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Abstract

In this paper, we describe stratification, a new method of reasoning about discon-
tinuous change . In stratification, we make use of a . family of more detailed model s
with a control parameter and predict the outcome of discontinuous change by in-
vestigating and summarizing the behavior of a detailed version of a given model
in an extreme. Stratification consists of four techniques of : (a) recognizing quali-
tatively different region in phase portrait when the value of the control paramete r
becomes sufficiently small or large, (b) malting transition analysis between recog-
nized regions, (c) extending a history of a trajectory to the past and the future,
and (d) abstracting the result by elminating those states which persist only for in-
finitesimal period of time . Stratification serves as an accurate method of analyzin g
discontinuous behaviors without sacrificing the efficiency .
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Toyoaki Nishida and Shuji Doshita
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1 introduction
Notion of discontinuous change is important in characterizing behaviors of dynamical sys -
tems from an abstract point of view . In a previous paper [6], we studied a couple of meth-
ods of analyzing discontinuous changes caused by piecewise linear differential equations .
One, called the direct method, is make use of heuristic rules for predicting occurence an d
outcome of discontinuous change . The other is called the approximation method whic h
handles discontinuous changes as if they were very rapid continuous changes . The forme r
was preferred because the expected amount of computation was less than the latter an d
no detailed model is required for prediction . The former method was implemented and
worked well for many cases .

However, there does exist an example for which the direct method fails . This is due
to the lack of information for predicting the outcome of discontinuous change . Compelet e
analysis is not possible for such cases unless more information is provided from mor e
detailed model .

In this paper, we explore stratification, a technique of predicting the outcome of dis-
continuous change by investigating and summarizing the behavior of a detailed version o f
a given model in an extreme . Like the approximation method, the stratification techniqu e
presumes the use of detailed models . This makes the internal structure of discontinuou s
change visible, resulting in more accurate prediction .

2 Stratification and Phase Space Analysi s
Like recent approaches to qualitative reasoning, stratification is based on phase space anal -
ysis . Mathematical theory of phase space analysis is dynamical systems theory, which i s
usually referred to as a "qualitative theory of ordinary differential equations" [3] . Dynam-
ical system theories derive qualitative properties of dynamical systems by investigatin g
geometric features of phase portrait . In qualitative reasoning, such approach enables t o
take into account the consistency of overall phase portrait, contributing to suppressing
spurious behaviors which are hard to eliminate in conventional frameworks .

2 .1 Phase Space Analysis
Dynamical system theories use the notion of phase space, the Cartesian product of state
variables, and identify a state of a system of differential equations with a point in th e
phase space .

A system of differential equaions defines a vector field on the phase space, specifying
how the state should evolve at each point . A trajectory is a trace of a state change over
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time, and it can be viewed as a geometric representation of a solution to the differentia l
equations defining the vector field . In fact, there are obvious correspondence betwee n
geometric properties of trajectories and dynamic properties of solution . For example ,
a closed trajectory corresponds to a repeated behavior of the system, a fixed point a n
equilibrium, an attractor a stable oscillation exhibited after sufficiently long elapse of time ,
etc . Thus, we can study geometric properties of phase portrait, a collection of trajectories ,
to capture of dynamic properties of differential equations . This is the approach taken by
dynamical system theories .

A couple of important properties of phase portrait are the non-intersection of differen t
trajectory and no branching of any single trajectory . Both of them are derived from the
uniqueness of solution of differential equations . Struss [10] and Lee and Kuipers [5] mad e
use of these properties to tame spurious behaviors predicted by QSIM [4] .

2 .2 Modeling Discontinuous Change in Phase Portrait s
The most straightforward way to introduce discontinuous change in phase space base d
approach is to allow discontinuous change to occur in phase space . However, this implie s
that we have to abandon the advantages of strong constraints of phase portraits and henc e
it is not attractive .

Alternatively, we take an approach of making use of a family of more detailed model s
with a control parameter .' The family of more detailed models are chosen so that dis-
continuous changes of the original model may be approximated in each model as contin-
uous change, and the degree of accuracy increases as the value of the control parameter
is decreased.' Stratification is a technique of reasoning about discontinuous change b y
predicting and summarizing what will happen to the phase portrait when the contro l
parameter becomes extremely small .

Before going into the stratification technique, we point out that our approach is a t
least feasible in the sense that we can actually obtain a family of more detailed model s
in most circumstances, by taking into account time delay that has been neglected in les s
detailed models [7] .

However, this might introduce new kind of indeterminacy, since it means the intro-
duction of one or more new state variable, which in turn means the increase in dimension
of phase space . '

This criticism does not apply to stratification, since stratification is in fact a techniqu e
for reducing the dimension before behavior is predicted .

3 The Idea behind Stratificatio n
Stratification makes use of an interesting property that can be oberved when one makes
the value of a parameter smaller and smaller .

'For simplicity of discussion, we assume the control parameter to be zero or positive in this paper . Of
course, this is not an essential limitation . In actual implementation, we do not pose such constraint .

2Again, this is only for simplicity of discussion ; actual implementation does not impose such constraint .
'This is similar to the problem pointed out by de Kleer as a side effect of the "push-a-level" approach

(1]•
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Figure 1 : Phase Portraits of the Equations (1) with Different Value of the Control Pa-
rameter e

Consider the following family of equations with a positive parameter e :

I
y= (—y3+y—x)l

e
x=y where, & - da/dt (1 )

With each e, we have specific differential equations . What will happen if we make e
sufficently small? Figure 1 demonstrates several results of numerical simulation . As
e becomes smaller, the whole phase space is divided into several qualitatively differen t
regions. In some region such as Al, the flow becomes so fast that the transition of th e
area becomes almost instantaneous, while in some other region such as A2 the flow is no t
heavily affected by the change of the control parameter and is moderate in speed .

The region of slow flow becomes smaller as the value of the control parameter is mad e
smaller . In two dimensional case, the slow region converges to a thin line, and in three
dimensional case, the slow region comes to form a thin plane, "a stratus" . 4 Although
all of these are visible and understandable to humans, it is not so trivial for programs .
Stratification is a technique which enables programs to understand what is going on in
the phase space if the control parameter is exaggerated . As shown below, stratificatio n
is a symbolic technique rather than numerical . Thus, the result of stratification is not
affected by numerical errors . This is mainly because reasoning about limit is rather a
matter of logical inference .

4 Stratification Technique s
Stratification consists of four techniques :

1. a technique of recognizing qualitatively different regions in a phase portrait whe n
the value of the control parameter becomes sufficiently small

2. transition analysis between recognized region s

3. trajectory tracking which extends a history of a trajectory to the past and the futur e

'This is the origin where the terminology stratification comes from .
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Figure 2: Division of the Phase Spac e

4. abstraction technique which will elminate those states which persist only for in-
finitesimal period of time

In what follows, we concentrate on a limited version of stratification which applies t o
piecewise linear differential equations . By this convention, we can temporalily step asid e
from the problem of devising symbolic representations for general geometric opbjects ,
which is really a hard issue and seems almost impossible [2] .

We use the following piecewise linear approximation of Van der Pol's equation a s
example :

1/2<y{ =
y

2y+2—x)/E

-1/2 < y < 1/2 { y _ (2y — x)/e

	

(2)

y<—1/2y

	

2y—2—x)/e

The phase space for this equation is two dimensional . We discuss stratification resulting
from making the free parameter e approach to zero .

4 .1 Recognizing Qualitatively Different Regions
The first stage is to divide the phase space by order of magnitude of vectors. The region s
in which order of magnitude of vectors is very small, medium, and very large are called
slow, moderate, and fast regions, respectively . Figure 2 shows how the phase space fo r
(2) should be divided . Signs e, M, and oo associated with each region represent slow,
moderate, and fast regions, respectively . Note that unlike conventional boundary-base d
approaches, the boundaries between those regions are vague, for the distinction in orde r
of magnitude is not a matter of quantitative difference . In figure 2, we used thick an d
broken lines to draw exact and broken boundaries, respectively .

Some regions gradually reduce in dimension and become almost n — 1 dimensional
regions, as the value of the control parameter is decreased . For example, the two dimen-
sional region A2 becomes thinner as e approaches to zero . Formally, we call a regions
a stratus if the region becomes arbitrarily thin as the control parameter becomes small ,
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and the region does not contain any zero vector, and some flow is oriented in parallel t o
the longer boundaries of the region . For example, the phase portrait shown in figure 2
contains two strata, A2 and C2, which can be recognized in this stage . We will refer t o
the flow in a stratus as a stratified flow .

In order to compute the order of magnitude of each vector, we use conventional sym-
bolic formula manipulation methods, though sometimes it is possible to obtain an answe r
solely by symbolic manipulation .

As a result of phase space division, each region is represented symbolically as a set o f
attribute-value pairs. For example, regions A2 and A3 are represented as follows:

region A2 : type : stratus
characterization :

adjacent-regions :

(3)
[—2y + 2 — x] = —E

	

+E

[y—1/2]=+e

	

+oo
A3 : [—2y + 2 — x]

	

— M
Al : [—2y + 2 — x] J' +M
B6 : [y — 1/2] \ 0

flow-vectors : [i] = + M, [y] = —M ti + M
flow-rate : moderate

region A3 : type : 2-dimensional open region

	

(4)
characterization : [—2y + 2 — x] = —oo ti — M

[y—1/2]=+e +oo
adjacent-regions : A2 : [—2y + 2 — x] J' — E

B7 : [y — 1/2] \ 0
flow-vectors : [i] = +M, [y] = —oo
flow-rate : fast

The characterization attribute specifies the region as a set of linear equations and inequali -
ties . The adjacent-region attribute indicates adjacent regions immediately accessible fro m
the current region, together with conditions of the transition .

4 .2 Transition Analysis
The purpose of transition analysis is to enumarate possible fragments of trajectories b y
considering possible state transitions in each region . This is done based on local informa-
tion. When possible, we use quantitative information specifying the orientation of vector s
or boundaries to make prediction precise .

Several rules for transition analysis, partly shown below, refer to order of magnitud e
information, contributing to further resolving ambiguity. For example ,

Rule 1 Each component of a vector should change smoothly in transition .

By "smooth change" we mean that order of magnitude should change to an adjacent leve l
at a transition. For example, a state is allowed to directly transition from a fast regio n
to a moderate region, while it is not so to a slow region .
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Figure 4 : The Result of Transition Analysis for our Exampl e

Rule 2 If a vector field is fast and does not allow vectors of all orientations ,
then the state will transition to one of adjacent regions in a n

infinitesimal period of time .

Rule 3 At boudaries between a fast region and a moderate region, the orientatio n
of trajectories is governed by that of vectors in the fast region .

Figure 3 how they work for our example . Of nine possible fragments of trajectories, fou r
fragments d, e, h and i are eliminated due to rule 3, and f and g are eliminated due t o
rule 2 . As a result, we have only three fragments left . Figure 4 shows portion of th e
result of transition analysis for our example .

4 .3 Trajectory Tracking
This stage connects fragments of trajectories, extends them to the "past" and "future" ,
identifies their type, and enumerates types of trajectories with qualitatively different na-
ture. Global constraints such as non-intersection constraints [5,10] are taken into accoun t
to eliminate spurious transitions .

Two issues are crucial here : use of properties of stratified flows, and subdivision and
merge of regions . For convenience of further reference, we first show the result of trajector y
tracking in figure 5 . Though we mainly refer to the utility of topological information
below, we equally keep track of metric information in trajectory tracking . In particular ,
left-right relation of two trajectories is important, since it remains invariant in region s

Figure 3 : Effects of Rules that Make Use of Order of Magnitude Informatio n
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Figure 5 : Result of Trajectory Trackin g

where the orientation of vector is uniform. For example, we predict that trajectory a run s
in the left side of trajectory e after they first meet together at stratus A2 .

4 .3.1 Stratified Flow and its Propertie s

It is important to grasp the behavior of trajectories before and after long enough perio d
in time . Let us introduce the notion of a limit set . Given a trajectory T, let L c, and L,
be sets of points to which T can approach arbitrarily near when t becomes —oo and oo ,
respectively. L c, and L c , are called a a limit set and w limit set, respectively. (see chapter
9 and 11 of [3] for more formal formulation .) We classify trajectories into four categorie s
by whether or not their L e, and are bounded. We indicate the category by placing a
prefix consisting of two characters : each is either u (for unbounded) and b (for bounded) ,
and the first character is for L c, and the second for

	

For example, trajectories wit h
bounded L Q and unbounded are called bu-trajectories. A closed orbit forms a specia l
subcategory in bb-trajectories ; a trajectory itself, and its La and L,, concord to eac h
other .

It is also useful to introduce the notions of positively and negatively invariant sets in
phase space. Set P of points in a phase space is positively invariant if a half trajector y
starting from starting from any point in P is totally contained in P . Negative invarian t
set is defined similarly, except that a half trajectory coming to the point is argued . The
following theorem is important :

Theorem 1 A non-empty compact set which is either negatively or positively invarian t
contains in it either an equilibrium point or a limit cycle. . . . derived from Poincare-
Bendixon's theorem (see chapter 11 of [3] )

The stratus plays an important role in identifying the type of trajectories . The fol-
lowing rule is useful in determining the type of trajectories, though its applicability i s
limited :

Rule 4 if the phase space is two dimensiona l
and a trajectory enters a stratus more than onc e
then the trajectory is not of uu category .

Roughly speaking, validity of this rule follows from theorem 1 plus the following argu-
ment : if a trajectory enters the same stratus twice, then it is either the case that (al )
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there exists a positively invariant set P surrounded by the edge of the stratus and the
fragement of the trajectory, each of which is delimited by the two entrances, and (a2)
the trajectory enters P, or that (bl) there exists a negatively invariant set N surrounded
by the local section of the stratus and the fragement of the trajectory, each of which i s
delimited by the two entrances, and (b2) the trajectory has exited from N.

We can identify the category more precisely using the following rule :

Rule 5 if the phase space is two dimensiona l
and a trajectory enters a stratus in which it entered previousl y
and the flow is oriented towards the area surrounded by the the loca l

section of the stratus and the fragement of the trajectory, each o f
which is delimited by the two entrance s

then the trajectory is of either bb or ub category .

Similar rule exists for the remaining case . These rules have enabled to conclude that
trajectories a to f in figure 5 are either of bb or ub category .

The following rule is useful in finding peculiar trajectories .

Rule 6 if the phase space is two dimensiona l
and the orientation of flow at the two opposit boundaries is in
then there exists a trajectory in parallel to the stratus ; if the stratus is

infinitely long, the correspoding end of the trajectory is unbounded .

This rule has allowed to find trajectories c and f in figure 5 . The following rule is a direc t
conclusion of Poincare-Bendixson's theorem .

Rule 7 if a non-empty limit set S in two-dimensional phase space of C l does
not contain any equilibrium poin t

then S is a closed orbi t
This rule is powerful enough to enable to find a closed orbit g in figure 5 .

4.3 .2 Subdivision and Merge of Region s

In the course of trajectory tracking, we subdivide those regions which have more than on e
region as a destination of immediate transition . Since unmotivated forward applicatio n
of subdivision may create endless loop of subdivision, we do it only when it is necessary .
One important case is when a flow in parallel to the stratus enters a fast region, for suc h
a flow usually forms a stratified flow in the fast region, too . Thus, we identify a stratified
flow in regions B1 and B7 in figure 2, resulting from outflow from regions A2 and C2 ,
respectively. As a result, regions B1 and B7 each are divided into three .

On the contrary, any adjacent regions with the same characteristic on vector ar e
merged into one. As to our example, A3 and one of subdivided region of B7 are merged ,
since vectors in both of these regions are characterized as (+e, —co) by its component .

4 .4 Abstration
In the abstraction stage, we neglect regions where trajectories stay only for an infinitesimal
period. Figure 6 illustrates the final result of stratification applied to our example . This
allows us to capture the internal structure of discontinuous changes rather concisely .
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Figure 6 : Result of Abstraction

5 Extension to General Cases
In the previous section, we presented a limited version of stratification by concentrating
on two-dimensional phase portraits for piecewise linear approximations . In fact, these
two limitations are very useful to make the problem tractable .

The first limitation does not seem hard to remove, whereas it is harder to remove the
second . The key to the solution seems to be development of powerful representation o f
spatial concepts and classification of shape of trajectories on the representation .

6 Related Wor k
This work was inspired by a number of predecessors in qualitative reasoning : phase space
analysis [9,5,10,12] for the basic framework of stratification, qualitative kinematics [2] fo r
qualitative geometric analysis of space, order of magnitude reasoning and exaggeratio n
[8,11] . However, no previous work in qualitative reasoning had provided a sufficentl y
general framework of reasoning about discontinuous change. The approach presented i n
this paper is novel as a qualitative and computational bifurcation theory .

The theoretical work related to this work is dynamical systems theories [3], in particu-
lar, marvelous work by E. Zeeman [13] on modeling heart beat . This work is characterized
as an attempt to making mathematical reasoning which underlies dynamical system the-
ories computational .

7 Concluding Remarks
Stratification is a technique for reasoning about discontinuous change without payin g
much extra cost, for the stratification takes advantage of the property that each n-
dimensional stratus is almost an n—1 dimensional region . In this paper, we have describe d
computational techniques underlying stratification and demonstrated how it is applied t o
grasp dynamical behavior caused by Van der Pol's equation . Further work is remaining
as to extending the work to higher order dimensional phase spaces and general nonlinea r
problems .
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