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The causality relation yields a simple basis for computing event occurrences in dynamic systems using th e

rule:

occurs(F) if causes(E,F) & occurs(E )

Here causes(E,F) means that event E brings about or is directly responsible for event F and occurs(E)
means that event E occurs . However, it can be quite difficult to compute the causality relation when
statements about it refer to the past or the future of causing events . A natural example of such a statement ,
and its formalized version are :

An event of aircraft taking offfrom an aiport towards a radar causes an event of detection by that

radar in the future provided an event of its changing course does not occur in between, and

provided in the past an event of its being instructed to fly low has not occurred .

causes (fliestowards(aircraft(A),radar(R) ,T) ,in ran ge(aircraft(A),radar(R),Ti)) if

detection_ time(aircraft(A),radar(R),T,Tl) &

not exists(X) . X<T & occurs(told_toJly_low(aircraft(A),X)) &
not exists(X) .T<X<TI & occurs(changes_course(aircraft(A),X)) .

Here flies_towards(A,R,T) denotes an event of object A taking off towards object R at time T. Similarly fo r
in_range(A,R,T), told_torffy_low(A,T), changes_course(A,T) . detection_time(A,R,T,T1) computes the tim e
Ti at which the flight path of A, starting at T, intersects coverage of R .

The difficulty arises from two sources . First, there is mutual recursion between this statement about causes
and the above definition of occurs . This can be quite difficult to control . If occurring events are computed
in increasing (decreasing) order of time how do we evaluate reference to the future (past)? Second ,
reference can also be to states . As time can be real-valued the number of distinct states, e .g . positions of a
moving object, can be non-computably infinite . 'raw do we keep a record of all these ?

We present a formalism called DMOD and use it to propose solutions to these problems . More generally ,
it can. be used to model and simulate dynamic systems. It is based upon the following fundamenta l
assumption :

If we know the history of a system till time T, i .e . the sequence of events which occurred till T, w e

can compute the value of every state parameter at any point of time till T.

Let F be a condition about the system which takes m+l arguments, m> =0, and the last argument range s

over real-valued time. Let F be defined for entities al , . .,am,t. Then the proposition F(al , . .,am,t) is said to
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become true if F(al, . .,am,t) is true but there exists a finite time interval immediately preceding t such tha t
for each time instant X within it F(al, . .,am,X) is false . Thus, we distinguish between a proposition bein g

true and becoming true .

Let F1,F2, . .,Fk be a special set of conditions about the system called event-defining conditions . Each Fi
takes m+l arguments, m>=0, and the last argument ranges over real-valued time . Where Fi is defined for

entities al, . .,am,t, the proposition Fi(al, . .,am,t) is called an event and t is called its time-stamp. If the

event Fi(al , . .,am,t) becomes true then it is said to occur at t. Thus, we distinguish between an event and its
occurrence.

Now, the set of event-defining conditions must be chosen in such a way that the fundamental assumption of

DMOD is satisfied. We assume that rules can be written down which, given the history till time T,
compute the state of the system at time T. These are called state-computation rules . Using these, the
history till T can be regarded as a representation of all the states till T even if they are non-computabl y

infinite .

To compute which events occur we view causality from a different point of view . We regard it as a ternary
relation between two events and a time-ordered sequence of events in which they appear . To avoid

confusion with the traditional view we call the new relation causal_connection . The sequence is regarde d

as a context and we are to specify whether two events are causally connected within this context . Causal

connectedness is similar to connectedness between nodes in a network . Two nodes may be connected i n
one network but not in another. Note that events in the context do not have to occur . This is the basis for

avoiding the mutual recursion above . The causal_connection relation is defined using causality rules of th e
form :

causal connection(E,HE,F,HEF) if causality_predicted(E,HE,F) & prediction_unfalsified(E,HE,F,HEF) .
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F
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(S )
<---HE-->	 HEF---->

In the figure above S is a sequence of events sorted in increasing order of time stamps . E appears before F
in S, HE is the sequence of all events in S upto but not including E, and HEF is the sequence of all events
in S between E and F but not including either. The above rule is to be read as :

If from the information available till E it is predicted that there is a causal connection between E
and F, and this prediction is not falsified by information collected between E and F then E i s

causally connected to F.

Note that reference to events and states in the past of E is resolved using HE and to those in the future of E
upto F using HEF. Reference beyond F is not available as it ought not to influence causal connectednes s
between E and F. A DMOD program consists of a set of causality rules, and a set of state-computation
rules . For example, DMOD rules expressing the above rule are :
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causal_connection(E,HE,F,HEF) if
E flies_towards(aircraft(X),radar(R),CT) &

F=in_range(aircraft(X),radar(R),FT) &
causality_predicted(E,HE,F) &

prediction _unfalsified (E,HE,F,HEF) .

causaliryj,redicted(E,HE,F,HEF) if

E flies_towards(aircraft(X),radar(R),CT) &
F=in_range(aircraft(X),radar(R),FT) &

detection_time(aircraft(X),radar(R),[E/HE],FT) ,

not member(toldtorfly_low(aircraft(X),_),HE) . .

prediction_unfalsified(E,HE,F,HEF) if

E flies_towards(aircraft(X),radar(R),CT) &

F=in_range(aircraft(X),radar(R),FT) &

not member(changes_eourse(aircraft(X),,HEF) .

detection_time(A,R,H,T) is similar to that above although its third argument is the history upto the causin g

event. Relevant information about positions and velocities can be retrieved from it.

We now show how to use causality rules to compute which events occur in a system, i .e . its history . Let

S=EO,E1,E2, . . . be a sequence of events sorted in increasing order of time-stamps . Then S is said to satisfy

causal-soundness if for each j, j�0, there exists i, i<j such that causal_ connection(Ei,HEi,Ej,HEiEj) holds ,
where HEi is the sequence EO, . .,Ei-1 and HEiEj is the sequence Ei+1 , . .,Ej-1 . Note that the initial event E O

is exempt from requiring a cause . Intuitively, a sequence is causally-sound if every event in it, except the
first one, has a cause in it. Causal-soundness is similar to weak-causality property of de Kleer & Brown .

Let S=EO,E1,E2, . . . be a sequence of events sorted in increasing order of time-stamps . Then S is said to
satisfy causal-completeness if for each i, j, if there is an event G such that
causal_ connection(Ei,HEi,G,HEiEj) then G also appears in S, where HEi is the sequence EO, . .,Ei-1 and
HEiEj is the sequence Ei+1, . .,Ej-1 . Intuitively, a sequence is causally-complete if it contains all the event s

whose occurrence is required by the occurrence of the initial event and the causality rules .

Let EO be a special initial event for the system . Assume that EO has occurred. A history of the system i s
defined to be a sequence of events starting at EO which is both causally-sound and causally-complete.
Intuitively, it contains all of the events whose occurrence is required by the occurrence of the initial event
and the causality rules, and only these events . It can be shown that there is exactly one history in which

each event possesses a distinct time-stamp . It can represent the history of a non-concurrent system .

To compute a history, let the initial event EO occur. Suppose the history HF=EO,E1, . .,Em till a certai n
point of time has been computed. We need to compute the next event Em+l . Let Sm=[F1,F2, . . .) be the
set of events where for each Fi, there exists an Ei such that causal_connection(Ei,HEi,Fi,HEiFi) holds ,
where HEi is the sequence E0,E1, . .,Ei-1 and HEiFi is the sequence Ei+1, . .,Em . Then, as the history mus t
be causally-complete, the next event, Em+1 must be the event in Sm with the least time-stamp . If Em+ 1

cannot be computed the algorithm halts . As there may be more than one event in Sm with least time-stam p

the algorithm is non-deterministic . A different history would be computed for each choice of Em+ 1

signifying that the system is concurrent.
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