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Abstract
Reasoning about kinematics is an important aspect of common sens e

physics. In earlier work, we have developed the place vocabulary theory
of qualitative kinematics in mechanisms, a formal theory for representin g
the kinematic behavior of two-dimensional mechanisms . The computa-
tion of a place vocabulary is very complex because it takes into accoun t
the details of object shapes . In this paper, we present a representatio n
which is much more abstract than a place vocabulary, the kinematic
topology . Kinematic topology does not define qualitative inference rules ,
but provides a characterization of the topology of legal configurations .
For example, the kinematic topology of a pair of gears is one or severa l
doubly connected regions, whose shape in configuration space indicate s
the relative speeds of the two gears . For many applications, reasonin g
about kinematics at this level is sufficient .

Kinematic topology can be computed in a qualitative manner an d
thus gives an existance proof that a purely qualitative kinematics is pos-
sible . Like in other qualitative reasoning applications, the qualitativ e
computation has the effect that the result is almost always ambigu-
ous. On the other hand, a kinematic topology can be given even fo r
mechanisms whose designs are only imprecise sketches, and can be gen -
eralized to arbitrary object shapes, several degrees of freedom, and thre e
dimensions. We hope that such generalizations of kinematic topolog y
can provide the basis for efficiently computing place vocabularies, an d
reasoning about general kinematic interactions .



Figure 1 : A pair of gearwheels . The drawing on the left shows an actuall y

working device, while the one on the right is only a sketch that will not wor k

as shown.

1 Kinematic Topology
Reasoning about kinematic behavior is an important problem in commonsens e
physics . A large proportion of physical systems involve some form of kinemati c
interaction, and few methodologies are known for first-principles modeling o f
kinematics . In earlier work, we have developed the place vocabulary theory fo r
the special case of mechanism kinematics . It provides a general first-principles
formalism capable of describing the behavior of complex device such as a me-
chanical clock [FALT87b,FALT87a,NIE881 .

The place vocabulary describes the kinematic behavior of a device as a stat e
graph of different contact relationships . Each different pair of object parts whic h
can be in contact forms a distinct state . There are aspects of human reasonin g
where this representation is overly detailed . Consider the example of a pair o f
gearwheels, shown in Figure 1 . A mechanism made precisely to the dimension s
shown in the drawing on the left will actually work . Its behavior can be analyze d
by precise computation on the given data, resulting in an unambiguous plac e
vocabulary. However, the sketch on the right is far from a functional gear ,
and its precise analysis will certainly not reveal a gear function . Yet peopl e
are capable of predicting that the gear function is possible, given that th e
dimensions are adjusted properly.

The metric diagram computation model developed for the place vocabular y
theory [FALT88b,FALT88a] provides one solution to this problem . It allows us
to make complete lists of all possible place vocabularies, and thus all possibl e

1



c
behaviors, which may be achieved by variation of the dimensions of the parts .
However, this list will be unecessarily big, distinguishing all the different way s
that the teeth could mesh or not mesh . A much more appropriate level of

analysis would distinguish only five different cases, each of which correspond s
to a different topology of the set of legal configurations' :

1. The device is impossible to contruct, because the parts overlap each other
in all possible configurations : the set of legal configurations is empty.

2. The gears block each other, and both wheels can only turn a smal l
amount : several simply connected sets .

3. The teeth mesh properly : one or more doubly connected sets .

4. The teeth do not mesh, and the wheels can turn independently of eac h
other: a multiply (> 2) connected set .

5. No contact between the parts is possible : a simply connected set con-
taining all imaginable configurations .

We call such a description the device's kinematic topology . Kinematic topol -
ogy expresses the connectedness of configuration space and the form of it s
regions. For example, when the gears mesh properly, the doubly connecte d
regions extend n l times across the motion parameter of the first gear, and n 2
times across the motion parameter of the second gear, where the ratio ni /n2
is the ratio of the number of teeth . A description at this level is sufficient fo r
many applications of reasoning about kinematics .

Extracting the kinematic topology from place vocabularies or configuratio n
space is not very promising, however, as it presupposes that these stronge r
descriptions have already been computed . The main point of this paper is tha t
the possible kinematic topologies can be determined directly based on onl y
a symbolic description of the objects, and qualitative information about thei r
relative dimensions. Note the qualification : without metric information, onl y
the possibilities can be listed . Determining the actual kinematic topology i n
general is not significantly easier than computing the device's complete plac e
vocabulary. To see why this is the case, consider how intricately the meshin g
of the teeth depends on their precise shape! The existance of such ambiguities
is a necessary consequence of the qualitative nature of the representation .

The fact that kinematic topologies can be computed in a purely qualitativ e
manner is a contradiction to the poverty conjecture made earlier ( [FNF87]) ,
which states that no purely qualitative kinematics is possible . Note, however ,
that kinematic topology is not strong enough to compute an envisionment of
the device's behavior .

'Assuming that the periodicity of the parts is give n
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Kinematic topologies are of interest not only as a qualitative description ,
but they can also form the basis for a much'more efficient computation of plac e
vocabularies . Preliminary tests indicate that the resulting algorithm, called th e
bubble algorithm, is about 100 times faster than the earlier implementatio n
which was based on configuration space computation . More importantly, kine-
matic topology can be determined not only for problems with few degrees of
freedom, but also for much more complicated ones where the computationa l
cost of computing with a very high dimensional configuration space is pro-
hibitive . It can provide the basis on which efficient generalizations of the place
vocabulary theory can_ be built .

The qualitative nature of kinematic topology also allows it to be compute d
for arbitrary object shapes, eliminating restrictions on the type of boundar y
curves allowed . For lack of space, we describe first its derivation for the cas e
of polygonal objects with rotational freedom, and then indicate how it is gen-
eralized .

2 Computing Kinematic Topolog y
The kinematic behavior of a pair of objects is determined by the conditio n
that they may not overlap each other . This condition defines a set of illega l
configurations, the blocked space . Kinematic behavior, on the other hand ,
refers to the set of legal configurations, the free space, which, by its definitio n
as the absence of overlaps, can only be determined as the complement o f
blocked space . Both spaces can be represented as regions in the space of
possible configurations of the objects, the configuration space (as in [FALT87b ,
FALT87a]) .

A configuration is part of blocked space if there exists a pair of object part s
which would overlap in the configuration . Pairs of object parts are therefore
the elementary building blocks for computing a description of blocked space .

Object Description In the following discussion, we refer to the pairwise
interaction of two polygonal objects A and B, each of which has freedom o f
rotation only. We assume that the boundary of each of the objects is describe d
as a sequence of pieces and cavities . A piece is centered around a convex vertex
and consists of the vertex and the two boundary segments which are joined ther e
(extending to infinity) . A cavity is the complement of a piece, centered eithe r
around a concave vertex or a minimum of the radius to the center of rotation ,
and the two boundaries adjoining it 2 . A sample decomposition is shown i n
Figure 2 .

2 1n the case of a radius minimum, the two halves of the boundary segment .
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Piece C

Piece A

Figure 2 : The decomposition of an object boundary into pieces and cavities .

Figure 3: Example of an obstacle .

Formulating the non-overlap condition Since the two objects A and
B are rotating around a fixed center, the configuration space of such a pair i s
two-dimensional, spanned by the orientations and of A and B . The fact
that two pieces PA and PB on objects A and B can not overlap yields the
condition that none of the line segments bounding PA and PB can intersect
each other, and none of the two can be entirely inside the other . For each pai r
of object pieces, this defines an obstacle, the set of configurations which violat e
the condition . The boundary of the obstacle is given as the envelope of fou r
constraint curves, which consist of the configurations where a vertex of on e
piece touches one of the two boundary segments belonging to the other piece .
An example of such an obstacle is shown in Figure 3 . An obstacle contains two
touchpoints where all four bounding constraints intersect each other . They are
configurations where the vertices of the two objects touch each other . Whe n
the sizes of the object pieces generating the obstacles is very different, there ar e
cases where the obstacle is in fact a doubly connected set, enclosing a regio n
of potential free space .
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Infinite Obstacle

Figure 4: Infinite obstacles connect or modify obstacle boundaries .

Because object pieces are assumed to extend to infinity, the obstacles ofte n
also contain many configurations where no overlap exists, and we call these
parts of the obstacle invalid . The importance of the obstacles lies in the fact
that any boundary between free and blocked space is part of the boundary o f
some obstacle (see [FALT87a,BLP83]) . Our algorithm composes the correc t
boundary between free and blocked space by composing only the boundary
elements of the valid parts of the obstacles . The obstacles serve as tokens
which permit an efficient organization of these elements .

In the case of several adjacent pieces, the obstacles they generated have to
be intersected to form the true region of blocked space . For kinematic topology,
this means that these obstacles can be combined into a single token of a blocke d
space area .

The initial topology graph Between the obstacles thus centered in con -
figuration space lie regions of potential free space, described by bubbles . Intu-
itively, a bubble describes the potentially legal configurations where a piece o n
one object falls within a cavity on the other . It is a token which stands for th e
interaction of either a piece and a cavity or two cavities, and takes its shap e
from the surrounding obstacles and bubbles .

When two cavities follow each other on an object boundary, they enclos e
between them a boundary segment which does not belong to any piece . This
segment can also generate a boundary between free and blocked space, whic h
is represented by a token called an infinite obstacle . An infinite obstacle ca n
not exist independently, but only modify or link together obstacles to which i t
becomes adjacent, as shown in Figure 4 .

The first approximation of the kinematic topology computed by the algo-
rithm is an array of alternating bubbles and obstacles, where the sequence o f
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Figure 5: An example of the initial topology graph .

bubbles and obstacles in each dimension reflects the sequence of pieces an d
cavities along the object boundary . An example of such a graph is shown i n
Figure 5 .

The weak topology graph The initial topology graph can be compute d
without any metric tests whatsoever, but does not yet say very much abou t
kinematic topology . A much more expressive version, the weak topology graph ,

can be obtained by a modifications based on the tests involving information
only about the distance of the centers of cavities and pieces from the cente r
of object rotation, and the distance between the centers of rotation of th e
objects . This classification involves strictly linear distance comparisons and ca n
be handled via quantity spaces or even order-of-magnitude reasoning .

First, if a pair of object parts PA and PB are too far apart or too clos e
together to touch each other, there is no configuration that falls within the cor-
responding obstacle, and it is marked inactive and ignored in further processing .
If we let rp 'n and r ip' denote the minimum and maximum radius (distance
from the center of rotation) for any point on piece P, and d be the distanc e
between the two centers of rotation, this condition can be expressed as :

IrpAn — rpBn I > d too close together, or
max

	

maxrpA

	

rpB < d too far apart

These linear distance comparisons can in general be carried out with only ver y
rough information about object dimensions . In the case where not enoug h
information is available, a case split results .
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Obstacles separated by a single bubble often intersect each other and destro y

or divide the bubble which separates them .. Consider a bubble generated by a
cavity CA and a piece PB . If the configuration where the vertex of PB touches
the point of minimum radius of CA is achievable, this point is an intersectio n
between the obstacles generated by PB and each of the pieces adjacent to CA .
The obstacles are marked as directly adjacent, dividing the bubble between
them in half. This condition is tested by the same radius comparisons described
above . The shape of infinite obstades is determined by the same criterion . As
shown in Figure 4, they can either be connected to a finite obstacle on one
sid.e only, forming a "bulge" , or be connected on both sides, thus forming a lin k
between the finite obstacles .

Note that all the tests necessary to compute the weak topology graph ar e
quite simple distance comparisons . We will discuss the use of the weak topolog y
graph after finishing the description of the algorithms to compute kinemati c
topology .

The full topology graph In the weak topology graph, we have incorpo-
rated those aspects of the metric dimensions which can be easily captured b y
qualitative representations . However, this can not be enough for a complete
description of kinematic topology. For example, deciding whether the teeth o f
a pair of gearwheels mesh requires evaluation of nonlinear expressions for whic h
we have not even found a closed-form solution . The reason why computin g
the full topology is hard is that is must take into account the occurence o f
free subsumptions, subsumptions between obstacles which involve two distinct
points of contact .

Devices in which free subsumptions are important are difficult to understand
for people also, and we can do so only in very limited cases, such as that o f
successive teeth touching each other in gearwheels .

However, the situation is not hopeless, because the set of possible subsump -
tions can often be bounded . The most powerful criterion for bounding the set of
possible subsumptions is the extent of an obstacle in configuration space . Th e
valid portions of an obstacle can be enclosed within two possibly overlappin g
bounding rectangles, which enclose all valid portions of obstacle boundaries .
Only pairs of obstacles whose bounding rectangles intersect are candidates fo r
free subsumptions .

In general, testing whether the subsumption actually occurs requires a de -
tailed (and expensive) analysis of the precise dimensions of the objects' shapes .
In many practical cases, however, it can be determined that a subsumption must

occur, by finding a valid point on an obstacle which falls within the valid regio n
of another . For this purpose, we test whether the configurations correspondin g
to the touchpoints enclosed by the intersecting bounding rectangles violate th e
non-intersection constraints of the other obstacle . In practical cases, such as
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gearwheels, this test has proven very powerful and reliable .

Both the computation of bounding rectangles and the tests of non-intersectio n
involve the nonlinear function relating radius to angle of touch . They can either
be approximated, or computed by manipulating an analogical representation ,
for example in the vision system .

A free subsumption is installed in the topology graph by establishing a direct
connection between the obstacles involved in the subsumption, dividing in hal f
all intervening bubbles . As the individual bubbles do not have precise boundarie s
in configuration space, the exact shape of the path is of no importance - in ou r
implementation, we chose the shortest one (the one that requires modifying the
fewest bubbles) .

The resulting structure now correctly describes the kinematic topology o f
the device. Every free subsumption candidate whose validity could not be deter -
mined means that the existance of the corresponding adjacency in the topolog y
graph could not be decided, and the solution is ambiguous . The bubbles and
their connectivity represent the topology of the free space . Additionally, each
bubble can be associated with the interaction (or rather closeness) of particula r
object features . The conditions which have resulted in the transformation o f
the initial topology graph to the full topology graph are a causal explanatio n
for those aspects of the final result . In the topology graph, we mark adjacen-
cies where the actual positions correspond to zero-crossings of the respectiv e
orientation parameter . The shape of each region in configuration space - fo r
example, the number of rotations of each gear required to traverse the dou-
bly connected regions for a pair of gearwheels - is determined by counting the
traversals of marked links on a path around the region boundary .

3 Applications and Extension s
Kinematic topology by itself is often a sufficient description for reasoning abou t
kinematics . For example, the kinematic topology of gearwheels describes suc-
cinctly their behavior as two objects which can turn in coordinated motion .
Note, however, that kinematic topology is not a substitute for place vocabu-
laries : the behavior of a clock escapement, for example, is only described as a
doubly connected free-space region, which doesn't capture its function .

An interesting aspect is the fact that kinematic topology often contain s
ambiguities . This reflects the ambiguity which arises in human reasoning base d
on rough sketches . For problem solving, it can be an advantage because i t
points out the possibilities which could be achieved given that the details ar e
chosen in the proper way. In the example of a sketch of gearwheel behavio r
the interpretation of a functioning set of gears requires very particular shape s
and dimensions of the gearteeth, which are far more likely to be violated tha n
satisfied . Yet, it is the only one which exhibits a remarkable and useful functio n
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Figure 6 : Convex segments of an arbitrary curve can be approximated b y
sequences of pieces, and concave segments by sequences of cavities .

not achieved by most other objects, and is therefore chosen as the desire d
interpretation .

The algorithm described in this paper has been implemented as part of a
research project in automatic mechanism design and has proven robust an d
efficient . It is between 500 and 5000 times faster than computing a complet e
place vocabulary, and can work using less precise object descriptions .

Generalizations An important aspect of kinematic topology is that it is eas-
ily generalizable. The topological computation can be extended without grea t
difficulty to devices with more than two degrees of freedom . Because bubbles
and obstacles are tokens, their nature'does not change in higher-dimensiona l
configuration spaces . An important difference, however, lies in the potentiall y
much higher number of ambiguities which may result in such a device .

Another important generalization is that of object shapes . For reasons of
conciseness, we have so far assumed objects to be polygons . The same theory
applies, however, to arbitrary boundary shapes, where pieces are defined b y
convex segments of the boundary, and cavities by concave ones . Imagine th e
boundary approximated by a very fine polygon, as shown in Figure 6 . Eac h
convex segment is then a sequence of convex vertices (pieces), and each concave
segment one of concave vertices (cavities) . The obstacles generated by th e
adjacent pieces form one contiguous region of blocked space, and the bubble s
generated by the adjacent cavities generate a contiguous region of free space ,
possibly broken in half by the succession of the infinite obstacles between them .
As the grain size of the approximation becomes infinitely fine, this becomes th e
kinematic topology of the complex shapes .

Topologically, both the succession of obstacles or bubbles can equally wel l
be modelled by a single obstacle and a single bubble, generated by pieces an d
cavities formed by the convex and concave segments of the boundary curve .
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The condition for the existance of the combined obstacle is that at least one of
its component exists, which is the case if and only if the one at the extremu m
of the radius exists . If the point of extreme radius is taken as the "vertex "
of the combined piece, it will correctly predict the existence of the combine d
obstacle . An equivalent result holds for combined cavities .

Note that this generalization requires the same division into segments of
equal curvature that has already been proposed on independent grounds by
vision researchers such as ( [BRAS86]) .

The Bubble Algorithm The kinematic topology can be used as the basis
for an efficient algorithm to compute place vocabularies . The place vocabulary
is derived from the kinematic topology by determining the shape of the regio n
boundaries as sequences of different contact relationships, and marking thei r
qualitative directions, which define the inference rules for qualitative analysi s
(as described in [FALT89?]) .

When the kinematic topology is given, the place vocabulary computatio n
can ignore most of the actually impossible contact relationships, as the region s
of kinematic topology contain only legal contacts . The place vocabulary ca n
now be computed in time proportional to its actual size. We also do away wit h
an explicit representation of configuration space and all the expensive compu-
tation associated with it . Preliminary tests indicate that the bubble algorith m
is about 100 times faster than earlier implementations of the place vocabular y
theory. More importantly, the topology-based computation can potentially b e
generalized to more than two simultaneous degrees of freedom, three dimen-
sions, and complex boundary curves .

4 Conclusions
In this paper, we have introduced the concept of kinematic topology as a ro-
bust model of commonsense reasoning about kinematics from very approximat e
information . Kinematic topology is an abstraction of the place vocabulary con-
cept and distinguished by the fact that (i) it is almost always ambiguous, bu t
with a manageable number of possibilities, (ii) requires significantly less infor-
mation for its computation, but (iii) is not powerful enough to allow an actua l
envisionment of the behavior . The prime motivation for the development of th e
concept was the need for a causal analysis of kinematic topology in an ongoin g
project to develop a system for automatic mechanism design .

Kinematic topology can be computed in a purely qualitative way, and is th e
first representation of kinematics with this property . It stands in contradictio n
to the earlier poverty conjecture that no purely qualitative kinematics is possibl e
( [FNF87]), and gives an indication of the extent to which we may succeed i n
the challenge of disproving this negative prediction .
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