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Abstract

Qualitative Process theory has been successfully used to model a variety of domain s
and in exploring several qualitative reasoning tasks . However, there has been little ex-
plicit analysis of where and how it breaks down . The purpose of this paper is to look a t
several ways in which QP theory (or implementations of it) currently fail in some way .
Two concepts for classifying QP models are introduced and used to clarify some assump-
tions underlying all existing qualitative simulators . The relationship between QP theory ,
QPE, and human intuition is shown to be more complicated than previously suspected.
Finally, some limitations of QP theory relative to other systems of qualitative physics are
explored. While the analysis focuses on QP theory, many of the issues and suggeste d
research directions are applicable to other systems of qualitative physics as well .
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1 Introduction
Qualitative Process theory [9,10] was developed to represent commonsense knowledge o f
the physical world, from the models of the person on the street to the tacit knowledg e
that guides engineers and scientists in more precise analyses . It has been used to model a
variety of physical phenomena [10,3,2 , and to study qualitative simulation[13], measure-
ment interpretation [12,4], planning 17,14], learning [7], and textbook problem solvin g
[23] . These studies have given us some idea of what QP theory can be used to model an d
the kinds of reasoning it can be used to perform . However, boundaries are more crisply
drawn by failures than successes . This paper attempts to highlight some areas where Q P
theory (or current implementations of it) fails . Some of these failures are easily repaired ,
some aren 't .

This analysis attempts to shed light on the following important questions :

1. Theory versus simulation : How closely can simulators implement QP theory? Kuiper s
has provided an elegant analysis of this question for QSIM [19], and a similar analysi s
for QP theory would help those using it .

2. Power and limitations : Most analyses of qualitative physics have focused on mathe-
matical aspects [19,24,22] . Yet ontological issues are just as important, albeit mor e
difficult to analyze. Where does QP theory fail, or provide less plausible models tha n
alternative theories?

3. Modeling physical intuition : One goal of qualitative physics is to provide a forma l
language for human mental models [15,18] . How well does the space of models ex-
pressible in QP theory fit the space of human mental models ?

This paper provides at least some initial insights into these issues . While clearly mor e
remains to be done, there are already some interesting results that merit discussion .

Section 2 defines two concepts for classifying QP models, and uses them to clarify som e
implicit assumptions underlying qualitative simulation . Section 3 explores the relationshi p
between QP theory, simulators based on it, and human intuition . Ideally, one might hop e
that any model written in a qualitative physics would exactly match some human intuition ,
or at least be a subset of human intuition . I demonstrate that neither of these is the cas e
for QP theory. In fact, even the relationship of QP theory to QPE, an envisioner for Q P
theory, is shown not to be a simple subset-superset relationship . Section 4 explores some
limitations of QP theory compared to other systems of qualitative physics . Finally, Section
5 suggests some new directions for qualitative representation and reasoning based on thes e
analyses .

2 A classification of QP models
Recall that in QP theory a modeler creates a domain model, which describes classes of ob-
jects, relationships, and processes that characterize the dynamics of some class of physica l
systems . The model for a particular system (a scenario model) is constructed automat-
ically by the QP simulator, by instantiating the constructs of the domain model on th e
scenario's structural description . Much of the power of QP theory comes from puttin g
more of the scenario modeling burden on the QP simulator . However, the use of explicit
quantification (in the logical sense) in domain descriptions makes the domain modeler's job
more complex . For example, as shown below QP theory allows scenario models which no
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existing qualitative simulator can run . Here we introduce some concepts for characterizing
domain models in order to make these limitations explicit .

(A preliminary assumption : I assume the domain model consists only of processes an d
views. Most real QP models also include some implementation-specific rules, which instal l
relationships that universally hold . All such rules could be rewritten as views, albeit wit h
some loss in efficiency, so for this analysis they will be ignored .)

2 .1 Groundedness
A crucial step in analyzing any scenario model is determining what processes and views ar e
active . Recall that the collection of processes active at some time is the process structure
of the scenario model at that time, and similarly the collection of active views is its view
structure. The process structure indicates "what is happening", while the view structur e
indicates which time-varying relationships (such as object existence and connectivity) hold .
The QP simulator builds the scenario model by building view and process instances, based
on the generic descriptions of views and processes in the domain model. Ascertainin g
whether or not these instances are active or inactive (i.e., determining their status)
requires knowing whether or not their preconditions and quantity conditions hold . An
instance is active when both the preconditions and quantity conditions are satisfied, an d
inactive otherwise . Quantity conditions are a conjunction of inequalities or statuses o f
other instances . Preconditions are a conjunction of statements other than inequalities o r
status instances .

Computing the status of instances is a basic inference required of QP systems . The
groundedness of a model pertains to what kinds of information are required to fix the statu s
of each process and view instance . By analogy with linear algebra, this information can b e
thought of as the "basis set" for the qualitative state space . Let us then define the basis
set of a scenario model to be a set of statements•whose truth values always suffice to fix th e
statuses of all view and process instances . Any qualitative simulator makes assumption s
about what this basis set contains . In an ATMS-based envisioner, for example, elements
of the basis set are generally assumptions, combined using interpretation construction t o
explicitly build the state space . Unlike linear algebra, the basis sets for qualitative stat e
spaces are rarely independent. The constraints of the physics define relationships betwee n
these assumptions, often subtly, which can drastically reduce their "span" (in this case ,
the size of the state space) . Let a minimal basis set be a basis set such that no subset of it
is also a basis set . While a minimal basis typically cannot be computed in advance, it is t o
one's advantage in simulation to pick the smallest adequate basis set, since the amount o f
computational work depends strongly on its size . There could in fact be several minima l
basis sets, due to interrelationships between assumptions .

(One complication is that the basis set as defined above does not generate the entir e
state space – it must be extended as analysis proceeds to include ordering relationship s
required to resolve ambiguities (see [131 for details) . Nevertheless, this notion of basis se t
is useful for making certain distinctions involving domain models . )

A scenario model is inequality-grounded if it has a minimal basis set consisting only o f
ordering relationships between pairs of numbers . This is the simplest case, correspond-
ing to a purely dynamical model. A scenario model is precondition-grounded if it has a
minimal basis set consisting only of statements from the preconditions of the view an d
process instances, and is not inequality-grounded . The last stipulation is necessary be-
cause statements used as preconditions can also appear in the Relations fields of views
and processes . Without this stipulation, one could construct QP models that were bot h
inequality-grounded and precondition-grounded, by creating a one-to-one mapping be-
tween a minimal inequality basis and a minimal precondition basis .
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Figure 1 : An ungrounded QP mode l

defView Yin(?x )
Individuals : ?x, World(?x)

?y, view-instance(?y) A instance-of(?y,Yang )
QuantityConditions : -' Active(?y )

defView Yang(x )
Individuals : ?x, World(?x)

?y, view-instance(?y) A instance-of(?y,Yin )
QuantityConditions :

	

Active(?y )

Precondition-grounded models can still have dynamical transitions, since Ds values ca n
change, but the view and process structures are fixed . Both kinds of models are easil y
expressed in QP theory. A scenario model is mixed-grounded if every minimal basis set
includes both ordering relationships between pairs of numbers and some statements fro m
the preconditions of its view and process instances . Most QP models are mixed-grounded.

It is possible to write QP domain models which are ungrounded: That is, for some
scenario, no combination of inequalities or preconditions suffices to determine the view
and process structures. Figure 1 illustrates. This is a consequence of allowing statuse s
of view and process instances to be used as quantity conditions . This choice made sense
because (1) in typical domain models inequalities suffices to determine the status of most
instances, and (2) it substantially increases modularity . For example, one can represent
the thermal effects of fluid mixing as a separate process, predicated on both the desire t o
model thermal properties and a fluid flow being active, without being forced to duplicat e
every precondition and quantity condition of the flow process in the mixing process . This
ability is vital to control the instantiation of large-scale domain models [8] .

Every QP implementation I have seen has assumed that scenario models are at wors t
mixed-grounded . To simulate ungrounded models requires changing the definition of pre-
condition, so that status assumptions used as preconditions could be added to the basi s
set. That by itself isn't complicated, but unfortunately it doesn't address the real issue .
In all existing QP simulators, neither Yin nor Yang of Figure 1 will be instantiated . The
reason is that processes and views cannot be instantiated with unknown individuals . Sup-
pose we have a scenario description consisting of the statement World(W) . Then there
are three models (in the model-theoretic, as opposed to the engineering, sense of models) :

_World(W)

	

World(W)

	

World(W )
Active(Yin(W))

	

Active(Yin(W) )
Active(Yang(W)) Active(Yang(W) )

Existing qualitative simulators will only find the first of these .
The implicit assumption in all QP implementations is that the views and processes of

a domain are "well-founded", in some sense . We can define this more clearly as follows .
Consider a scenario model constructed using the domain model . Let Individuals(pv) be
the set of entities filling the roles defined in the Individuals field of the process or view
of which pv is an instance . Furthermore, let Individuals(i) = i for i other than view
or process instances . Let Isupport(i) be the transitive closure of Individuals(i) . The
scenario model is grounded exactly when i Isupport(i) for all of its individuals i .
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How can we tell if a domain model is grounded, given this definition for groundin g
of scenario models? What we would like is a method for constructing scenario model s
from the domain model itself, such that if these scenario models are grounded, then every
scenario model will be. The following approach looks promising . Let a Herbrand scenario
for a domain model consist of a set of skolem constants and statements about them suc h
that the scenario model resulting from expanding the statements using the domain mode l
includes at least one instantiation of every process and view from the domain model. For
example, if a domain model included the typical definition of heat flow a Herbrand scenari o
for it might include the skolem constants hf -src, hf -dst, and hf -path, with the following
facts known about them :

Quantity(Heat(hf-src) )
Quantity(Heat(hf-dst) )
Heat-Path(hf-path)
Heat-Connection(hf-path .hf-src,hf-dst )

Call a Herbrand scenario minimal when no proper subset of it is itself a Herbrand scenario.
It seems clear (but remains to be proven) that if all minimal Herbrand scenarios for a
domain model are grounded, then every scenario model that can be generated from tha t
domain model will also be grounded .

If this conjecture is true, then an algorithm for detecting ungrounded aspects of domai n
models could be built as follows . Generate an initial Herbrand scenario by creating a skolem
constant for each role of every view and process instance in the domain model, using th e
restrictions in the Individuals field to generate the necessary facts relating them. Then
search for the minimal Herbrand models by finding the maximal sets of equality relation s
between the skolem constants (i .e., how many of them in fact could be standing for a single
entity) .

2 .2 Creativity

A distinguishing feature of QP theory from other systems of qualitative physics is its ability
to reason about changes in existence. It does this by declaring the existence of individual s
within the scope of the Relations field for some view or process C . When C is active the
individual will exist, and C becoming inactive heralds the end of the individual's existenc e
(unless some other view or process instance maintains it) . One can tie existence to a
view directly, to indicate that an individual exists only when that view is active . This is
accomplished by the predicate There-is-unique, which is defined as :

VI E individuals `/C E processviewinstance s
There-is-unique(I) E Relations (C )

Vt E times T[Exists(I) ,t] a T[Active(C) ,t ]

Figure 2 illustrates a typical example . We call domain models which contain such view s
or processes creative .

Recall that a scenario model is constructed by instantiating views and processes on som e
initial scenario description . We assume the initial scenario description explicitly describe s
only a finite number of individuals . We can further subdivide creative vocabularies int o
bounded versus unbounded models . In domain models of bounded creativity every scenari o
model contains only a finite number of individuals . In domain models of unbounde d
creativity there can be scenario models containing an infinite number of individuals . As
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Figure 2: A creative QP descriptio n
This individual view defines the conditions for the existence of contained stuff (a gener-
alization of Hayes' contained liquid ontology) . A domain model which contains views o r
processes which define the existence of new individuals is called creative .

defview Contained-Stuff-Existence(?sub,?st,?c )
Individuals : ?sub, Substance(?sub )

?st, State(?st )
?c, Container(?c)

Preconditions : Can-Contain-Stuff(?sub,?st,?c )
Quantity Conditions : A[Amount-of-in(?sub,?st,?c)] > ZERO
Relations : There-is-unique(C-S(?sub,?st,?c) )

Contained-Stuff(C-S(?sub,?st,?c) )
Amount-of(C-S(?sub,?st,?c)) = Amount-of-in(C-S(?sub,?st,?c) )

might be expected, qualitative simulators require models of bounded creativity, since the y
explicitly generate all objects . Figure 3 illustrates a view exhibiting unbounded creativity.

Some models with unbounded creativity represent bugs in the domain model . Consider
a detailed model of forces, as might be found in a qualitative dynamics for motion . Each
action, as every schoolchild knows, results in an equal and opposite reaction . We can
encode this principle by creating a reflection force for every applied force . Notice that i f
this reflection force is itself considered an applied force, we are in trouble . (I have seen
physics students get stuck this way sometimes, although they tend to recover better tha n
current qualitative simulators . )

Unfortunately, not all such models represent blunders . Many phenomena are mos t
naturally described by models with unbounded creativity. Consider a crumbling substance ,
such as chalk, which can decompose into several pieces, each of which in turn are piece s
of a crumbling substance . Or water waves in a tank, where collisions with the sides o f
the tank cause yet more waves . A radioactive source can generate an arbitrary number o f
alpha particles . In physical terms of course none of these cases yield an infinite numbe r
of individuals — crumble a substance finely enough and one gets atoms, waves in a tan k
disperse, and the radioactive source transmutes into a more stable combination of elements .
This does not mean that we can ignore unbounded creativity in models : many intuitive
models have this character, and even if there are limits, the number of individuals involve d

Figure 3 : A view exhibiting unbounded creativity

defview Has-Constituent-Parts(?obj )
Individuals : ?obj, Physob(?obj )
Preconditions : Divisible-Object(?obj )
Relations : Part-of(Partl(?obj),?obj )

Part-of(Part2(?obj),?obj )
Physob(Partl(?obj) )
Physob(Part2(?obj) )
Divisible-Object(Part1(?obj) )
Divisible-Object(Part2(?obj) )
Amount-of(?obj) = Amount-of(Partl(?obj)) + Amount-of(Part2(?obj))

1
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quickly becomes unmanageable .
A subtle point : Instances of views and processes are themselves considered to be in-

dividuals . Consequently, instantiating views and processes creates new individuals, which
were not part of the initial scenario description . The definition of creativity ignores these
individuals, since then any non-trivial QP model would be creative . Accidentally specifiy-
ing domain models that create unbounded numbers of instances constitutes a problem fo r
modelers . I have not yet found an example where models involving only unbounded vie w
and/or process instances and a finite number of other types of individuals are intuitivel y
plausible .

2 .3 Implications for qualitative simulation
All existing qualitative simulators, not just implementations of QP theory, assume grounded ,
bounded creativity models . So far only QP theory allows creative models at all ; QSI M
does not explicitly represent individuals, and'device-centered models start with a fixed
schematic . It is not clear whether or not reasoning with ungrounded models is desirable ,
since the ones that crop up while trying to model physical phenomena typically have othe r
undesirable features as well . However, automatically detecting ungrounded aspects of do -
main models will become more important as we attempt to scale up to higher-fidelit y
domain models .

Moving to unbounded creative models is very hard (Section 4.1 shows just how hard) .
The only existing reasoning technique which might be applied to this problem is aggre-
gation [25], assuming one could abstract away from individuals to a set of continuou s
parameters in each case . While aggregation can probably work in cases where individual s
are generated incrementally over time (such as figuring out why champagne goes flat), i t
offers no help for cases where an infinite number of individuals exist all at once (such a s
divisible objects, which are divisible even if no one is doing the dividing) .

I believe in such cases the answer is to eschew simulation, or at least combine simulatio n
with a style of qualitative analysis that works directly on quantified descriptions . Some
combination of consequent reasoning and resource limitations (such as ONTIC's bound o n
the number of binding premises [21]) seems to me to be a promising approach for con-
trolling inference in such models . Efficient reasoning about quantified knowledge invari-
ably requires a scheme for controlling computational resources . Most resource-limitation
schemes, such as depth of inference or number of nodes, or time, do not map naturally ont o
the constraints of intuitive arguments . McAllester argues that mathematical arguments
are restricted to a limited number of individuals at any time, but allow extremely com-
plex reasoning about those individuals . I suggest the same is true of intuitive argument s
about physical phenomena . Intuitive arguments appear to only require a finite number o f
explicitly named individuals at a time . The number can be kept small by using multipl e
ontologies and abstractions to control the level of detail used to represent each aspect of a
problem. So computational schemes which express resource bounds as limitations on th e
number of introduced individuals seem to be a reasonable substrate for qualitative physics .

3 Relating QP theory, QPE, and intuition
The relationship between a theory and programs which implement it is rarely straight-
forward. The numerous engineering decisions required to create a working artifact ofte n
compromise the fidelity with which an implementation follows a theory. Evaluating a the-
ory requires testing how well it explains and predicts its subject phenomena, and whe n
some of these predictions are made by an implementation this relationship takes on new
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importance. Part of the motivation behind QP theory was to provide a formal language
for expressing mental models . Detailed psychological studies are of course required to as -
certain how well QP models can explain human reasoning . However, a simple theoretical
analysis can reveal some interesting limitations .

Consider the following three sets of models :

Intuit : { Models corresponding to our physical intuitions }

Theory : { Models expressible in QP theory}

Sim : { Models that can be simulated using QPE}

This is one instantiation of a general scientific schemata. What a theorist hopes for is
Theory = Intuit, and feels satisfied if Theory c Intuit, assuming Theory covers "enough
of" Intuit. Similarly, implementers are happy to the degree that Sim = Theory . Often
an implementation might have limitations which could be overcome with larger machines ,
or simply more coding effort (such as QPE's current inability to handle user-defined explici t
sets), but we ignore such accidents here .

Unfortunately, for QP theory it can be demonstrated that none of Intuit, Theory, or
Sim subsumes the other . We proceed by showing for each pair of sets that one contains
something the other doesn't .

IntuitctTheory This is the easiest . Mental models research indicates that animism an d
discrete processes often play roles in intuitive models of physical phenomena, both of whic h
lie outside the bailiwick of QP theory.

TheorygIntuit Some cynics might think this case is difficult, because at first glance i t
seems one can find people who believe just about anything . Here is an example, however ,
which I claim no human being would find intuitive for very long :

defview Universal-Flow-Rates(?flowl,?flow2 )
Individuals : ?flowl, Process-Instance(?flowl), Instance-of(?flowl,Liquid-Flow )

?flow2, Process-Instance(?flow2), Instance-of(?flow2,Liquid-Flow )

Quantity Conditions : Active(?flowl) A Active(?flow2 )
Relations : Am[Flow-Rate(?flowl)] = Am[Flow-Rate(?flow2) ]

This description says that every two liquid flows involve flow rates of the same magni-
tude. That is, the rate of water flowing out of my faucet is the same as water leaking fro m
a cracked class, which is the same as the rate at which a hummingbird sucks nectar fro m
a flower, which is the same rate as water pours over Niagara Falls, since they are all activ e
at the same time. Such a model grossly violates our notions of locality and causality, bu t
it is a perfectly legal QP model .

IntuitOSim QPE cannot reason about the motivations of agents .

SimcIntuit The universal flow rate model isn't creative and has mixed grounding, an d
hence .is easily simulated using QPE.

TheorycSirn Unbounded creative models, as described in Section 2, cannot be simulated
by QPE .

1
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SimOtheory Programs can take on a life of their own . In my work on action-augmente d
envisionments [141, I define how actions can be integrated into a qualitative physics, thu s
providing a superset of QP theory. In implementing this superset theory, QPE was endowe d
with the ability to simulate STRIPS-style actions . This turned out to be surprisingly simple ,
involving only a few changes in the temporal inheritance algorithm . The result. is that the
modeling language supported by QPE is now powerful enough to encode and simulat e
standard blocksworld problems, hardly a domain suitable for pure QP theory' .

This analysis suggests two conclusions . The first, that new qualitative reasoning tech-
niques are required to handle models with unbounded creativity, echos a theme of th e
previous section . The second is that to fit human intuitions, QP models must satisfy som e
other set of constraints, which have yet to be formalized . It is not clear yet whether o r
not this body of constraints consists of just a handful of simple laws or is itself a deep ,
systematic theory. The only qualitative physics research I know of which sheds some light
on these issues is Doyle's exploration of the role of connectivity in causality [6[ and By-
lander's use of paths in consolidation [11 . Each is attempting to formalize some aspect o f
these deep physical intuitions, although their intent is to produce a formalism that ca n
be used without qualitative mathematics . I doubt that some form of qualitative mathe-
matics can be avoided given the need to compose effects . Consequently these approaches
seem unlikely to by themselves yield adequate accounts of qualitative physics . However ,
it would be interesting to see if their ideas could be extended and re-cast as constraint s
on the formulation of QP models . They might provide exactly the restrictions needed t o
produce only intuitively compelling models .

4 Some QP Conundrums

How powerful is QP theory? One way to answer this question is to look for ultimate limits
in what can be expressed, and another is to compare it to other systems of qualitativ e
physics. This section makes some observations about both .

4 .1 A limit on qualitative simulation
Qualitative simulation tends to be thought of as exponential in the worst case, since eac h
state can have more than one potential transition to other states . Envisionments are fi-
nite by definition, while behavior generation 2 , because of its ability to arbitrarily increas e
resolution on numerical values, can result in infinite behaviors . These results are true for
theories other than QP theory, and hold for QP models of bounded creativity . Unfortu-
nately, models with unbounded creativity throw a monkey wrench into the works .

It is generally assumed that all systems of qualitative physics are powerful enough ,
in principle, to implement detailed models of digital computers . Although no one has
done so, this assumption appears very reasonable . This means, of course, that we could
build a Turing machine . In other systems of qualitative physics making an infinite tape i s
something of a problem, since it is assumed (often implicitly) that the structural descriptio n
is finite . It is easy to build an infinite tape in QP theory, as Figure 4 illustrates . Given
a single square of a tape to start with, this description implies the existence of an infinit e
tape. And now we are in trouble . Simulation with QP models of unbounded creativity is i n

'Winslett [27] has in fact recently proposed an abstract formulation for reasoning about actions which i n
essence generalizes this temporal inheritance algorithm .

'Formerly "history generation" . Dan Weld suggested this change in terminology, since histories necessaril y
imply a spatial aspect, while some qualitative simulators (e .g ., QSIM) don't require this .
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Figure 4 : Building an infinite tape in QP theory
The view Right-Square creates a square to the right of any tape square . The view
Extended-Left helps rule out finite models .

defView Right-Square(?S,Right-of(?S) )
Individuals : ?S,Tape-Square(?S )
Relations : Tape-Square(Right-of(?S) )

Left-of (Right-of (?S)) = ?S
Right-of(?S) $ ?S
Left (?S ,Right-of (?S) )

defView Extended-Left(?S1,?S2 )
Individuals : ?S1,Tape-Square(?S1)

?S2,Tape-Square(?S2 )
?S3,Tape-Square(?S3), Left(?S1,?S3), Left(?S3,?S2 )

Relations : Left(?S1,?S2)
?Si.

	

?S2

the worst case undecidable . If it wasn't, we could solve the halting problem by simulatin g
the Turing machine, for any input, in finite time .

Just as the existence of the halting problem has not stopped work on automated pro-
gram understanding, this result does not mean that qualitative simulation is "doomed" .
It just shows that qualitative simulation of unbounded models is fundamentally harde r
than on bounded models, and thus we are unlikely to find a simple universally applicabl e
solution anytime soon .

4 .2 Modeling causality accurately
Consider a liquid being pumped around a fluid system in steady state . As it enters a
constriction, its velocity increases and its pressure decreases (see Figure 5) . This example of
the Bernoulli effect can be understood in terms of the following argument . Since the system
is in steady-state, the amount of fluid passing by each slice of the system must remai n
constant, and since liquids are incompressible, it must move faster in the constriction t o
maintain the requisite volume flow. Since kinetic energy depends on velocity, and energ y
is conserved in this system (ignoring friction), then some other component of energy mus t
drop, and in fact pressure drops .

Conservation arguments are powerful, of course, but there is a deeply-held intuitio n
that for every physical phenomena there must be some causal explanation . I have not come
across one for the Bernoulli effect that is completely satisfactory, nor to my knowledge have
others. Yet in the sense of causality defined by QP theory there is a very simple causa l
model, shown in Figure 6 .

This view defines the relationships between the parameters of a liquid flowing in a
section of pipe . One may quibble about whether or not contained liquids can have a
velocity (one could use molecular collections as easily [31), but the important part is th e
Relations field . Qualitative proportionalities force a causal interpretation (c .f. Section
3.2 of [10j), so by stipulation we have constructed a causal model of the Bernoulli effect .

This model is certainly correct, in the sense that using it in a comparative analysis would
yield correct results (i .e., that liquid will speed up in a constriction while the pressure wil l
drop, and that both effects are caused by the difference in the diameter of the pipe) . Why
am I unsatisfied? Informal observations (and some protocol analyses) by Dedre Gentner 1
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Figure 5 : What is a causal explanation for the Bernoulli Effect ?
This diagram shows a piping section from a fluid system, within which liquid is flowin g
in steady-state . As the graphs indicate, velocity increases in a constriction while pressur e
drops . The causal explanations usually stipulated by qualitative physics appear unintuitiv e
for this example .

Inlet

	

Outlet

P

X

indicate that when naive subjects are first introduced to the Bernoulli effect they find i t
extremely counterintuitive . We do not know if this is due to lack of familiarity with thi s
causal model or lack of acceptance of it . Sophisticated subjects have different problems with
this model . Given that they know macroscopic properties are derived from microscopic ,
they tend to view the microscopic as "more real", and thus insist on a causal story i n
molecular terms . One can feel fairly comfortable with this model by viewing qualitativ e
proportionalities as summaries of causal arguments expressed in finer-grained ontologies
(in this case, perhaps, involving statistics on the behavior of molecular collections), muc h
as Kuipers uses M to summarize the effects of a fast process when reasoning about a slowe r
one [20] . However, carrying through this derivation remains something of a challenge3

'Gregg Collins (personal communication) uses it as an interesting puzzle .

Figure 6: A causal model for the Bernoulli Effec t

DefView Fluid-Properties-Flowing-In-Pipe(?pipe,?w,?lf )
Individuals : ?pipe, Pipe-Section(?pipe )

?w, Contained-Liquid(?w) A Container(?w) = ?pipe
?lf, Process-Instance(?lf )

A Instance-of (?lf ,Liquid-Flow)
A ?pipe E Path(?lf )

Quantity Conditions : Active(?lf )
Relations : Velocity(?w) ocq _ diameter(?pipe )

Pressure(?w) cc Q+ diameter(?pipe )

V
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This example points up a broader issue, of how causality is modeled in qualitativ e
physics . There are cases where one really wants to separate causality from equations. It
is certainly the case tha t

Area (?rectangle) cxQ+ Length (?rectangle )

Area(?rectangle) ocQ + Width(?rectangle )

but one doesn't want to necessarily think of the relationship as being causal .
Each system of qualitative physics fails in some way to model causality properly, in th e

sense of violating human intuitions . de Kleer and Brown's confluence theory and William' s
system, like QP theory, fail to distinguish between equations representing causal laws an d
equations representing non-causal laws . Kuipers' QSIM contains no detailed account o f
causal interpretations, except that the whole result should be considered a "causal simula-
tion" . (One could imagine constructing such an interpretation involving QSIM constraints ,
along the lines of "implication is causality" as used by device models, but then it woul d
inherit the same limitations . )

While QP theory currently does not always handle causality correctly, I believe it i s
easier to fix than the others . The solution as I see it must be ontological, and in a qualitativ e
physics, syntax mirrors ontology. Thus a case analysis of qualitative proportionalities ,
based on the descriptions they appear in should affect which are considered causal . It
must also reflect the particular variety of causality being used (c .f . [11]) . For instance, in
continuous causality direct influences are interpreted causally, and only those qualitativ e
proportionalities propagating the effects • of direct influences are considered causal . For
differential causality it seems safe to attribute causality to all qualitative proportionalities .
Whether or not such a case analysis can be consistently completed, and whether it fit s
with human intuition, is an open question at this writing .

4 .3 Analyzing complex structural descriptions
Complexity in physical systems can arise from several sources . The components themselve s
can be complex, as in automobiles . Complexity can also arise from the way simple parts ar e
connected together, as in VLSI circuits . Representing systems with complex connectivity
remains somewhat problematic in QP theory .

Device-centered theories handle complex connections reasonably well . Confluences rep -
resenting compatibility (e .g., Kirchoff's Voltage Law) are introduced for every connecte d
triple of conduits, and a confluence representing continuity of stuff (i .e., Kirchoff's Current
Law) is introduced for every component [5] . These local laws suffice for simple networks .
For more complex networks containing redundant nodes (such as Figure 7), extra conti-
nuity laws are sometimes required in addition to purely local laws in order to rule out
impossible behaviors. In ENVISION the addition of these extra confluences was controlled
by a switch . Few device models used in practice actually contain redundant nodes, though ,
since the modelers typically simplify the structural description by hand . (One case where
redundant nodes have been used is for studying diagnosis, to model shorted components' . )

Some aspects of these constraints are easy to enforce in QP theory . In models wher e
pressures at nodes are explicitly represented and compared to ascertain flow, compatibilit y
constraints are automatically enforced by ruling out violations of transitivity' . The rea l
problem concerns how nodes should be represented . Device models tend to be sketchy
when representing the "stuff" that flows through the network . Aside from a generalized

'J . de Kleer, personal communication
'Barry Smith, unpublished manuscript .
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Figure 7: Complex networks can require extra analysis
In this diagram the boxes correspond to components containing significant fluid vol -
umes, while the small circles indicate nodes in the piping system which connect s

them.

pressure and current, other physical properties, including existence, are not made explicit .
Adding the kinds of details that are desirable for many purposes (such as thermal propertie s
of fluids) raises new problems . Suppose we represent nodes as little containers, holdin g
whatever kind of stuff is in the parts they are connected to . With this representatio n
enforcing material continuity is straightforward ; one simply constrains the sum of the flow
rates involving the node to be zero. The easiest way to do this is simply to assert that th e
amount of stuff in the node never changes . Call this the fixed node strategy.

The fixed node strategy is fine for systems where the stuff flowing is uniform and exist s
in all parts of the system for all time. But what about systems which can be emptied ,
like steam plants? Moving an operating steam plant to "cold iron" involves emptyin g
almost every container and piping system . An intuitive representation of liquids require s
that there be some stuff at a node, and thus when emptying the system that stuff has to
vanish. Yet it cannot if we model its amount as constant! Conversely, when we fire up
the steam plant we must "fill up" each and every node in the piping system, introducin g
many extra state transitions in the simulation . The more realistic the model, the worse th e
situation gets . Modeling thermal properties of fluids, for instance, requires capturing th e
thermal effects of mixing . To be consistent we must then consider how the temperatur e
changes in each node as it fills, and so forth . Taking flows seriously as being about physica l
"stuffs" seems to require a fundamentally different approach .

One way Falkenhainer and I have been exploring to overcome this limitation is t o
automate the simplification of the structural description, much as a good engineer would .
The system in Figure 7, for example, could be re-represented as a set of simple fluid path s
between the components as in Figure 8 . The properties of these fluid paths must be
computed with regard to the properties of their constituents, of course – they are aligne d
only when some path in the original network between the components is aligned, and th e
fluid resistance must be calculated for the aligned part using the laws of fluid networks . Cal l
this the node removal strategy. (This strategy is one example of the problem of translating
from structural descriptions to structural abstractions, which is a generally ignored but
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Figure 8 : Structural transformations can simplify simulatio n
By making the translation of structural descriptions (i .e., what you might see on an en -
gineering diagram) to structural abstractions (i .e ., the constructs of the physics) par t
of the modeling process, a simplified model can be used for more efficient simulation .

critical aspect of the modeling process [81 . )
How effective is the node removal strategy? Consider a network with no redundan t

nodes . In general, if a node connects K components, then it can be replaced by K(2-1)
bidirectional fluid paths . If there are M nodes in the network, all connecting K compo-
nents, then we introduce at worst MK(2-1) fluid paths, and no new contained stuffs . With
the fixed node strategy, we still have MK fluid paths, since each connection to a node cor-
responds to a fluid path . But the fixed node strategy also entails M new fluid individuals ,
with associated parameters and dynamical transitions . Depending on how loosely couple d
the parts of the system are, these extra transitions can grow the envisionment by a multi-
plicative factor (by the arguments in [16,261) . By contrast, the extra analysis of the node
removal strategy is done once, in the initial construction of the scenario model . Thus the
overall complexity of the node removal strategy appears better for this case .

When the possibility of redundant nodes is considered, node removal looks even better .
Consider N components connected by a set of M nodes, each of connectivity K, such that
at least one path exists between each pair of components . In the fixed-node strategy, ther e
will be M new individuals corresponding to the fluids in the nodes as well as betwee n
MK-N + N and MK fluid paths linking them. In the node removal strategy only N N- 1

pat2hs are needed, since the network is equivalent to one with a single node, and it takes tha t
many paths to replace an N-terminal node . While the complexity of the initial analysi s
depends on both M and K (since we have to find what paths exist between components
and record their dependencies), the size of the final result is independent of them . As M
and K increase the node removal strategy looks better and better, since the number o f
individuals (and hence the number of envisionment states) remains unchanged, while i t
continues to grow for the fixed-node strategy.

I have not yet implemented the analysis required for the node removal strategy, but
it seems straightforward. For explanation generation and diagnosis it is important to
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maintain dependencies between the original structural description and the structural ab-
straction(s) arising from it . Clearly, maintaining knowledge of valves and alignment i s
always important, as is knowing what kind of stuff is flowing through each pipe (in orde r
to understand leaks) But just how much information should be kept for different tasks i s
an unexplored issue at this point . For example, Pat Hayes has pointed out 6 that the nod e
removal strategy ignores the possibility of signficant flows within cycles in the fluid path s
themselves, which can cause problems in real life (e .g., plumbing systems) . But suppose
we keep track of cycles discovered during the computation of the simplified flow network .
Given the qualitative states computed for the simplified diagram, we could then analyz e
each cycle to see what flow patterns could arise within them (using the molecular collectio n
ontology) .

It is important to note that device-centered theories could be extended to take advan-
tage of these same techniques . By adapting QP-like descriptions of individuals, precon-
ditions, and quantity conditions, for example, the conventions for structuring large-scal e
models worked out by Falkenhainer and I could be applied to the device ontology . Net-
work simplification could (and should) be done automatically for complex systems in bot h
ontologies .

5 Summary and afterthoughts
The issues discussed here arose during the investigations our group has made using Q P
theory over the last five years . They constitute tricky terrain, relatively unexplored ter-
ritory where the correct path is not understood . Some are peculiar to QP theory, other s
haunt everyone in qualitative physics . This paper has attempted to clarify the dividing line
between what we can now do and what we can't, by "pushing the edge of the envelope" ,
taking QP theory into places it wasn't clearly meant to go . This section suggests som e
directions for future research based on these analyses .

The distinctions concerning domain models point out a fundamental limitation of to -
day's qualitative simulation technology (i .e., requiring grounded models of bounded cre-
ativity) . The potential undecidability of such models suggests searching for efficient heuris -
tic methods to incrementally control the introduction of new individuals . Qualitative anal-
ysis tools that focus on analyses more sophisticated than simulation need to be explored .

I also believe we must find better ways to test our domain models . Knowing that a
domain model works on one's standard set of cases is both necessary and reassuring . But
it is still a hit-or-miss proposition : One can make the catalog large and varied enough tha t
it is likely to catch many problems with a domain model, but cannot ever know for sur e
that one has caught them all . I suspect that the Herbrand scenario construction outline d
here, where the domain model itself is used to generate scenarios to be analyzed, could b e
useful for several aspects of verifying domain models .

The fact that QP theory can build unintuitive models points out the need for additiona l
theoretical constraints when using it as a formal representation for mental models . The
most obvious constraints are those concerning connectivity — things which aren't connecte d
physically shouldn't be causally connected . This restriction is implicit in the specifications
found in the Individuals field of reasonable QP models, but it needs to be formalized .
How many other implicit constraints are there? Right now the only way of finding ou t
is to search for bizarre cases and finding constraints that rule them out . The consistent
attribution of causality is crucial for many applications as well as psychological modeling ,
since bizarre explanations are unlikely to be believed. This may require breaking the

6 Personal communication .



REFERENCES

	

15

definitional link between qualitative proportionalities and causality, equating the two onl y
when justified by ontological analysis .

Finally, the analysis of structural descriptions suggests that a crucial part of the next
generation of qualitative analysis tools should be the ability to control the translation from
structural descriptions to structural abstractions . Our qualitative analysis systems should
take advantage of structural re-writes and equivalences just as engineers do . Whether
device-centered or process-centered, explicit use of structural transformations and equiva-
lences will be vital to scaling up qualitative physics to handle real systems .
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