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1 . Introduction
Many real world dynamic systems involve such a large number of variables and interconnections that i t

is difficult to grasp them mentally in their entirety . Abstracting a detailed description to produce a simpler
description becomes essential as the complexity of the subject system increases . For example, a n
abstraction hierarchy of models is necessary to control the combinatorial explosion of envisionment
process [4] . The author has investigated two different techniques for generating an abstract model from a
detailed, dynamic model of a system . One technique is generation of a model of a coarse temporal grai n

size from a model of a finer grain size by making assumptions about the relative adjustment speeds of th e
equations in the model [1] . The other technique is aggregating a dynamic system model to generate a n
aggregate model when the original model is nearly decomposable [8] . This paper compares the two
abstraction techniques to show that they are actually closely related .

The paper also discusses how the notion of causality relates to that of model abstraction. Both
abstraction techniques are means of going bottom-up from a detailed description of a system to a
description at a higher level of abstraction . There is an alternative, top-down, way of looking at th e
situation . When we model a complex system, we carry our modeling only down to some level o f
components . Above that level, structure and the interrelations of components are explicit. Below tha t
level, the components are black boxes with no detailed internal structure . Suppose that we determine the
causal structure of the model but decide subsequently that some part of the model must be elaborated i n
greater detail . Will the new model, incorporating this elaboration, have the same causal structure as th e
more aggregated model, or do we have to reexamine the causal ordering from the beginning? Section 2
will show that it is not necessary to reexamine the causal ordering of the aggregated model afte r
elaborating a part of an aggregated model .

Kuipers uses abstraction by time-scale in order to control the exponential growth of the number o f
possible courses of behavior in qualitative simulation [4] . Kuipers has a hierarchy of constraint network s
of very fast to very slow mechanisms . When simulating a fast mechanism, variables controlled by slowe r

mechanisms are considered constant, and when simulating a slow mechanism, equilibrium amon g
variables controlled by faster mechanisms is considered to be reached instantaneously . This idea o f
abstraction by time-scale is similar to the notion of abstraction discussed in this paper . The abstractio n

techniques discussed in this paper can be used to generate a hierarchy of models of different time-scales .
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1 .1 . Mixed models as abstraction
The first abstraction technique is generating a model of an intermediate temporal grain size from a

more detailed, dynamic model [1] . Given a model, represented as a set of differential equations that
describe the dynamic behavior of a system, another model consisting of some differential and som e
algebraic equations can be generated as an abstraction of the former . When a mechanism represented
by a differential equation in the dynamic model acts very quickly to restore relative equilibrium, one can
regard it to be acting instantaneously when one is not interested in the very short-term dynamics of th e
system. We call the operation of replacing a dynamic equation by its corresponding equilibrium equatio n
equilibration.

In contrast to variables that adjust to changes in other variables very quickly to restore relativ e
equilibrium, some variables change so slowly in response to changes that they can be regarded a s
independent of other variables. The equation corresponding to such a variable can be replaced by a
constant equation, which amounts to deleting from the system under consideration the slow mechanis m
through which others influence this variable . We call this operation of replacing a dynamic equation by a n
exogenous variable equation exogenization. More detailed descriptions of these two abstraction
operators and their characteristics are found in [1, 2] .

In both of these cases, the original model is simplified by replacing a differential equation by th e
corresponding equilibrium equation or the constant equation . By performing these two operations, on e
can produce a whole range of models between the completely dynamic model and the completely stati c
model depending on the desired temporal grain size of analysis .

Conceptually, exogenizing is the opposite of equilibrating, because exogenizing a variable assumes i t
is unaffected by other variables while equilibrating a variable assumes it responds to changes in othe r
variables extremely quickly to restore equilibrium . Exogenizing a variable amounts to deleting a
mechanism from the system by placing the mechanism determining the value of the variable outside th e
scope of the system under consideration, and it is reasonable to do so only when the feedback to th e
variable from the variables inside the mechanism is negligible .

1 .2. Aggregation of nearly decomposable system s
The second abstraction technique studied is aggregation of nearly decomposable dynamic system [8] .

The basic idea behind aggregation is this : if variables in a large dynamic system can be partitioned int o
subsets such that variables in each subset are more strongly connected to each other than to variables i n
other subsets, one can describe the short-run behavior of each subsystem independently of othe r
subsystems. Furthermore, one can describe the long-run behavior of the entire system in terms of thes e
subsets instead of individual variables, treating each subset as a black box . Simon and Ando proved that
this was indeed true for the case of a nearly decomposable dynamic matrix with one significan t
characteristic root for each subsystem [8] .

Consider a self-contained dynamic system M and its matrix P of coefficients such that P is almost bloc k
diagonal except for small (less than c for some small e) elements outside the diagonal blocks . P looks
like,
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C P

	

=

where the elements of P outside of the submatrices are either a or zero. Then P can be expressed as
P=P•+EC,

where C is an arbitrary torn matrix, and P• is the corresponding block diagonal matrix. A matrix such as P
that can be put in this form is called a nearly completely decomposable matrix or a nearly decomposable
matrix .

The system M whose matrix P is nearly completely decomposable consists of components such that
variables within each component interact strongly, but variables from different component interact
relatively weakly. The submatrices represent such components and the E elements outside the
submatrices represent weak links among components .

Simon and Ando show that the behavior of such a system may be approximately described in th e
following four stages [8] :

1. short-run dynamics
Variables in each subsystem are moving towards their relative equilibrium independently o f
other subsystems.

2. short-run equilibrium
The most significant root of each subsystem dominates the behavior of the subsystem .

3. long-run dynamics
The variables in each subsystem move together towards over-all equilibrium whil e
maintaining relative equilibrium in each subsystem .

4, long-run equilibriu m
Finally, the most significant root of the entire system dominates .

When the behavior of a large system is approximately described in four stages as above, the goodness
of the approximation naturally depends on how small the E's are and also how dominant the most
significant root of each subsystem is compared to the rest of the roots .

In order to generate an abstract model M' from M, we define an aggregate variable y'j for eac h
subsystem as a linear combination of all the variables in the subsystem . Then, the entire system can be
rewritten in terms of these aggregate variables . The resulting system m' consists N variables and
equations, and it is substantially smaller than M. The aggregate system can be used to approximate th e
middle- to long-term behavior of M. Though the original aggregation procedure was limited to case s
where each subsystem can be represented by only one aggregate variable, we subsequently generalize d
it to cases where submatrices have any number of aggregate variables . t

While the actual aggregation procedure is numerical, the relevance of this concept is not limited t o
cases where numerical information of functional relations among variables is available . Even when only a
qualitative model exists, model aggregation is possible and is often performed based on such qualitativ e

1 See [3, 2] for details .
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knowledge as relative strengths of interactions among variables and groups of variables and relative
speeds at which groups of variables reach equilibrium through workings of causal mechanisms in the
system. The work on aggregation of dynamic system matrices provides justifications and suggests
procedures for performing such qualitative abstraction as equilibration and exogenization discussed
above .

2. Causal Ordering in an Aggregate Mode l
Both of these methods are means of going bottom-up from a detailed description of a system to a

description at a higher level of abstraction . There is an alternative, top-down, way of looking at th e
situation. When we model a complex system, we carry our modeling only down to some level o f
components . Above that level, structure and the interrelations of components are explicit . Below that
level, the components are black boxes with no detailed internal structure . Suppose that we determine th e
causal structure of the model but decide subsequently that some part of the model must be elaborated i n
greater detail . Will the new model, incorporating this elaboration, have the same causal structure as th e
more aggregated model, or do we have to reexamine the causal ordering from the beginning? In this
section, we will argue that the answer to this question is "no": in other words, the causal structure of a
subsystem can be determined independently of that of the global system .

The aggregation procedure described above produces a dynamic model in terms of aggregat e
variables . Aggregate variables describe the long-term behavior of the subsystems they represent, an d
the aggregate model describes the long-term behavior of the entire system in terms of the interaction s
among subsystems . Since the aggregate model produced by the procedure is just another self -
contained, dynamic model, its causal structure can be determined based on the theory of causal orderin g

[ 1 ] .

Consider the nearly decomposable system, M, consisting of the following equations :

x' 1
= -50.000x 1 + 23.000x2 + (1 .0000e-3)x 12

	

(1 )
x'2 = -1.0000x 1 - 0 .10000x2 + (2 .0000e-3)x2

	

(2)
1

	

1

	

1

	

2
x' 1 = (1 .0000e-3)x2 - 47.000x1 - 17.000x2

	

(3)
2

	

2

	

2
x'22 = (3 .0000e--3).x1 + 1 .0000x 12 - 0.90000x22

	

(4 )

Aggregating M produces an aggregated, dynamic model M' consisting of the following equations :

y' 1 = 0.56526y 1 + 1 .1112e-3y2

	

(5 )

y2 = 3 .8135e-3y 1 - 1 .2718y2

	

(6 )

Figure 2-1 shows the causal ordering in M' .

Suppose that after determining the causal ordering in M', one decides to further elaborate subsystem
M 1 . Since M is hierarchical, hence nearly decomposable, the characteristic roots associated with th e
subsystem to be elaborated will be large in magnitude of their real part compared with the characteristic
roots of the aggregated system. If we ignore very short time periods, the structure of the subsystem ca n
be summed up in linear combinations of the elements of the eigenvectors associated with its significan t
roots as in
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or

I

y1 = c 1 exp(X 110
where -50.000z 11 + 23 .000z21

	

~ l l z1 l ,
X I, is the most significant eigenvalue associated with M 1 , and
zlfl and z21 are elements of its corresponding eigenvector .

yl = c l exp((-50 .000z 1g + 23 .000221 )1 / z 11 )

	

(7 )

These elements will be constants that, for purposes of examining behavior in the longer run, can be

treated as exogenous . They determine the internal relations of the parts of the component with eac h
other . Hence, we can add to M the following constant equations :

z1
= 0.462526

	

(8)

z21
= 1 .0000

	

(9 )

Let M ' be the model produced by adding equations 7, 8, and 9 to M' . Then, to construct the causa l

graph of M", we simply add to our causal diagram of M' anew set of causal arrows, one for each element
of the eigenvectors, pointing to y 1 as shown in Figure 2-2 . In all other respects, the causal ordering wil l

remain the same.

z

Figure 2-1 : Causal Ordering in the Aggregated Model, M'

Y 2

I

y 2

	

7 Y z

Figure 2-2 : Causal Ordering in m"
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Alternatively, if one decides to make explicit the internal causal structure within M 1 , it can be shown as
in Figure 2-3 . In the figure, the causal structure within M is constructed based on the definition of causa l
structure in a dynamic model applied to the component in isolation, i .e . M* 1 .

---
I

X'i l<	 .x11 ,

I

2

I

Figure 2-3 : Causal Ordering in M' with Internal Structure of M 1

Note that the additional links (indicated by broken arrows) from the elements of the eigenvector to y l i n
Figure 2-2 represent relations whose nature is somewhat different from that of causal links we have bee n
discussing up to this point . They are abstraction links connecting variables at one level of abstraction to
the variable which represents their over-all long-term behavior at the next higher level of abstraction .
They are "causal links" only in the sense that behavior at a lower level of abstraction is sometimes said t o
"cause" a behavior at a higher level of abstraction, and not in the sense of actual causal mechanism, o n
which structural equations are based . Also, note that in Figure 2-3, the short-term causal links an d
long-term ones must be carefully distinguished . The short-term ones are the causal links within M 1 , and
the long-term ones represent those among components . Introducing these different types of links i s
necessary in order to show clearly the hierarchical causal structure of a system when causal relations a t
different abstraction levels are mixed in one diagram .

The above example shows that for hierarchical, nearly-decomposable systems, the causal ordering i s
not sensitive to the "grain size" of analysis . At any level in the hierarchy, the causal ordering amon g
components is (nearly) independent of the causal ordering that relates to the relative movement of th e
variables within any single component.

3. Aggregation and Mixed Model as Abstraction Technique s
Aggregation and the techniques for generating mixed models from dynamic models are two ways fo r

abstracting a complex dynamic model to produce a simpler description of the system by ignoring it s
short-term behavior. In fact, the two techniques are dosely related [7] . We summarize the two
techniques below ;

• Aggregatio n
1 . Decompose the system into components such that variables within a componen t

strongly interact, quickly restoring relative equilibrium among them, while variables
from different components only weakly interact .

I
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2. Set up aggregate variables for components and redescribe the long-term behavior o f
the entire system in terms of the aggregate variables.

• Equilibration
1. Choose the equations representing mechanism that restore equilibrium very quickl y

so that the equilibrium relations can be regarded to hold instantaneously .

2. Replace these differential equations by corresponding equilibrium equations .

The first step of the both techniques amounts to classifying interactions among variables into two types ;
strong interactions restoring relative equilibrium among a group of variables very quickly, and wea k
interactions among different groups that take non-negligible time to reach equilibrium .

When groups of strongly interacting variables can be identified in a given dynamic system, the theory of
aggregation provides justification for breaking up the system into subsystems and treating the variables
within a subsystem as moving together (always maintaining relative equilibrium among them) . This type
of decomposition requires only qualitative information, namely the relative strength of interactions amon g
variables . Therefore, the theory of aggregation provides a justification for the qualitative abstractio n
techniques even in cases where precise numerical values of the coefficients in the dynamic system ar e
not known. Though Simon and Ando only handle linear systems in their theory of aggregation, it s
usefulness is not limited to linear systems because it is very common to use piece-wise linear models to
approximate the behavior of a more complex non-linear systems in engineering problem solving .

When the qualitative technique of mixed model is applied to a nearly decomposable system with a se t
of assumptions about the relative speeds of mechanisms that are consistent with the way the system i s
decomposed, the results produced by the two techniques should be consistent with each other . Consider
again the dynamic model M in Section 2 . Suppose that it is known a priori that the mechanis m
represented by equation 1, belonging to the subsystem M 1 , acts very quickly to restore relativ e
equilibrium between x1 and x2 , and that, likewise, the mechanism represented by equation 3, belonging

to M2 , restores equilibrium between x 12 and x22 very quickly . Then, ignoring the long-term effects of the c

terms, we can rewrite the two equations as below :

0= -50.000x11 + 23.000x
21

(1) '

0 = -47.000x12 - 17.000x22 (3)'

The above two equations, 1' and 3' and equations 2, and 4 shown below form a self-contained mixed
model .

.12 = -1.0000x 1 - 0.10000x21 + (2.0000e-3)x22
(2 )

1 1

x'22 = (3 .0000e-3)x 1 - 3.0000x12 - 0.90000x22 (4 )

Let M"' be this mixed model . Figure 3-1 shows the causal ordering in M"' .

Comparison of the diagrams in Figures 2-1 and 3-1 that they have basically the same causal structure :
There is an intemal feedback loop in each subsystem, and there is a feedback loop between the tw o
subsystems .
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Figure 3-1 : Causal Ordering in Mixed Model, M"'

3.1 . Example : Boller model
In this section, we present another example to illustrate the close relationship between aggregation an d

mixed systems. The system modeled here is a boiler .

Radiation Heat

A

Feedwater

Coal

Air Boiler

Figure 3-2 : Boile r

Figure 3-2 shows a simplified view of a coal-burning boiler . A boiler has inputs of coal, air, and water .
Coal is burned to heat up the input feedwater producing ash, exhaust gas, and super-heated steam . In
addition, a considerable amount of energy is lost as heat radiated into the atmosphere .

Following is a mixed model of the boiler . In constructing the model, the equations representing fas t
mechanisms are equilibrated and others are left as differential equations .

Variables
C

	

carbon content (as in coal)
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E internal energy
M

	

mass
T

	

temperatur e
P pressure
X

	

steam quality
R

	

process efficiency

Variable subscripts
fwr.in, f vr.our input feedwater and output stea m
air .in

	

input ai r
coal .in

	

input coal
gas .our

	

output gas
rfs.our

	

output refuse (ash)
cmb

	

combustion
iul.our

	

heat lost by radiation into the atmosphere
Id

	

electricity demand

Equations

	

Comments

Efwlai. = f*(Tf„,e.in' Mfwt.in' Pfivt.in' `Yfwt .in)

Pf vf .ow =f(Tfwt.out)

Efwt.owt =f(Tfwt.out' Mfwt .out' Pfwt.out)

	 = c2 (Ec„,b Rfw,h + E .in Efwt.ou)

Eair.in =t(Tair.in, Pair.in' Mair.in)
dM

d = C3 (Mconl.inRctnb + Mais.in ® Mgas.owt )

Egar .out

	

(Tgas.oug ' Mgas.out' Pgas.out)
dEdi	 = c 4 (E (1— RM — Rfwh) — Egas.out)

a,.
= C6 (Mcoalin (1 — Ranh) — Mrfs .our

Erfs.our = Mrfs.oug Crfs.o,a hvc
dEd

= C7 (Ecoa/.in C
R .►

+ Eair.iue — Ewa )a,r~.
dC , = c (— R,,,i — Cdt

	

S 1 — R~•ou)

dM
= c 9 (f'-(Eld) — Mcaol.in)

The internal energy equation for fwt .in .

A property of gas . The pressure is a function of the
temperature .

The flow equation for the feedwater flow.

The internal energy equation for fwr.our .

The energy flow equation for fwr.our .

The internal energy equation for air.in .

The flow equation for gas .out.

The internal energy equation for gas.our .

The energy flow equation for gas.our.

The internal energy equation for coal .in .

The energy flow equations for Emloia .

The flow equation for rfs .our.

The internal energy equation of the refuse .

Property of a combustion process .

Property of a combustion process .

Property of the boiler . The amount of input coal is

Ecoal.in = Mcoal.in hvc Ccoal.in
a

= c5 (Eunb Rhd — Ehtl.out)

dt



controlled based on the electrical load .
dMj_ -c10

(f'(Eki)—MIv,r.iw}

	

Likewise, the amount of input feedwater is controlled
based on the load .

The following variables are exogenous ;

Tais.in , Pair.in , Pgar.aut• Ỳfivt .in, Tfivcin , Pfwt.in, E1,
RemM R ht1, Rfwh , MaY .in , Ccmd.in

Figure 3-3 shows the matrix associated with the boiler model . The matrix is constructured as follows :
Each row and column corresponds to a variable in the model including the exogenous variabl e
equations . 2 Each row corresponds to the equation which represents the mechanism controlling th e
variable . For each row, if a variable appears in the equation with non-zero coefficient, 1 or a is placed i n
the column of the variable . Since the equations that are equilibrated in the mixed model of the boile r
represent strong interactions, the elements in these rows are indicated by 1 . In the rest of the equations ,
the elements are es because these equations represent weak interactions . The matrix shows that the
system is nearly decomposable with 12 subsystems marked in the figure with dotted rectangles . Since an
exogenous variable is dependent possibly on itself but on no other variables in the model, rows of th e
exogenous variables have 1 only in the column of the variable itself .

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29)

(1)T~~ww .

	

, 1
(2) E~.. .~

	

0 1

	

1

	

1

	

1

	

1

(3) AL" '

	

e

(4) P'ff,,

	

1

	

1

	

,(5)a1`' .

rn pM~ -- —

	

le 1
(8)7'

	

1

	

,1

	

1

E

	

1

	

1 ;

	

e

	

e

	

- 1 - -

	

,

i - I-T

	

11
e

	

I
1 t.

e

	

- -et

	

— I

	

E
E

	

E

	

I

	

E
1

	

1

	

1

Figure 3-3 : Matrix of Coefficients of the Dynamic Model of the Boile r

2 Exogenous variable equations are those of the form x = c, where x is an exogenous variable and c is some constant. The y
represent assumptions that the variable value is determined by factors lying outside the scope of the model .

(9)~.,"
(10)E~. y
(11)T . .
(12)M~y
(13)P_,,,
(14) Er
(15) R
(16) E
(17) 7

(18)
(19) Pp.
(20) R1
(21) E~

(72) M.. . .

(23)Ca,.
(24) Rub ..
(25) My.. r
(26) C

(28) Ei(29) R_,

1

	

1

E

e

c

E

E

e
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4. Discussio n
This paper discussed causal ordering in aggregate models . For hierarchical, nearly-decomposabl e

systems, the causal ordering is not sensitive to the temporal grain size of analysis . This means that one
can determine the causal ordering among components of a system independently of the causal orderin g
among variables within any single component of the system .

We also discussed the dose connection between the concepts of mixed systems and aggregation o f
nearly decomposable systems. When a nearly-decomposable model is converted into a mixed mode l
using such assumptions about relative speeds of mechanisms that are in accordance with its
decomposition, the resulting mixed model and its causal ordering is consistent with the aggregate mode l

produced by the aggregation procedure . Thus, the theory of aggregation provides a theoretical
justification for the concept of a mixed system as an abstraction of a dynamic system . By differentiatin g

among long-term, short-term, and middle-term phenomena, attention can be directed to the dynamics o f
specific subsystems without dealing with the entire system at once, reducing the degree of complexit y
one must deal with when reasoning about the behavior of a dynamic system .

The original definition of self-contained systems given by Simon required equations in a mode l
(equilibrium or dynamic) to be linear. However, since the procedures for determining causal orderin g

among variables in a model do not particularly hinge on the fact that the equations are linear, and th e
definitions of self-containment and of causal ordering are directly extendable to non-linear models, w e
dropped this requirement in the subsequent development of the theory of causal ordering .

The numerical aggregation procedure, on the other hand, does depend on linearity of a model .

However, as demonstrated by the boiler example in Section 3 .1, the idea of abstraction based on th e
relative speed of equilibrium restoration among variables seems to correspond well with the idea of th e
near decomposability of a matrix . A necessary extension of this work is to devise an analogou s
aggregation method for non-linear systems since many practical systems in the real world are not linear .

Analyzing a system of non-linear differential equations is a difficult problem . Since there is no general
technique for analyzing all non-linear systems as there is for a linear case, one would have to restrict
oneself to particular classes of non-linear systems, and to develop and aggregation procedure for each
class . Sacks worked on a program, PLR, to analyze ordinary differential equations using piecewise linea r

approximation [5, 6] . His approach may provide a starting point for extending our work on aggregation i n
this direction .
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