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Abstract

Qualitative simulation is one method for reasoning with incomplete knowl -
edge about mechanisms which change in time . This work adapts that method
to reasoning about steady state mechanisms—which change continuously in
space .

Because flow-paths in mechanisms can loop and self-intersect, spatia l
behaviors show complexities that temporal behaviors do not . This paper
features two extended examples of counter-current heat exchange . Both ex-
amples involve such loops—place ; where a later flow-path segment interact s
with an earlier segment .

QSIM has been extended to simulate the behavior of these mechanisms .
The extension rules out inconsistent predictions by first assuming them, then
following them to a contradiction . The contradictions are detected as incon-
sistencies between two separate views of the behavior—one view from eac h
side of the interaction .

The two views are cast as the restrictions in a two point boundary valu e
problem. The solutions are generated by instantiating one of the boundarie s
with all possible qualitative values . The inconsistent predictions manifest a s
instantiations that have no qualitative solutions at the second boundary .

A formal definition of the process of spatial unification is given in th e
technical report . [14] This report discusses the technical issues faced an d
introduces our approach to steady state spatial reasoning .



Chapter 1

Introduction - Temporal and
Spatial Reasoning

1 .1 Qualitative Simulation
Several authors have advanced methods to do qualitative reasoning [1, 2, 4 ,
6, 7] . These methods generate descriptions of the behaviors of mechanisms ;
they are especially useful when the mechanisms cannot be described usin g
numerical or algebraic models . QsIM [8] (Qualitative Simulation) is one of
these methods; it has been the basis for the work described in this presen t
paper .

Each method for qualitative reasoning develops some qualitative model .
So far, these models have been the qualitative analogue of lumped parameter
models . In lumped parameter models, properties that are distributed in spac e
or which vary through space are represented by an aggregate scalar value —
the distributed parameter is "lumped" at a single point . Many mechanism s
show behaviors which cannot be derived from lumped parameter models (fo r
a development, see Weber [15]) . These mechanisms must be analyzed with
distributed parameter models .

This work adapts the QSIM style of Qualitative Simulation to develop a
the qualitative analogs of distributed parameter models . This is develope d
for the class of mechanisms at the steady-state . These have behaviors which
vary spatially, not temporally .
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Boundary values - QsIM is normally used to solve single point boundar y
value problems . No boundary conditions of t > 0 control the behavior . In
the major example discussed in this paper, our extension of QSIM performs
spatial reasoning as a two point boundary value problem . In these examples ,
the mechanisms' boundary values are separated spatially.

Quantitative analysis has methods for addressing two point boundar y
value problems . When these problems cannot be solved analytically, the y
can be approximately solved iteratively.

This present work gives a qualitative analog to this method . The simula-
tion is not iterative . Rather, the entire range of qualitative values is assumed ,
and the qualitatively incorrect values are eliminated by contradictions .

Looped Mechanisms - Because flow-paths in mechanisms can loop and
self-intersect, spatial behaviors show complexities that temporal behaviors d o
not . Oyeleye and Kramer [9, 10] discuss how mechanisms with loops in th e
flow paths (including mechanisms with feedback control, recycle streams,
and streams which interact multiple times) present difficulties for purel y
qualitative analysis . The qualitative simulations tend to display an untame d
branching .

The major example of this paper presents a looped mechanism, wher e
the geometry of a stream's flow-path causes a later part of its behavior t o
affect an earlier part . The method of spatial unification is used to tame the
branching of the behaviors.

1 .1 .1 QSIM Terminology
Within a qualitative simulation, a behavior is represented as a successio n
of states ; the states alternate between time-points and time-intervals . In
each state the parameters of the mechanism are assigned qualitative values
(qval s) . A qval is a (qualitative magnitude / qualitative direction) pair . A
qualitative magnitude is either a point value (a landmark) or an open interva l
between a pair of landmarks . The qvals must be consistent with the state' s
constraints and the constraints' corresponding values (CVs) . The qualitative
directions of change (qdir s) may be increasing (INC), decreasing (DEC), or
steady (sTD) . For a complete development, see Kuipers .[8][3 ]

A QSIM model represents a mechanism as a data structure, or set of struc-

2



tures, called REGIONs, l Mechanisms that display multiple operating region s
are characterized by a different set of constraints in each REGION .

The notation and terminology of this report follow that of Kuipers' Qual-
itative Simulation[8] . Some familiarity with the QSIM program (as described
in [3]) is assumed. QSIM is implemented in LISP; some LISP terminology i s
used [11] .

1 .1 .2 Continuous Variables and Lumped Parameter s

The parameters in QSIM models are lumped parameters . That is, parame-
ters are represented as a single scalar quantity . Qualitative simulation cannot
simulate a distributed parameter, such as how the pressure profile (the con-
tinuous set of values for pressure from the bottom to the top of the tank)
changes over time .

QSIM is the qualitative analog of the calculus of ordinary differentia l
equations (ODE) . No complete qualitative version of the partial differentia l
calculus is yet available . A full qualitative version of the partial differentia l
calculus would allow us to reason about mechanisms that change in both
space and time . This report considers a more restricted class—steady stat e
mechanisms. These mechanisms, which are constant in time, have behavior s
which evolve spatially ; they vary from one place to another .

1 .2 Adapting Temporal Reasoning t o
Spatial Relations

Qualitative simulation of temporally changing mechanisms serves as a basi s
for reasoning about steady state mechanisms.

1 .2 .1 The Steady State
We have special knowledge of steady state mechanisms because they do no t
vary in time. Steady states mechanisms are constrained in ways that chang-
ing mechanisms are not . Net forces on elements are zero . Combined flows

'similar to QDEs in [8]
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at junctions net to zero. The temperature profile along a path is continuous .
These properties are not guaranteed in mechanisms that change with time .

The behavior of a steady state mechanism is the succession of qualita-
tive states encountered moving along a linear path through the mechanism .
Section 2 examines how the geometry of the path places additional types of
constraints on the behaviors .

1 .3 Some Simple Example s
For the first two examples, only minor changes were introduced into QSIM .

We introduce the D/DX constraint . This constraint imposes the same condi-
tions on state transitions as does D/DT; it just has a different interpretation .
The interpretation of the QSIM output changed—the generated behavior s
represent spatial sequences, not temporal ones .

1 .3 .1 The Garden Hose : Reasoning in
Either Direction

Figure 1 .1 shows water spewing from a hose, pointed upwards and to the
right . The nozzle and water pressure are unchanging; the water traces a
fixed arc through the air . This is a non-quiescent steady-state . What can we
infer about the shape of the arc ?

In this case, although there is flow, the mechanism is at steady-state . We
must describe the system in spatial constraints—the derivative terms mus t
be w .r .t . X, not T.

Accordingly, we will derive the ODE w .r.t . X, which describes the mecha-
nism's steady state . We begin with the dynamic equations w .r.t . T . Adopting
the conventional XY coordinate frame and letting [term] be the sign(term) :

[dX/dT] = +

Since
[d2 X/dT2 ] = 0

	

and

	

[d2 Y/dT2 ] = —

Then
dY/dT

dY/dX = dX/dT
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Figure L1 : Water spewing from a hose, upwards and to the right .

d2Y/dX2
	 1	 (dX/dt d 2 Y/dT2) — dY/dT (d2X/dT2)

_ dX/dT

	

(dX/dT)2

	

(1 .1 )

[d2 Y/dX2] = + (+	
+2-

0
= —

	

(1 .2 )

This gives us the system-condition that CURVE (which is Y", the curva-
ture) is always negative . We initialize with Y = 0 at ground level,Xo to b e
the place where the water leaves the hose, SLOPE = + and CURVE = — . The
qdirs are found through propagation, and the simulation yields the behavio r
shown in Figure 1 .2 .

Suppose the garden hose is still spewing upwards and to the right, bu t
we where are standing, Xo, is where the water falls to the ground . We
take leftward motion to be positive, the opposite of the usual XY coordinat e
convention . Now the water has a negative dX/dT. Equation 1 .1 still holds ,
but equation 1 .2 becomes

[d2Y/dX2] = 1 (- -) — 0 =
—_ +2

Although the direction the reasoning proceeds in has changed, the sig n
of CURVE is unchanged. We again initialize at X0 with the constraints an d
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0
Structure : Stream from a garden how, rising and falling .,

Initialization: Squirt the how up and to the right (S-0 )
Behavior 1 of 1 : (S-0 S-1 S-2 S-3 S-4).
Final state : (TRANSITION Fad of Region, no transitions), (rRANSITiON-IDENRTY NIL), NIL.
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Figure 1 .2: The Hose : Flow to Right

Structure: Stream from a garden how, rising and falling .,
Initialization: Squirt the hose up and to the Left (S-0)
Behavior 1 of 1 : (S-0 S-1 S-2 S-3 S-4).
Final gam: (TRANSrIION Bid of Region, no transitions), (TRANSmON-IDENTITY NIL), NIL .
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Figure 1 .3: The Hose : Flow to Left
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deduce the same shape of the arc . Figure L3 shows the behavior—it i s
superficially the same, but note that Xo is at the right edge, and increasing
Xn 's are leftward .

Unlike temporal reasoning, which always reasons forward in time, spatia l
reasoning may start at either end of a behavior .

Reasoning can either go with the flow, or against it . This will be impor-
tant in reasoning about counter-current flow, where reasoning in the directio n
of the flow of one stream is, of necessity, against the flow of the other .
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Chapter 2

The Need to Unify Multipl e
Views of a Stat e

In spatial reasoning, a mechanism may have a stream which loops around o r
is recycled. The same stream parameter, (e .g . temperature) is then present
twice in the same place . Changes in the the parameter later affect the pa-
rameter's value earlier. This does not arise in temporal reasoning .

2.1 Example : A Bird's Foot
The next example is of the heat exchange in a bird's leg and foot . Consider
the circulation of blood in the foot of a bird perched on a cold wire .

The blood is circulating in the body (BODY1) at the body temperature
HSOURCE. The blood is cooled in OUTBOUND, cooled further in FOOT, re-
heated in INBOUND before returning to the body in BODY2 .

Figure 2 .1 shows its qualitatively distinct regions of the Bird's Foot ex -
ample .

2 .1 .1 Goals for the Qualitative Simulatio n

When reasoning about this mechanism, we do not know the actual values fo r
the heat-transfer coefficients, either between the bloodstreams nor betwee n
the blood and the outside. We do not know the heat-capacities and we ma y
not be able to assume that they are constant over the temperature range .

8



We cannot then reason quantitatively about this mechanism . Still, we would
like to be able to draw certain conclusions about this mechanism —

• The blood can never return to the leg warmer than it left .

• The blood can never be chilled below the outside temperature .

• The blood in the inbound stream can never be warmer than the blood
immediately opposite it in the outbound stream .

• The mechanism may exhibit crossover. That is, the blood in the in-
bound stream may be warmer at the top of the leg than the outbound
stream is at the bottom of the leg .

2 .2 The Strategy for Finding Consistent
Steady-State Behaviors

The CFILTER algorithm (within QSIM) finds the consistent continuations of
a behavior by

• generating all legal continuations of each parameter ,

• generating all possible combinations of parameter values, (the tuples)

• filtering tuples which are inconsistent with the qualitative constraint s
or with other tests (tests for analytic functions, no-change and so on) ,

• instantiating these tuples as states, and

• using further tests to filter states that are inconsistent or have no con-
tinuation .

The strategy for finding consistent spatial behaviors is similar . At the
beginning of the the OUTBOUND region, the temperature in the outboun d
stream, TEMP, is IISOURCE, the value inherited from the first region . The
inbound temperature FACING-TEMP, is not known . FACING-TEMP is instan-
tiated at all possible qualitative values . A state is created corresponding t o
each of these values (with the values for all of the other parameters followin g
from the values for TEMP and FACING-TEMP) .

9
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Figure 2 .1 : Qualitatively Distinct Regions of the Bird's Foot Exampl e
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Unify Inbound
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Figure 2 .2: The Growth and Pruning of the Behavior Tree

Once the relative positions of TEMP and FACING-TEMP are chosen, the
values and directions for the other variables are found using the CFILTER
algorithm and the constraints of the model .

These are the initial states in the region . Each state spawns a tree o f
behaviors . These behaviors reach the end of the OUTBOUND region and
continue into the FOOT region . At the end of the FOOT region, an attempt
is made to continue each behavior into the INBOUND region. At this point ,
the continuation into the INBOUND region must unify with the behavior that
was tracked in the OUTBOUND region. Figure 2 .2 is a sketch of the growth
and pruning of the tree of behaviors .

2 .2 .1 Spatial Unificatio n

The behavior of a steady state mechanism is the succession of qualitativ e
states encountered moving along a linear, although not necessarily straight,
path through the mechanism . If the path twists back on itself, the behavio r
will visit the same physical place in multiple states . These states will not ,
generally, be .adjacent in the behavior .

Any pair of such states gives two views of the same place. These two
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Figure 2 .3: The Path a Behavior Takes May Intersect Itsel f

views are of the same parameters, they must be reconciliable . If the views
are not reconciliable, the states are inconsistent, and no consistent behavio r
can contain both states .

Unifying Two Views of the Quantity At the point where the blood
flows from FOOT into OUTBOUND, FACING-TEMP is instantiated to severa l
qmags . Some of the initializations are impossible . Although they are locally
consistent, they not consistent with any real behavior . For instance, the
initialization where the stream returns to the body hotter than when it lef t
is not physically possible .

All possible continuations of the assumption that TEMP < FACING-TEM P
at the top of OUTBOUND lead to contradictions . Eventually, all of the possible
behaviors that are continuations of this initialization are pruned . Then ,
this initialization is itself pruned, and the system concludes that no possible
steady state behavior returns the blood to the body warmer than when i t
left

This is the style of reasoning used to find the behaviors—and to exclud e
all of the impossible behaviors . All of the possible local behaviors are in-
stantiated and explored . Those which are not globally consistent lead t o
contradictions when multiple views of a region are unified . Contradictory
behaviors are pruned, leaving the qualitatively distinct behaviors .
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Chapter 3

Reasoning about the Steady
State

3 .1 Steps in the Reasonin g
The two major examples in this paper are of counter-current exchange . In
both cases, a single liquid stream, on its way out, is meeting with itself o n
its way back in. In each mechanism, a hot, outbound segment of a strea m
exchanges with the cold, inbound segment .

There are two viewpoints of such a counter-current exchange . From the
hot side, both segments are warming ; from the cold, both are cooling .

The hot, outbound liquid is chilling as it moves forward . From its view -
point, the cold liquid is also chilling—that is, the farther the outbound liqui d
gets from its origin, the colder is the inbound liquid which it faces . Contra-
wise, the cold inbound liquid is warming as it goes forward, and from it s
viewpoint, the hot, outbound liquid is also warming .

These two distinct views result from having two different view of th e
forward direction—one towards one end of the mechanism, one towards th e
other. But these are two views are of the same system, and the views mus t
be reconciliable. After all, from an outside viewpoint, the mechanism i s
at steady state—the temperature at any single point in the mechanism i s
constant over time and there is no warming nor cooling trend .

13



3 .1 .1 Generating the Correct Behaviors

This work's simulation and analysis of steady-state mechanisms depends cru-
cially upon generating these multiple views, and on reconciling them .

Section 2 .1 .1 states several desirable conclusions about the behavior o f
the Bird's Foot . These conclusions will be reached by

• generating all of the qualitatively distinct, consistent steady-state pro-
files of the mechanism; and

• showing that all the behaviors are consistent with those conclusions .

For each behavior generated, two different views of the leg will be gener-
ated, one each for the INBOUND and OUTBOUND views .

3 .1 .2 Initialization
The simulation begins in the BODY1 region, with the TEMP of the blood the
body temperature . The blood remains at the body temperature as it passe s
into OUTBOUND . The temperature of the inbound blood, FACING-TEMP i s
at some temperature, unknown as yet .

Because FACING-TEMP is unknown, it could be at any place in the qual-
itative temperature space . This gives seven possible qualitative magnitudes :

• at freezing ,

• between freezing and the outside temperature ,

• at the outside temperature ,

• between the outside temperature and the body temperature ,

• at the body temperature ,

• between the body temperature and infinity, an d

• at infinity.

Each of these values for FACING-TEMP leads to a possible continuation
of the behavior . The behavior branches seven ways, and continuations are
generated.

14
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(A) Continuation of Inconsistant Behavior into Outbound (B) Continuation of Inconsistant Behavior into Foo t

Figure 3 .1 : A Continuation of an Inconsistent Behavior in OUTBOUN D

3 .1 .3 Continuation and Transition
Each behavior is continued, moving outward along the leg . Two of the initial-
izations have no continuations . Neither of the initializations where FACING-

TEMP was at infinity and increasing, or at freezing and decreasing, hav e
continuations. They are pruned immediately.

Eventually, all behaviors are either pruned, or they reach the region tran-
sition at the end of OUTBOUND and continue into FOOT. Again, each behavior
is continued in the normal way, until it is pruned or reaches the end of th e
FOOT region .

3 .1 .4 Using Spatial Unification to Prune Behaviors
The blood is cooled in FOOT and enters the INBOUND region . The behavior s
must now be unified spatially . Section 2 .2.1 introduced the unification and
its mathematical description. We will now consider how it applies to th e
Bird's Foot .

The point where the blood leaves the foot and enters the inbound regio n
is the first place where the behavior returns to a place it has visited earlie r
in the behavior . This is the first place where the unification is performed ,
and it is where a large number of behaviors are pruned .

Up until now, the simulation has pursued some impossible behaviors that
were locally consistent . For instance, Figure 3.1-A showed one instantiation
of FACING-TEMP where the blood's final return temperature was hotter tha n
the body temperature . This behavior was locally consistent - it had a con-
sistent continuation, where both stream were even hotter nearer to the foot .
But the simulation will find that this behavior leads to a contradiction .
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Figure 3 .1-B shows a further continuation of that behavior . The blood ,
which was heated in OUTBOUND, has been cooled back down to the bod y
temperature in FOOT.

The original assumption, that

HSOURCE < FT-1

	

(3.1 )

led, in this continuation, to the intermediate conclusion tha t

HSOURCE < T-1 < FT-1 < FT-2

	

(3.2 )

The continuation through the foot set the blood's temperature leaving th e
foot at HSOURCE . As the blood enters INBOUND the TEMP of the blood mus t
unify with the FACING-TEMP of the last state of the OUTBOUND region . This
would mean that

HSOURCE = FT- 2

But this would contradict Eq 3.2 . Therefore, this continuation is inconsistent .
It is pruned. Likewise, the other continuations through the foot, where th e
blood is cooled below HSOURCE or where it is cooled to between HSOURC E
and T-1, also fail to unify with the value for FT-2 in Equation 3 .2 . These
behaviors are also pruned . Eventually, all of the continuations that had th e
assumption of Equation 3.1 at their beginnings are pruned . This means that
there are no consistent behaviors where the blood returns to the body hotter
than HSOURCE.

Spatial unification does not have to occur after every region transition .
Unification occurs only when transitioning into a region which interacts wit h
a region through which the behavior has already passed . In the Bird's Foo t
example, this happens only at the transition from FOOT to INBOUND .
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,Chapter 4

Result s

4 .1 Results of the Bird's Foot Example
Hot crossover occurs when the hot stream is cooled to the maximum tem-
perature of the cold stream . Cold crossover occurs when the cold stream
is heated to the minimum temperature of the hot stream . Crossover occurs
only in counter-current exchange, never in co-current mechanisms . There
are five qualitatively distinct steady-state configurations of the Bird's Foot .
Figure 4.1 shows them. They differ in the way that that crossover occurs .

Cl is the configuration where the least amount of heat is recovered . The
warming in the INBOUND region never rewarms the blood to the temperatur e
at which it entered FOOT. The returning blood at the hip is cooler than th e
OUTBOUND temperature at the ankle . No crossover occurs .

In C2, the returning blood recovers just as much heat in the INBOUN D

region as it lost in FOOT . Hot crossover occurs at the bottom edge of OUT-

BOUND, and cold crossover occurs at the top edge of INBOUND .

In C3, the returning blood recovers still more heat . Both crossovers
now occur in the interior of their regions . Cold crossover is still above hot
crossover .

In C4, both crossovers occur at the same place in the leg .
In C5, hot crossover occurs above cold crossover .
Figure 4.2 shows the a screen-image of the five steady state behaviors of

the Bird's Foot mechanism generated by spatial reasoning in QSIM.

QSIM deduces these five behaviors . QSIM initially assumed all possible
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Figure 4 .1 : Five Qualitatively Distinct Behaviors of the Bird's Foo t
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behaviors as outcomes, and pruned the inconsistent ones . These five behav-
iors, then, represent all possible consistent behaviors . In section 2 .1 .1 we
listed four points that we felt a spatial reasoning program should be able to

conclude about this mechanism . We can use QsIM's simulations to answer

the four points .

• In no behavior does the blood return warmer than it left .

• Nowhere in any behavior is the blood ever chilled below the outsid e

temperature .

• Nowhere in any behavior is the blood in the INBOUND region warmer
than the blood immediately opposite in the OUTBOUND region .

• The mechanism can exhibit crossover—crossover occurs in four distinc t

ways. But there is one possible behavior in which crossover does no t
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occur .

4.2 Related Work and Conclusions
4 .2 .1 Related Work

Preceding work has represented spatial relationships as single point connec-
tions between adjacent components . DeKleer [2] and Forbus [4] demonstrat e
techniques for reasoning about fluid flowpaths .

Other work has dealt with qualitative reasoning about counter-current
flow. Oyeleye and Kramer [9] [10] develop qualitative models of counter -
current flow, focusing on methods for resolving sign ambiguities at conflu-
ences. [12] and [13] hybridize qualitative models of heat exchangers wit h
order-of-magnitude and LaPlace transform models, respectively .

Hayes [6] discusses difficulties in doing spatial reasoning with liquids .
Forbus [5] contrasts understanding liquid flows from a static viewpoint wit h
viewpoints of molecular collections of fluid . This work provides an approach
comparable to the view taken in the Wire and Garden Hose examples ; but
has not been extended to counter-current flow .

4 .2 .2 Conclusions

This present work successfully models two moderately complex examples .
This success shows that qualitative spatial reasoning is feasible . It further
shows that such reasoning is about as difficult as is temporal qualitative rea-
soning . The two are closely related ; major portions of the new techniques
necessary for this effort (including the shared quantity spaces, the multipl e
region transitions, prohibited transitions) and the new data structures nec-
essary for this effort (including especially the MECH as structure to impos e
order on the diverse QDEs) have immediate application back to tempora l
reasoning .

Qualitative reasoning is no longer limited to lumped parameter models .
Mechanisms that can only be described with distributed parameters can b e
recast in ways that existing qualitative reasoning tools can handle . This ha s
been demonstrated in mechanisms (counter-current exchangers) which loop
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back on themselves—where loops and recycle have long presented particularly
difficult problems for qualitative reasoning .

The extended QSIM program finds all of the the possible distinct qual-
itative behaviors . It rules out many inconsistent predictions by assumin g
them and following them to a contradiction . This approach is essentially an
all-paths search, with good pruning keeping the search space manageable .

Mechanisms of moderate size are fully explored in manageable amounts o f
computer time. The Flamingo Leg has ten constraints over nine parameters ,
in five regions . It builds about 5000 states to simulate ten behaviors of abou t
17 states each . It takes about 40 minutes on a Symbolics 3640 to run .

Mechanisms of moderate size are tractable to this program . This attests
to both the power of the QSIM constraint filtering and the power of spatia l
unification as a way of representing spatial knowledge .

The representation are kept tractable by detecting contradictions in th e
generated behaviors . Detecting the contradiction involves representing th e
mechanism in multiple viewpoints, and spatially unifying these views . The
spatial unification procedure is the most complex part of the reasoning . The
theoretical analysis of the unification showed many possible problems tha t
the examples did not present ; however, the procedural ability do deal with
these problems was kept in the code. This points to a larger set of flow
problems to which the current program could be profitably applied .
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