CL Terc-cl)
(7pf DST-CL Tdat-cl)
(distinguish flov temperatures)))
QuantityConditions ((active 7pf)
(greater-than (A (tempersturs Terc-cl))
(A (tempsrature 7dst-cl))))
Relations ((allow temperaturs differences)))

(defview (pumping-celd-te-hot Tpf)
Individuals ((Terc-cl :type contained-liquid
:form (C-8 Tsub LIQUID ?src-can))
(7dst-cl :typs conmtained-liquid
:form (C-8 Tsub LIQUID 7dst-can))
(7pt :type (process-instance pumped-flow)
:conditions (7pf BRC-CL Terc-cl)
(7ptf DET-CL Tdst-cl)
(distinguiah flow temperatures)))
QuantityConditions ((active Tpf)
(less-than (A (temperaturs Terc-cl))
(A (temperaturs Tdst-cl))))
Relations ((allow temperature differences)))

(rule :in (({allow temperature differsnces) . :FALSE))
(rassert! ({distinguish flow temperatures) . :THUE)))

19

L= - - T S

vii =*- Node: Lisp Package: USER; Syntax: Common-lisp; Package: QPE -+~
siss Domain theory for Gas Flow:

isi USES: Physob, Contaned-stuff, Portals.

i Quantities:

it RATES:
(defQuantity-Typs Flow-Eate Individual)
(defQuantity-Type Heat-Flow-Rate Individual)

s Entitves:
(defentity Fluid-Path
(quantity max-height 7self)
(quantity hest Teelf)
(equal-to (D (beat 7self)) ZERD)
(quantity temperaturs Tself)
(greater-than (A (temperature Teslf)) ZERD))

0

21

wii Process wocabulary: 1 iii =*= Mode: Lisp Package: QPE; Syntax: Common-lisp; -o-
jigmemmm———- Aty .—es —emavan 2
(defprocess (Gas-1low Terc-port Tdst-port) 3 ;i Domasn théory for Compressed Gaa Flow:
Individuals ((Tarc-port :type dry-portal 4
:conditions (portal-of Terc-port 7Terc-cam)) 6 ;i USES: Physob, Contained-stuff, Portals.
(Tdst-port :type dry-portal 6 ,
iconditions (portal-of Tdst-port 7dst-can)) T i Quanhiies:
(?path :type Fluid-Path 8 (defQuantity-Type Flow-Rate Individual)
:canditions (Fluid-Connection 7path 7erc-port 7dst-port)) 9@ (defQuantity-Type pressure Individual)
(Tsub :typs substancs) 10 (defQuantity-Type Max-Fressure Individual)
(Tarc-cg :type contained-gas 11
:form (C-8 Tsub GAS Terc-can)) 12 ;;; Entstres and Predicates:
(7dst-cg :bind (C-§ Tsub GAB 7dst-can))) 13 (defentity Compressor
Preconditions ((aligoed 7path)) 14 (quantity (max-pressurs Tself))
QuantityConditions ((grester-than (A (pressure Tsrc-port)) i6 (greater-than (A (max-pressurs Tsslf)) ZERD)
(A (pressurs Tdst-port)))) 16 (quantity (pressure Tsalf)))
Relations ((Quantity flow-ratas) 17
(Quantity beat-flow-rate) 18 (defpredicate (Compressor (comp Terc-port Tdst-port))
(Quantity temparaturs) 19 (@= (pressure (comp Terc-port Tdet-pert))
(Q@= flow-rate (- (pressurs Terc-port) (pressurs Tdst-port))) 20 (- (pressure Tdst-port)
(Q= (vemparaturs Terc-port) (temperature Terc-cg)) 1 (pressure Tarc-port)))
(Qprop (temperature 7dst-port) (temperature Tarc-port)) 2 (((Comp ?Terc-port Tdst-port) BRC-PORT 7src-pert) . :TRUE)
i (Qprop- (temperature 7dst-port) flow-rate) 23 (((Comp ?arc-port ?dst-port) DET-PORT 7dst-port) . :TRUE))
(less-than (A (temperaturs Tdst-port)) (A (tempersture Terc-port))) 21
(G= beat-flow-rate (*+ flow-rate temparaturs)) 26 (defview (working-compressor Tcomp)
(grester-than (A tesp) (A (temp o Terc-port))) 6 Individuals ((Terc-port :type portal)
(Qprop temperature (tespersture Terc-port))) 27 (7dst-port :type portal)
Influsnces ((I- (Amount-of-in Teub gas Terc-can) (A flow-rata)) 28 (Tcomp :type compressor
(I+ (Amount-of-in Teub gas Tdst-can) (A flow-rate)) 1w :form (comp Tarc-port Tdst-port))
(I- (Heat Twrc-cg) (A hest-flow-rats)) 30 (7ct :type (Process-instance compressor-flow)
(I+ (Heat (C-8 Tsub GAS 7dst-can)) (A heat-flow-rate)))) i :conditions (Tcf CONP Tcomp)))
32 QuantityConditions ((Active 7cf)
33 (greater-than (A (pressure ?dat-port))
3 (A (pressure Terc-port)))))
36
36 (defviev (coasting-compressor Tcomp)
37 Individuale ((7erc-port :type portal)
38 (7dst-port :type portal)
w (7comp :type compressor
40 :fora (comp Terc-port Tdst-port))
41 (7cf :type (Process-instance compressor-flow)
L¥] :conditions (Tcf COMP 7comp)))
43 QuantityConditions ((Active Tcf)
[T (less-than (A (pressure ?dst-port))
46 (A (pressure Tsrc-port)))))

2

LI B P T

siii Process vocabulary:

(defprocess (Compressor-flev Tcoap)
Individuals ((Tarc-pert :type dry-pertal
:conditions (portal-of Taerc-port Tsrc-can))
(Tdst-port :type dry-portal
:conditicns (portal-of ?dst-port 7det-can))
(Tcoap :types Comprassor
:foras (comp Tsrc-port Tdst-port))
(Tsub :type substance)
(7erc-cg :type contained-gas
:form (C-8 Tsub GAS Terc-canm))
(?dst-cg :bind (C-8 7Tsub GAS 7dst-can)))
QuantityConditions ((less-than (A (pressurs Tcomp))
(A (max-pressurs Tcomp))}))
Relations ((Quantity flow-rate)
(Quantity heat-flow-rate)
(Q= flow-rate (- (max-pressure Tcomp) (pressurs Tcomp)))
(Q= best-flow-rate (*+ (flow-rats Tcf) (temparsture Terc-cgl)))
Influsnces ((I- (Amount-of-im Teub GAB Terc-can) (A flow-rate))
(I+ (Amount-of-in Tsub GAS ?dst-can) (A flow-rate))
(I+ (Heat (C-B Teub GAS Tdet-can)) (A heat-flow-rate))
{I- (Heat Terc-cg) (A beat-flow-rate))))

23

O o~ s

iii =*- Moda: Lisp Package: QPE; Byntax: Common-lisp; =*-
iii; Domawn theary for Bouling:

iii USES: Physob, Contawned-siuff.

i Quantities:

(defQuantity-Type Generation-Rate Individual)
(defQuantity-Type Heat-Flow-Rate Individual)
(defQuantity-Type Tempressure Individusl)
(defQuantity-Type Temp-Diff Individual)

siis Proceas vocabulary:
(defprocess (Boiling 7C-L)
Individuals ((Tsub :type substance)
(Tcan :typs container
:conditions (boiling-allowed-im Tcan))
(7C-L :typs Contained-Liquid
:form (C-8 Teub LIQUID 7can))
(7C-G :bind (C-8 7sub GAS Tcan)))
QuantityConditions ((grester-than (A (vesmperature 7C-L)) (A (tboil 7C-L)}))
Relations ((quantity generation-rate)
(quantity temp-diff)
(quantity Heat-Flow-Rate)
(quantity Tempressurs)
(Q= temp-diff (- (temperaturs 7C-L) (tbeil 7C-L}))
(Q= generstion-rate (*+ temp-diff (awmount-of 7C-L)))
(Qprop Tempressurs (tesperature 7C-L))
(greater-than (A Temp e) (A (temperature 7C-L)))
(not (less-than (A Tempressure) (A (temperature 7C-G))))
(oot (equal-to (A Tempressure) (A (temperature 7C-G))))
(greater-than (A Tempressure) (A (pressure 7C-G)))
(Q= Heat-Flow-Rate (*+ (generation-rate 7Tboil) Tempressure)))
Influences ((I- (Amount-of-im Tsub liquid Tcan) (A generation-rate))
(I+ (Amocunt-of-in 7sub gas 7can) (A generation-rate))
(I- (heat 7C-L) (A Heat-Flow-Rate))
(I+ (beat 7C-G) (A Heat-Flow-Rate))
(I+ (volume 7C-G) (A (generation-rate Tboil)))}))

M

(detprocess (Condensation 7C-G)
* Individua}s ((7sub :type substance)

(Tcan :type contaimer
(condensation-allowed-in Tcan))
(7C-G :type coatained-gas
:form (C-8 Tsub GAS Tcan))
(7C-L :bind (C-B 7Teub LIQUID Tcan)))

QuastityConditions ({lese-than (A (temparaturs 7C-G)) (A (tboil 7C-G))))

Relations ((quantity gensrationm-rate)

(quantity temp-diff)

(quantity Heat-Flow-Rate)

(quantity Tempressure)

(Q= temp-diff (- (tboil 7C-G) (Temperature 7C-G)))

(Q= generation-rate (¢+ Temp-Diff (Mass 7C-G)))

(Qprop Temprassure (Temperature TC-G))

(lsse-than (4 Temperessurs) (A (temperature 7C-G)))
than (A Temperessurs) (A (tempersture 7C-L)))
(less-than (A Temperessure) (A (pressure 7C-L)))

(Q= Heat-Flow-Rate (*+ (gensration-rate Tboil) Temperessurs)))

Influences ((I- (Amount-of-im Teub gas Tcan) (A generation-rate))

(I+ (Amount-of-in Tsub liquid Tcan) (A generation-rate))

(I- (beat 7C-G) (A Heat-Flow-Rats))
(I+ (beat 7C-L) (A Heat-Flow-Rate))
(I- (volume 7C-L) (A (gemeration-rate Tboil)))))

5

0w O e LS B e

;i Rule for HEAT-CONNECTION gwven TOUCHES:
(adb:rule :intern (((heat-path 7path) . :TRUE)
((containar Tcan) . :TRUE)
((contained-stuff 7C-5) . :TRUE)
((7C-8 CONTAINER Tcan) . :TRUE)
((Heat-Connection 7path 7erc (7Tpart 7can)) .
(rjustify ((Heat-Connection Tpath Tarc 7C-5) . :TRUE)
(({beat-path Tpath) . :TRUE)
((contained-stuff 7C-B) . :TRUE)
((7C-B CONTAINER Tcan) . :TRUE)
((Heat-Connection Tpath Terc (7part 7cam)) . :TRUE)
((Touches 7C-B (7part Tcan)) . :TRUE)))
(rjustify ((Hest-Connection Tpath Terc 7C-8) . :FALSE)
(((best-path 7path) . :TRUE)
((contained-stuff 7C-6) . :TRUE)
((7C-8 CONTAINER Tcan) . :TRUE)
((Heat-Connection Tpath 7Tarc (Tpart Tcan)) . :TRUE)
((Touches 7C-8 (7part Tcan)) . :FALSE))))

i Now go ihe other way; from the can out,
(adb:rule :intern (((best-path Tpath) . :TRUE)
((container Tcan) . :TRUE)
((contained-stuff 7C-8) . :TRUE)
((7C-B CONTAINER Tcam) . :TRUE)
((Heat-Connection Tpath (Tpart Tcan) 7dst) .
(rjustify ((Heat-Connection Tpath TC- Tdst) . :TRUE)
(((beat-path Tpath) . :TRUE)
((contained-stuf? 7C-§) : TRUE)
((7C-8 CONTAINER Tcan) . :TRUE) i .
((Heat-Connection Tpath (7part 7can) 7dst) . :TRUE)
({Touchws 7C-8 (7part Tcan)) . :TRUE)))
(rjustify ((Heat-Connection Tpath 7C-8 7dst) . :FALSE)
(((heat-path Tpath) . :TRUE)
((contained-stuff 7C-5) . :TRUE)
((7C-8 CONTAINER Tcan) . :TRUE)
((Heat-Connection Tpath (?part Tcan) 7dst) . :TRUE)
((Touches 7C-8 (7part 7can)) . :FALSE))))

26

L= I B S

i Rule for TOUCHES-BOTTOM:
(adb:rule, :intern ({{container Tcan) . :TRUE)
((substance Tsub) . :TRUE))
(rjustify ((Touches (C-8 Teub LIQUID Tcam) (Bottom Tcan)) . :TRUE)
(((grester-than (A (amount-of-in Teub LIQUID 7can)) ZERD) . :TRUE)))
(rassert ((Touches (C-8 Teub GAS Tcan) (Bottom 7Tcam)) . :FALSE))
(rjustify ((Touches (C-8 Teub GAS Tcan) (Bottom Tcan)) . :FALSE)
(((Touches (C-§ Tsub LIQUID Tcan) (Bottom Tcan)) . :TRUE)))
(rjustify ((Touches (C-8 Tsub GAS Tcan) (Bottom Tcan)) . :TRUE)
(((equal-te (A (amount-of-im Teub liquid Tcan)) ZERO) . :TRUE)))
(rjustify ((Touches (C-§ Tsub LIQUID Tcen) (Bottom Tcan)) . :FALSE)
(((Touches (C-8 Tsub GAS Tcan) (Bottom Tcan)) . :TRUE)}))

i Rule for TOUCHES-TOP:
(adb:rule :intern (((container Tcam) . :TRUE)
((substance Tsub) . :TRUE))
(rjustify ((Touches (C-8 Tsub GAE Tcan) (Top Tcanm)) . :TRUE)
(((greater-than (A (amount-of-im Tsub GAS 7can)) ZERQ) . :TRUE)))
(rjustify ((Touches (C-§ 7sub GAS Tcan) (Top 7Tcam)) . :FALSE)
(((equal-to (A (amount-of-im Teub GAS Tcan)) ZERO) . :TRUE)))
(zassert ((Touches (C-8 7sub liquid 7can) (Top 7Tcan)) . :FALSE)))

27

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

