
Automated Model Switching

Daniel S . Weld

Technical Report 89-08-0 1
Draft of August 6, 198 9

Department of Computer Science and Engineerin g
University of Washington

Seattle, WA 98195

ABSTRACT

Although computers are widely used to simulate complex physical systems ,
crafting the underlying models that enable computer analysis remains a difficult
job with only a small number of computer tools for support . When a model is
created for one task, it is often difficult to reuse the model for another purpos e
because each analytic task requires a different set of simplifying assumptions .
Through the use of explicit representation of modeling assumptions and qual-
itative reasoning techniques, we are developing a theory of automated mode l
selection and validation and have partially implemented the ideas in the SAM
system .
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1 Introductio n
Although the bulk of work in model-based reasoning has focussed on problems
of analysis in the framework of a single model, we believe that no single mode l
can be adequate for a wide range of tasks . This observation applies as much to
people as intelligent machines: large, monolithic models are as inconvenient for
human experts as they are intractable for computers . Imagine trying to diagnose
a misbehaving automobile with a single, flat, molecular-level description of th e
whole system. Quantum mechanics may be the right level to reason about bond
angle in impure hydrocarbon fuels, but it does not provide a useful model o f
the pistons, spark plugs, or transmissions .

To achieve robust performance when reasoning about complex systems, ana-
lytic programs must do what human experts do : switch between models, dynam-
ically choosing perspectives and simplifying assumptions that are appropriat e
to the task at hand . Just as a human engineer disregards details of the differ-
ential gears when diagnosing a leaking coolant system, model-based reasonin g
systems must be able to choose the right level of abstraction for a model before
undertaking analysis . But different assumptions are warranted depending o n
the analytic question being answered . A reasoner must simplify but not over -
simplify. A program that uses multiple models should validate its choice in th e
context of the problem at hand . Thus the critical step is enabling the progra m
to reason explicitly about modeling assumptions .

1 .1 Three Phases of Reasoning

We have developed an extended framework of computer analysis that is com-
posed of three phases: choice of a model, problem solving in that model, an d
validation that the model is appropriate . If validation instead shows that th e
model was an inappropriate choice then a new model must be selected . The
bulk of our work involves a novel technique for performing this model switch :
generate and test using inter-model comparative analysis .

At present we assume that domain dependent heuristics are used for th e
initial choice of model . We further assume that once a model has been selected ,
the problem solving or analysis performed is quantitative in nature . In this
paper, we consider behavioral prediction (i .e ., numerical simulation) as the sole
type of analysis . (Our model switching technique, however, is qualitative . )

1 .2 Validation

We assume that model validation is achieved through a combination of interna l
consistency rules and direct observation .

Internal consistency checks are the prefered method for validation . They
consist simply of rules associated with a set of assumptions (equivalentl y
with the corresponding set of models) . After quantitative analysis, th e
rules are run to check consistency . If a rule detects a contradiction, the
rule is responsible for specifying which assumption has been violated . Rea-
soning then switches to a model without that assumption . For example ,
suppose a Newtonian model is used to solve a question about a collison be-
tween several particles . Afterwards, a rule could check a simulation trace
to see if any velocity approached the speed of light . If a high velocity wer e
detected, reasoning would switch to a relativistic model .
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• Direct observation, comparing the values predicted with those actually
measured, is the only verification mechanism that approaches complete-
ness. If a measurement differs significantly' from the value predicted, a
DISCREPANCY results . Of course, no finite set of discrepancy-free measure-
ments can guarantee validity, but the probability of error can be lowere d
asymptotically close to zero .

Although internal consistency checks have many advantages (speed, simplic -
ity, and the ability to specify a corrective model), they have two problems a s
well . First, for the same reason that physical systems have no perfect model, i t
is impo. ,ible to generate a complete set of consistency checks . Second, they ar e
domain dependent so the burden is on a human modeler to provide a compre-
hensive set of rules .

To guarantee robust performance, an automated reasoner can not rely ex-
clusively on consistency checks . Direct observation must also be used, but thi s
raises the problem of model switching . Direct observations can provide dis-
crepancies, but it does not dictate which model will alleviate the problem . This
paper addresses that task: given a discrepancy, choose a model that will produc e
predictions in closer accordance .

1 .3 Model Switching

We present a simple, domain-independent algorithm for discrepancy-driven model
switching: generate and test . Our program is given a GRAPH OF MODELS (GoM )
[16, 13, 2, 2], i .e . a directed graph in which nodes represent models of the sys-
tem at hand and edges connecting nodes are labeled with the set of simplifyin g
assumptions that distinguish the two models . The G&T generator suggest s
all neigboring models in the GoM that eliminate at least one assumption held
by the current model . The testor determines whether a candidate model ca n
account for the discrepancy . If it can, then reasoning switches to the new model.

One can imagine a variety of testor algorithms, but the weakness of the
generate and test strategy requires that the testor be very efficient . This paper
shows how a qualitative reasoning technique, inter-model comparative analysis ,
can be used to screen candidate models .

Inter-model comparative analysis provides a qualitative answer to the ques-
tion "What will be the effect on behavior of switching from one model of a
system to another? " In general, inter-model comparative analysis is a very dif-
ficult problem, but in many cases it can be done efficiently . In particular, this
paper shows that if the relationship between the two models can be formalized
as an APPROXIMATION then the problem of inter-model comparative analysi s
reduces to that of intra-model comparative analysis . This means that the well -
studied techniques of DQ analysis [24, 23] and exaggeration [27, 25] can b e
applied .

1 .4 Approximations

Thus, the central idea of this paper is that of an approximation . The basic
idea is that a simple model approximates a more complex model if the comple x

' An appropriate definition of `significantly' is an interesting problem . Acceptable error is a
function both of the reliability of the measuring technology and of the task under consideratio n
(i .e . what are the consequences of an error) .
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model has a parameter, called a FITTING PARAMETER, such that the quantita-
tive behaviors predicted by the two models get arbitrarily close as the fitting
parameter goes to a limit .

For example, consider the domain of simple mechanical devices . Suppose
that the simple model is frictionless and the complex model represents frictio n
as the product of i,iie normal force times a coefficient of friction U . In this case ,
the simple model approximates the complex model with fitting parameter U —
as the coefficient of friction tends towards zero, the behaviors predicted by the
two models converge .

Figure 1 : Two unequal weights hung over a pulley .

A more complex example results from figure 1 . Many simplifying assump-
tions are possible, three of which are : massless pulley, massless rope, stretch les s
rope . Adopting the first assumption results in a model that approximate a
model in which pulley-mass is represented ; the fitting parameter is the mass o f
the pulley . The last assumption can also be seen as an approximation . Con-
sider the model of an elastic rope which represents the rope as a spring obeyin g
IIooke's law : F = —KX . Increasing the value of K results in a stiffer (les s
elastic) rope . And as K goes to infinity, the behaviors predicted by the tw o
models converge . The next section shows how our implementation, SAM, wil l
reason about this system .

1 .5 Scenari o

Suppose that SAM were directed to simulate the simple system shown in figure 1 .
At time zero the blocks are released, and the objective is to predict the velocitie s
of the two blocks when block X hits the table . Figure 2 shows the GoM generate d
by the three independent assumptions mentioned above : I means inelastic rope ,
R means massless rope, and P means massless pulley .

Without domain-specific rules to the contrary, SAM chooses the simples t
model (i .e ., {IRP}) for reasoning . Using quantitative data and an ODE de-
scription of the system, suppose that SAM 's numerical simulation routines pre-
dict the values Sr and Sy for the speed of the two blocks respectively. 2 SAM

2 For expositional simplicity, we consider speed, not velocity.
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Figure 2 : GoM for pulley system . For simplicity, only edges corresponding t o
changes in a single assumption are shown .

verifies the predictions by direct observation and finds a discrepancy : both X
and Y are predicted to be moving too quickly .

The model-switching generator suggests (blindly) that perhaps the prob-
lem could be corrected by considering stretch in the rope . The testor prepares
to perform inter-model comparative analysis to determine the chance in pre-
dicted velocities between models {IRP} and {RP}. Since the former model
approximates the latter, intra-model comparative analysis can be performed us-
ing spring constant K as a fitting parameter . DQ analysis is used to determine
the effect of a more elastic spring K4 0 and it is discovered that Sxfr1 and Sy4 j
because the extra stretch in the rope affects the two velocities differently .

Suppose the (stupid) generator next suggests retracting the assumption o f
massless rope. The testor performs inter-model comparative analysis on th e
switch from {IRP} to {IP} . Again, this is an approximation reformulation ,
so intra-model comparative analysis can be performed using the rope mass a s
a fitting parameter. DQ analysis determines that the result is Sxf'1 and Sj 1
because the extra length of (heavy) rope on the left happens to accentuate th e
difference in weight between X and Y .

Now the generator suggests retracting the assumption that the pulley is
massless . Inter-model comparative analysis on the {IRP} to {IR} switch is
done by DQ analysis of an increase in pulley mass in the {IR} model . The
results, SV .J. 1 and S !/ Th. match the discrepancy so quantitative reasoning resume s
in the {IR} model . This time the predictions of numerical simulation are within
tolerance, so SAM is confident of this model for similar problems in the future .

Note that SAM performs intra-model comparative analysis on a single fittin g
parameter solely for search control reasons. The theory allows for the retractio n
of multiple assumptions by simply composing the initial perturbations .

1 .6 Roadmap

The next section defines necessary terms for use in the remainder of the pa -
per: parameter, model and behavior . Section 3 makes precise the notion of a
reformulation between two models and defines the important class of approxi -
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mations. Section 4 presents the CA Reduction Theorem which enables efficien t
computation of inter-model comparative analysis between models related by a n
approximation . Section 5 describes the status of the SAM implementation, and
section 6 discusses connections to related work .

2 Preliminarie s
We consider a model to be a description of a physical system in terms of on e
or more parameters . Loosely speaking, some of the parameters act as input s
to the model which takes these initial conditions and produces values for al l
parameters over an interval of time . Since only these input parameters can b e
directly altered by external action, a notion of causality is established . Our
models produce two kinds of behavioral descriptions : quantitative and qualita-
tive representations of the change of parameteric values over time . We assume
that the quantitative descriptions are of primary interest to the human user ; the
qualitative representation will be used to perform the model switching . This
framework for reasoning is elaborated below .

2 .1 Parameters

We describe systems with functions called PARAMETERS . All parameters are
assumed to be continuous, continuously differentiable functions from an interva l
of the reals into an interval of the extended reals [—oo, oo] and have only a finit e
number of points where the derivative crosses zero in any bounded interval [10] .
The intent is that the domain of a parameter is time and the range is a value
of interest . For example, the V parameter might denote the velocity of a n
object over time ; V(to) would thus denote the object's velocity at a particular
time. The RANGE function maps from parameters to their ranges . Thus for a
relativistic model, RANGE(V) might return (—c, c), the open subinterval of 9r
where c denotes the speed of light .

Three kinds of parameters are distinguished : independent, boundary, and
dependent . To specify the state of a system, independent parameters must b e
assigned values for all times in question . However, for simplicity we assum e
that all independent parameters are constant over time, so only a single valu e
is necessary . Boundary parameters are a superset of the independents — onc e
assigned values for some initial time (i .e ., boundary conditions), they completel y
specify the state of the system . The remaining parameters are dependent —
their values at a time point are completely determined by the values of th e
boundary parameters .

For example, consider the familiar horizontal, frictionless spring / block sys -
tem described by MA = —KX . Mass M and spring constant K are typically
independent parameters — their value must be specified for all times, an eas y
task if we assume that they are constant . Position X and velocity V are bound-
ary parameters but not independent since knowledge of just the initial positio n
and velocity is sufficient to specify a unique behavior . Acceleration A (an d
force, if defined) are dependent parameters . Let us emphasize that the selectio n
of independent, boundary and dependent parameters is an underconstraine d
modeling issue and must be done by a human .
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2 .2 Constraints

To specify the interdependence between parameters in a physical system, model s
contain qualitative and quantitative constraints . By quantitative constraints
we mean simply a system of ordinary differential equations (ODEs) . A model' s
qualitative constraints are a finite set of instantiations of the six constraint s
used by QSIM [10] : ADD, MINUS, MULT, M+ , M — , and dt . These constraints
have the meaning one would expect : P = ADD(Q, R) means P(t) = Q(t) + R(t )
for all times t, and P = M+ (Q) means that P is a monotonicly increasing
function of Q . For a formal definition see [10] . Naturally, it is important that
the quantitative and qualitative descriptions are mutually coherent .

Definition 1 A set of qualitative con,,traints AGREES with a set of ordinary
differential equations (ODEs) if every solution to the ODEs satisfies the con-
straints .

For example, the qualitative constraint P = M + (Q) agrees with

P(t) = 15 .3e2Q(t) .

Note that a given set of qualitative constraints may agree with many ODEs .
This is simply another way of stating that a qualitative description is an ab-
straction of a quantitative representation . 3

2 .3 Models

We define a model as a vector of parameters related by qualitative and quanti-
tative constraints that agree.

Definition 2 Let (PI , . . . , P,-) be an ordered list of parameters . Let C be a set of
qualitative constraints defined over {P i } . Let D be a set of ordinary differentia l
equations over {Pi } . Say tha t

A=((PIi . . .,P„),C,D )

is a MODEL if C agrees with D and D specifies a unique solution, when each
parameter is restricted to its range .

Let PARAM be a function taking a model to the list of parameters for th e
model . Let BOUND be a function taking a model to the sublist (P i , . . ., Pt) of
boundary parameters. Let INDEP be a function taking a model to the sublis t
(Pi , . . . , Pk ) of boundary parameters, where 1 < k < 1 < n .

We use calligraphic letters to denote models, lower case letters to denot e
real numbers, and capital letters to denote parameters . All parameters ar e
numbered so we will frequently talk about the i-th parameter of a model as Pi ,
but when discussing a particular model we may use mnemonic names like V
for velocity. When it is useful to emphasize that parameter P is part of mode l
A, we write it as AP. For simplicity, this definition of model ignores the issu e
of multiple operating regions [10, p294] which are useful for describing many
complex systems.

3 For the next few pages we are primarilly concerned with quantitative values and con-
straints, but qualitative constraints are necessary to perform infra-model comparative analysi s
(section 4.5) .
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2 .4 Behaviors

Given a model, we wish to describe the behavior it predicts over time . Both
quantitative and qualitative descriptions are necessary ; we start with the former .

Definition 3 Let A be a model with parameters Pi , . . . , P„ of which the first k
are boundary parameters . An INTERNAL STATE of A is a k-tuple p = (pa , . . . , pk )
such that p i E RANGE(Pi) forall 1 < i < k. A STATE of A is an n-tuple such
that the values pa, . . . , pk are an internal state and pk+I, . . . , pn are in their
ranges and are consistent with the values for the boundary parameters under
the model's quantitative constraints. A set of INITIAL CONDITIONS for A is a n
internal state of A . The BEHAVIOR of A given initial conditions p is the uniqu e
function

Ai

	

---p RANGE(PI) X . . . X RANGE(Pn )

defined by

AP(t) = (P~(t), . . . , Pn(t ) )

where the Pi are solutions to the model's ordinary differential equations give n
the boundary values p.

Thus a model A is an abstract description of a system. A state is a snapsho t
of the values of all the model's parameters at a given time . Combining a model
A and a set of initial conditions p specifies a behavior Ap that maps from time s
to states . Given a behavior or a state, one can use a projection function to
isolate the parameter or parameter value of interest . For example, to extract
the i-th parameter from the Ai behavior, one would write iri (Al) . If mnemoni c
names are used then the parameter name may be substituted in place of th e
index. For example, to determine the velocity (parameter V) specified by a
state p, one would write Iry (g) .

The definition above describes the relationship between a model, initial con-
ditions and the resulting behavior but it does not say anything about how t o
compute the behavior. This is deliberate . Our objective is a general theory of
model shifting that is independent of particular solution, simulation, symboli c
algebra, or numeric approximation methods . The particular techniques used by
the SAM implementation are described in section 5 .

In addition to the quantitative behavior of a model, it is often useful t o
describe time-varying behavior qualitatively. To this end, we adopt Kuipers '
QSIM representation as summarized in section 4 .1 .

3 Multiple Models
Suppose we have several models of the same system that embody different sim-
plifying assumptions . We wish to characterize the difference between the be-
haviors they predict . Since two models may describe a physical system usin g
different parameters, some work is necessary to enable behavioral comparison .
In this section we show how REFORMULATION FUNCTIONS can be used to align
distinct models . We discuss when the behavior of two comparable models ca n
be considered equivalent . Finally, we consider a restricted class of reformula-
tions, called APPROXIMATIONS, that have useful properties . Then in section 4
we discuss the problem of inter-model comparative analysis and describe an ef-
ficient technique for performing the analysis if one of the models approximates
the other .
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3.1 Reformulation s

To provide a way to match descriptions in two different models we introduc e
a notion of a reformulation . The basic idea is that we can compare a comple x
model 13 to a simpler one A if an internal state of 13 allows us to construct a
complete description of an internal state of A. Although this notion is ver y
general (almost any invertible, continuous function, meaningful or not, is a
reformulation), it provides a useful foundation . Sections 3 .2 and 3 .3 refine the
idea to a useful class of reformulations called approximations .

Definition 4 Let A and 13 be models with n and in parameters such tha t
BOUND(A) = {P1 . . .Pk} and BOUND(13) = {Q1 . . .Q 1 1 . If there exists a contin-
uous function 'I" from RANGE(Q1) X . . . X RANGE(QI) onto RANGE(Pi) X . . . X

RANGE(Pk) then say that lY COMPARES 13 to A (written A-<. 13) where 41 is an
extension of W' that maps from states (rather than internal states) of 13 to states
of A in the obvious way. IF is called a REFORMULATION FUNCTION from 13 to
A. For any state of 13, if f i= T(q) then pis said to be the CORRESPONDIN G
STATE of T.

For example, let 13 be a model of the two dimensional motion of a billiar d
ball using polar coordidates and let A be a model of the same system usin g
rectangular coordinates . In this case A-4, 13 because a reformulation function
exists . Let Alf be defined from {©} x {R} to {X} x {Y} as follows

41(0,R) = (Rcos0, Rsin0) .

For the rest of this paper, however, we assume that all reformulation function s
are defined in terms of simple arithmetic operations (addition, subtraction, mul-
tiplication, and division) . In fact, for many examples it suffices to specify trivia l
reformulations that equate parameters pairwise in the two models .

Note that this definition allows many possible reformulations between tw o
nonempty models, most of which are uninteresting or irrelevant . Meaningfu l
comparision between two models requires a good choice of SI► , and much of this
paper is concerned with characterizing useful classes of reformulations .

Proposition 1 The compared-to relation -<p is reflexive and transitive but no t
symmetric.

Proof: Reflexivity is obvious from the existence of trivial (identity) reformula-
tion functions. Transitivity follows from the fact that functional composition of
reformulations preserves continuity and invertibility . To demonstrate the lac k
of symmetry, let B be a model with two parameters P and Q and A be a model
with one parameter R . Assume that all of the parameters range over the whole
real line . Define 41 as a projection lY = 7 1 . Since is continuous and onto ,
'P is a reformulation and A -,k B . But an indirect proof shows 13 A . Sup-
pose 13- A . Then there exists some reformulation from the reals onto th e
real plane . Consider c restricted to R — {0}. The image of this function is
connected since removing one point from the real plane does not disconnect it ,
thus by continuity R {0} must be connected . But this is absurd . Thus 4.
cannot be continuous and onto . Hence 13 ZC A, and the compared-to relation is
not symmetric . q

Intuitively this means that one can compare a "large" model to a "smaller "
one but not vice versa . The lack of symmetry results from a reformulation map -
ping from a subset of one model's state-space to the other model's complete
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state-space. For example, suppose that B is a model of two noninteracting os-
cillators (one blue and one red) and A is a model of the red oscillator, describe d
using the same parameters as in B. Clearly B can be compared to A, since a
reformulation could map all the B parameters describing the red oscillator int o
the the equivalent parameters in A . An alternate (less meaningful) reformu-
lation would map the B parameters describing the blue oscillator into the A
parameters describing the red one . And, of course, it is possible to imagine a
reformulation that mapped some several red and several blue parameters into a
senseless A description of the red oscillator . However, despite the abundance of
reformulations from 13 to A, it is impossible to compare A to B because ther e
isn ' t enough independent information in a state of A to flush out a complete B
description that isn't redundant . Thus B A .

Another example begins to demonstrate the utility of this reformulatio n
definition . Suppose B is a model of an oscillator assuming damping with fric-
tional coefficient GU and A is simpler model of the same oscillator that does no t
account for damping . Although these two models predict different behaviors ,
A- 4. B . In other words a description of the state of B lets one compute all the
parameters of A, but B A since the value of aU can not be calculated fro m
parameters in A .

Proposition 2 Let A and B be models with k and 1 boundary parameters re-
spectively.

	

B itf k < 1 .

Proof: This is an easy corollary of the Borsuk-Ulam theorem [12, p170] . q
Although this isn't a very strong constraint on reformulations (i .e . many

uninteresting reformulations exist) it does reinforce the intuition that complex
models have more independent parameters than simple models . The next two
sections develop stronger (and more useful) constraints on reformulations base d
on their behavior .

3 .2 Behavior Difference

Now that we have a way to connect descriptions in two separate models we ar e
ready to define the difference in the models' predicted behaviors . We can defin e
the behavior difference for any reformulation, but of course the difference wil l
only be interesting if the reformulation is meaningful .

For the purposes of model switching we are mainly interested in a qualita-
tive measure of the difference in predicted behaviors . However, a quantitativ e
measure of this difference will also prove useful . In both cases we define th e
difference in terms of the parameters of the simpler of the two models (i .e . in
terms of A if A- T B) because of the inherent asymmetry of reformulations .

Definition 5 Let A and B be models with PARAM(A) = (P1 , . . . , P„) . Let p b e
a state of A and q be a state of B . Suppose that is a reformulation such tha t

A-< , B. Define the DIFFERENCE IN Pi BETWEEN p AND USING iY as

PDIFF(Pi, W , p, q) = i 'i(k(q)) — 7r i(p)

In other words the difference in the value of a parameter in the two states is
calculated by using the reformulation to convert the complex-system state int o
a corresponding simple-system state . Then the 7ri projection functions extrac t
the i-th parameter value from the two states and the difference is returned .
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Using this definition we can now describe when two models make equivalen t
predictions . The intuition is that there should be no difference in predicted
behavior given equivalent initial conditions . But it is important to recogniz e
that while the difference in parameter values must be measured in the simple r
model, the initial conditions must be specified in the more complex model t o
ensure that both models can be simulated .

Definition 6 Let A and 13 be models with PARAM(A) = (PI , . . . , Pn ) . Let be
a reformulation such that A-< B. Let q be an internal state of 13 representin g
a set of initial conditions . Let p be the internal state of A corresponding t o
the state ‘11(Bp(0)) . Define the BEHAVIOR DIFFERENCE BETWEEN A-< B OVER
THE TIME INTERVAL [t 8 ,1 1 ] GIVEN q as

( SUp IPDIFF(Pi, T, Ap-(t), Bj(t)) I
)tE[t„tf ]

If the BDIFF is zero, then we say that the behaviors are EQUIVALENT over
the interval [t„ tf ] .

In other words, for each parameter in the simple model, we compare cor-
responding complex values for all times and take the supremum (least uppe r
bound) of the absolute differences . The behavior difference is the maximu m
value of the suprema .

A more flexible definition of behavioral difference over an interval of tim e
would use perspectives [24, 23] . However, we defer these definitions since the y
are unnecessary for this paper .

3.3 Approximation Reformulations

In this section we present the most important idea in this paper, a restricted clas s
of reformulations called approximations . Intuitively, one model approximate s
another when the behavior difference between them can be brought arbitraril y
close to zero . This class of reformulations will prove to be very important . While
inter-model comparative analysis is a difficult problem in general, it can b e
performed quite efficiently for models related by approximation reformulations .

Definition 7 Let A and 13 be models, and suppose there exists a reformulation
tIf such that A-{,1. B. Say that A APPROXIMATES B UNDER kit if there exists a
parameter Q f E INDEP(C3) and an endpoint 1 of the closure of RANGE(Qf) such
that for all internal states of B ,

lim BDIFF(T, q', 0, co) = 0
ir j(4)— I

In this case, the parameter Qf is called the FITTING PARAMETER of IY and l is
called its APPROXIMATION LIMIT .

Since a fitting parameter is independent by definition, it is constant ove r
time; this is why the definition only refers to its initial value 7rf (q") . The idea
behind the definition is that A approximates B if B's fitting parameter squeeze s
the behavior difference to zero as it goes to a limit . Some examples will clarify
the definition .

Consider the simple system shown in figure 3 . At time zero the block is
released at the top of the 0 degree inclined plane ; under the force of gravity, it

BDIFF( 1Y, q, t„ t f) = max
1<i<n
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Figure 3 : Block slides down an inclined plane .

moves downward (and to the side, but both models will ignore the horizonta l
component of movement) . Let A be a model of this system with parameter s
T, G, Y, V, A denoting 0, gravity, height, and the vertical components of velocity
and acceleration respectively . Let 13 be a model with all these parameters plu s
a coefficient of friction U . Let lIt be the projection function :

`y(0,g,y,v,a,u) = (0,g,y,v,a)

It is clear that 41 is a reformulation so A - B .
Before we can consider the behavior of A and 13, we must specify more details

of the models . INDEP(A)={G, T} and BOUND(A) = {G, T, Y, VI . G and Y have
range [0, co) and T has range [0°, 360°) . The ODEs for A are :

A = G cos(T)
A = V
V = T Y

For the slightly more complex model, INDEP(1i)={G, T, U} and BOUND(B)
= {G, T, U, Y, V } . U has range [0, co) . The ODEs for S are : 4

A = G cos(T) — UG sin(T)
A = d v

l
V — dt Y

As the coefficient of friction U tends to zero, the frictional force diminishe s
and the first equation of S gets arbitrarily close to the first equation of A .
When there is no friction then the equations are identical so it is clear that th e
behavior difference is zero . Thus, we can say that A approximates 6 with fitting
parameter U and approximation limit 0 . 5

While the system of figure 3 provides a clear example of approximatin g
models, it is a bit misleading . The case where the fitting parameter can actuall y
take on the limiting value (i .e . where it is legal for 5 to have zero friction) i s
really a degenerate case of the approximation definition. In general, this is not
the case, and this is why the definition allows 1 to be in the closure of th e

'These equations assume that the block is moving relative to the wedge, otherwise the
frictional force will be smaller . This condition could be expressed as a range restriction o n
theta and the coefficient of friction, a range restriction on acceleration, or as an extension to
the equation defining frictional force . We refrain from these details since they are irrelevan t
to the point at hand .

5 1n fact, either gravity or wedge angle 0 could be used as a fitting parameter in this example .
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parameter's range.' For example, consider two models of tension in a string . A
simple model A might model the string as inelastic while the more complex B
could use Hooke's law F = —KX to model the elongation of the string unde r
tension . As the spring coefficient K tends to infinity, the behaviors predicte d
by the two models become equivalent . Thus A approximates 13 even though co
is not a legal value for K in 13 .

3 .4 Summary
In this section, we showed how reformulations allowed a complex model to b e
compared to a simpler one . We characterized the difference in behaviors pre-
dicted by two models, and we isolated a particular class of reformulations, calle d
approximations, where the behavior difference can be made arbitrarily small .

Our overall goal is to help automate the modeling process . Given the behav-
ior predicted by a model, and a set of discrepancies between the values predicte d
and those observed, we wish to determine which other models would predict be-
haviors in closer agreement with the observations . As described in section 1, w e
advocate generate and test . This test must take two models and predict the ef-
fect on behavior of the switch from one model to the other . If the representatio n
for observation discrepancies is qualitative, then the test can be implemented a s
a form of inter-model comparative analysis . Although inter-model comparative
analysis is very difficult in general, the next section will show that it can b e
done efficiently if the reformulation is an approximation . In fact, it reduces t o
an intra-model comparative analysis problem and can be solved by DQ analysi s
[24, 23] or exaggeration [25, 27, 26] . Then in section 5 we present our imple-
mentation of these ideas . In section 6 we discuss related work, and in section 7
we describe issues for future research .

4 Inter-Model Comparative Analysis
Suppose we have two models of the same system that are related by a refor-
mulation . We wish to characterize the difference between the behaviors the y
predict . By assuming one model as `current' and considering a shift in models ,
we phrase this question as a comparative analysis problem : "What is the effec t
on predicted behavior of shifting from the current model to a different one? "
But several kinds of comparative analysis are possible : intra-model comparativ e
analysis predicts how the model's behavior will be affected by a perturbation in
the value of some boundary parameters. Inter-model comparative analysis, o n
the other hand, describes how the behaviors predicted by two different model s
compare .

Clearly one could answer an inter-model comparative analysis question b y
comparing numerical approximations of solutions to the two models' sets o f
differential equations, but this is a laborious process . Instead, we consider
qualitative techniques . The first step is to define qualitative behavior . Then we
introduce the relative change language for describing differences in behaviors .
Finally we show how inter-model comparative analysis reduces to the intra-
model case if the reformulation is an approximation .

''The restriction that I he an endpoint of the closu r e is explained in section 4.5 .
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4 .1 Qualitative Behavio r

For simplicity, we adopt Kuipers' QSIM representation as summarized below .
See [10, 24] for complete definitions .

A QUALITATIVE BEHAVIOR is a sequence of QUALITATIVE STATES alternatin g
between states at time points and states that hold over open intervals of time .
A qualitative state describes the qualitative value and qualitative derivative o f
each parameter . For example, the qualitative value of a parameter, P, at a tim e
point t, is defined as the ordinal relationship between the parameter's real valu e
at that point and its nearest LANDMARKS (special values of significance to th e
human modeler) . This is written as follows :

QVAL(P,t) = [ pi

	

if P(t) = landmark pi

(pi,Pj+I) if P(t ) E (pi, pi+I )

The sign of the parameter's derivative (known as qualitative direction) is rep -
resented symbolically :

QDIR(P, t) =

inc

	

if do P(t) > 0

std

	

if i4 P(t) = 0

dec

	

if ec P(t) < 0

A collection of qualitative value and derivative pairs for every paramete r
forms the qualitative state of the model at a time point :

Qs(,A, t) = ( . . . , (QVAL(Pi, t), QDIR(Pi, t)), . . . )

The qualitative state for a time interval is comparable . When any parame-
ter's QVAL or QDIR changes, the parameter (and also the system as a whole) ar e
said to TRANSITION . In other words, transitions are events when qualitatively
significant changes happen in the value of a parameter . Thus each adjacent pair
of states in a model's qualitative behavior represents a transition . Since it i s
often useful to be able to refer to transitions independent of the time at whic h
they occur, the sequence of transitions for a qualitative behavior is denoted b y
the set {7i} . Every qualitative behavior also has a TIME FUNCTION, T, which
takes transitions to the points in time when they occur . Hence the qualitative
behavior of a model can be written as :

Qs(A, T(7o)), QS(A, (T(7o), T(71)), Q s ( . , T(71)), . .

Just as our theory of model switching is independent of any particular quan-
titative solution method, it does not depend on a particular algorithm for gener -
ating qualitative descriptions . However, we note in passing that Kuipers' QSI M
program [10] generates the set of possible qualitative behaviors for a model give n
a set of qualitative initial conditions . In the ideal case, QSIM produces a singl e
behavior, but often ambiguity causes multiple behaviors to be generated . These
are represented as a STATE TREE where every path through the tree represent s
a possible qualitative behavior . As described in section 5, our implementatio n
uses QSIM .

4 .2 Relative Change Values

To compare two behaviors (qualitative or quantitative), they must be distin-
guishable . In intra-model comparative analysis a hat accent is used to denot e
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a perturbed, second behavior . Thus 17— might denote velocity in the second sys -
tem, and V(T(7 t)) denotes the second system's value of velocity at the time (i n
the second system) of the i-th transition . To simplify the problem of compar-
ative analysis, we assume that the behaviors are TOPOLOGICALLY EQUAL [24] ,
i .e . they have identical sequences of transitions .

The relative change language is used to describe the difference between tw o
behaviors of a single model . For values at transition points the definition is
straightforward . ?

Definition 8 Let A be a model with PARAM(A) = (P1 , . . . , P„) as determined
by initial conditions F. For any transition 7i in the qualitative behavior of A,
define the RELATIVE CHANGE (RC) of P given p' at 7i as :

11 ifP(7i)) > P(T(7i) )
Rc(P, 7i) =

	

if PO--(7i)) = P(T(7i) )
u if P(T(7i)) < P(T(7i)) •

These are written PPS; pPll i , and p P1J.i .

This definition can be extended to handle comparisons over time intervals
through the use of perspectives [24], but this complexity is unnecessary for thi s
paper .

Relative change values are closely related to partial derivatives .

Proposition 3 Let A be a model with BOUND(A) = (PI,— ,Pk) and suppos e
PARAM(A) = (P1 i . . . ,P„) as determined by the initial conditions p. Suppos e
r'PPi o for some c such that 1 < c < k, and that pPj j l o for all j such tha t
1 < j < k and j c. Let Pe denote a dependent parameter k + 1 < e < n . For
all transitions 7i if T(7 i ) = T(7i ) then

(aPe
Rc(Pe, P, 7i) = sign ~(T(7i) )

Proof: This is a direct corollary of proposition 15 in [24] . q

4 .3 Relative Change of a Model Switc h

Inter-model comparative analysis seeks to determine the effect on predicte d
parameter values of a switch from one model to another . These effects can b e
described using the following simple extension of the pointwise relative chang e
notation .

Definition 9 Let A and B be models and let be a reformulation such tha t
A-w B. Let P E PARAM(A) . Let be an internal state of 13, and let p be th e
internal state corresponding to the state 41(Bf(0)) . If the behaviors of A and
B exhibit the same seqeunce of transitions given these initial conditions, Defin e
the RELATIVE CHANGE of P OVER A -< 4, B given at transition 7i as :

7 There are two differences between this definition and that used in [24, 23] . First, this
definition uses signed semantics rather than the magnitude semantics ; in other words w e
compare signed quantities rather than absolute values . Theoretically, the two approaches ar e
equivalent, but we prefer signed semantics for this paper because of greater commonality wit h
the quantitative definition of parameter difference . Secondly, in this paper we choose to mak e
explicit the dependence on initial (boundary) conditions.
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if PDIFF(P, T, Ap(AT(7i)), BT(sT(-yi))) > 0
RC(P, Alf, q, 7i) =

	

II if PDIFF(P, , Ap(AT(7i)), BT(c3T(7i))) = 0

if PDIFF(P, W , Ai,(AT(7i)), tq*(BT(7i))) < 0 .

These are writte 4P¶ri, JPlli, and -P.IJ.i respectively .

In other words, we define the multi-model version of relative change b y
comparing a parameter's value in a state of the simple model using IF to comput e
the corresponding value from the complex model . *Pt means that switchin g
from the simple model A to the more complex model 13 will cause P to get a
larger predicted value given c and its corresponding internal A state as initial
conditions .

4.4 Reformulating Relative Changes

We are almost ready to tackle inter-model comparative analysis, but one ob-
servation must be made . Note that the relative change values are simply a
form of the well-studied sign algebra {[+], [0], [—]} [17, 28] . Because of this and
because reformulation functions are defined solely with simple arithmetic oper-
ators, reformulation functions can be used to compute corresponding relativ e
change values . In other words, given relative change values for all parameters in
13 at a transition, it is possible (with some potential loss of information due t o
ambiguity) to calculate a corresponding set of relative change values for A . In
fact, no information is lost in the most common case where the reformulatio n
is a projection function .

Definition 10 Let A be a model with PARAM(A) = ( PI , . . . , Pn ) as specified by
initial conditions p. For any transition 7t , defin e

RCS(Ap-, 7d) _ (RC(P,

	

. . . , RC(P, 7i) )

In other words, RCS takes a model's behavior and a transition and returns
the vector of relative change values at that transition .

Suppose A and 13 are models with n and in parameters respectively. If
A-<T 13 we can extend the reformulation function klf to map from {flt, II, j1}m to

11,4} n using the standard qualitative interpretation of the arithmetic func-
tions defining the reformulation . (For brevity, we will not include the full defi-
nition here) .

Thus if Rcs(13gq, 7t ) is a vector of relative change values for model 13, an ap-
plication of the reformulation l(Rcs(B,, 7i )) denotes the same changes in terms
of the parameters of A . To determine the corresponding relative change valu e
for a specific A parameter P~ simply use the lrj projection function . Although
we are overloading the Ill function with two purposes (mapping the real value s
of parameters and mapping qualitative relative change values), the meaning is
always clear because one can tell the usage from the type of the argument to W .

4.5 Exploiting Approximation Reformulation s

In general, inter-model comparative analysis appears quite difficult . Short of
performing a complete numerical simulation of the two models and comparin g
the quantitative results (an expensive undertaking), there does not seem to b e
a solution.
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However, if the reformulation linking the two models is an approximation ,
then inter-model comparative analysis reduces to an intra-model comparativ e
analysis problem with an initial RC of the fitting parameter away from th e
approximation limit .

First note that if A approximates B then their time functions converge a s
the fitting parameter approaches the approximation limit .

Proposition 4 Let A and B be models and let W be a reformulation such that
A-T 5 and A approximates B under iY with fitting parameter Q f and approx-
imation limit 1 . Suppose that the closure of RANGE(Qf) = [I, k] . Let denot e
an internal state for B and let q' the the corresponding internal state for A . If
there exists some open interval U = (1,1+ p) C [I, k] such that the behaviors of
AT, and B exhibit the same sequence of transitions whenever 7rf (q-) E U, the n
forall 7i

lim BT(7i ) = AT(-)'i) •
Tr(9') — 1

Proof: This is a simple consequence of the approximation definition . Clearly
some specification of topological equality is necessary since otherwise quantify -
ing over transitions makes no sense . In fact, it is necessary that the behavior s
be topologically equal in the vicinity of the approximation limit (not just at th e
limit), since otherwise discontinuities could result . q

Now to see how an inter-model comparative analysis problem reduces to th e
intra-model case consider the problem of predicting the velocity of the block in
figure 3 (from initial conditions q) when it hits the table (call this event tran-
sition 71 ) . Inter-model comparative analysis might seek to determine whether
switching from a frictionless model (A) to a more complex model 5 that has
coefficient of friction U will increase, decrease, or not affect the velocity . Be-
cause A -q B and is an approximation reformulation, this problem can b e
expressed as the following intra-model comparative analysis problem in mode l
13 : "If 9 U (1-o what will be the resulting relative change on V at transition one ? "
And as both DQ analysis [24] and exaggeration [27] will show, the answer i s
9 V41 . This relationship between inter- and intra-model comparative analysi s
can be stated formally in terms of both partial derivatives and relative chang e
values .

Proposition 5 Let A and B be models with IPARAM(A)I = n and IBOUND(B)l =
k . Let lY be a reformulation such that A--<q B . Suppose that A approximate s
B under iY with fitting parameter Qf E INDEP(B) and approximation limit 1
where 1 is the greatest lower bound of RANGE(Q f) . Let q denote an interna l
state of 13, p the corresponding internal state of A, and of = ir f (O . For an y

Pi E PARAM(A), let R = it (T(B9(t))) . Then

0 R

if gimt agf(t,
. . .,gf, . . .) = P> 0

then R(t, . . .,gf, . . .) > 13(t )

for arbitrary time t .

Proof:
First note that R is the function of time, defined in terms of parameters o f

13, that corresponds to parameter Pi in model A . Recall also that the solutio n
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to 13's quantitative constraints (ODEs) depends on the initial values for all o f
its k boundary parameters ; this means that R is also a function of D. through
qk•

By definition of partial derivative ,

8R(

	

_ limn(t,ql, . . .,)-R(t,gi, . . .,gf, . . ., )

Now, if 1 E RANGE(Qf ) then the partial derivative is defined there, an d

aq (t, . . . ,1, . . .) —
v~i

R(t,q1, . . . , qf, . . . q ) — R(t, g1, . . . ,1, . . . ,)

	

(1 )	 (—	

However, if 1 RANGE(Qf ) there is no problem because we can uniquel y
extend continuous functions (i.e . R and its partial derivative) to the closure
of its domain by substituting the limiting value [?, p99] . As a convenience w e
assume that we are dealing with such an extension. Our conclusion does not
depend on this, however, since we need only demonstrate a region near 1 where
the implication holds . (If 1 E RANGE(Qf) then the implication holds for q f = 1
as well . )

Since 41 is an approximation reformulation, we know that

lim max ( sup I %r i(T( 5T( t ))) — 'n-i(Af(t))I = 0 .
IE[o,00)

	

)

In other words, the maximum difference (overa all time and all parameters )
between corresponding values is zero . So clearly there is no difference for the
one pair of corresponding values we are interested in . I .e . for all time t

lira R(t, . . . , g f , . . .) = Pj(t) .

	

(2 )
qj— 1

Thus from equations 2 and 1

Ve > 0,36 > 0 s .t . if lqf -1 < 6 then

R(t, . . .,gf—)—Pj(t) — ~q (t, . . .,gf, . . .)l <E .

In other words ,

Ve > 0,36 > 0 s .t . if lq f -11 < 6 then

8R (t, . . . , g f , . . .) —
< R(t, . . . ,q f , . . .) — P~ (t) < aR (t, . . . , gf ,

	

.) + E .
8qf

	

o f — 1

	

8qf

But qf — 1 is positive so ,

de > 0,36 > 0 s .t . if I qf — 11 < S then

((t, . . .,qj, . . .) — E) (qf -1) < R(t, . . .,gf, . . .) — Pj(t) .

But since N (t, . . . , q f , . . .) converges to p> 0 we simply need choose e < p

to show
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0 < R(t, . . . , g f , . . .) — Pi(t) .

Or equivalently,

R(t, . . .,gf, . . .) > Pi (t) .

Expressing this result in terms of relative change values makes it easier t o
apply for model switching .

Corollary 6 (CA Reduction Theorem) . Let A and B be models such that
IPARAM(A)I = n and IBOUND(B)I = k. Let be a reformulation such that
A-< 4, B. Suppose that A approximates B under ‘lf with fitting parameter Qf E
INDEP(B) and approximation limit 1 where 1 is the greatest lower bound of
RANGE(Qf) . Suppose the two time functions are equal: AT = BT. Then for
any set of initial values {q,,} to boundary parameters where h

	

f, there exists
a positive real i such that if qf E (1,1 + rl) and if

T = (gl, . . .,gf, . . .,qk )

then for any parameter Pf E PARAM(A) and for any transition 7i ,

if ( 4 Qf11b —* [rrO(Rcs(B , 7i))) = f1}) then Pf11' t

where is the internal state of A corresponding to q.

Proof:
As before, let R = rrj(T(Bq(t))) . Using the definition of ;Pf ft i we can rewrite

the consequent of our objective in terms of R a s

if (9Qf'fl'o

	

[rrJ (WY(Rcs(By, 7t)) )

then R(BT(7i), . . . , q f , . . .) > Pj( .aT(?yi)) •

By applying proposition 3 we can write the antecedant of our objective i n
terms of R a s

if aq (BT(yi), . . .,gf, . . .) > 0

then R(BT(7i), . . .,gf, . . .) > PP(AT(7i)) .

And since the two time functions are necessarilly equal, it suffices to sho w
that there exists a positive real rl such that when qf E (1,1+ rl) then

0R(t, . . .,gf, . . .) > 0

	

R(t, . . .,gf, . . .) > P)( t )(hi
for arbitrary time t .

This follows from proposition 5 . q .
This is the key result which enables model switching in SAM . Comparabl e

results can be stated if the approximation limit is the ceiling of the range closure ,

and for other RC values . The net effect is that inter-model comparative analysi s
reduces to intra-model comparative analysis when performed in the comple x
model with a behavior generated from initial conditions that put the fittin g
parameter close to the approximation limit .
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4.6 Generalizations to the Reduction Theorem ?

The reduction theorem is important enough that we wish to be sure that it is as
general as possible . In this section we consider two possible changes : eliminating
the constraint on the value of the fitting parameter and relaxing the conditio n
that the time functions be equal .

Unfortunately, it turns out that the the restriction that the fitting parameter
be close to the approximation limit is crucial . To see this, consider the following
example . Let A be a model with an independent parameter C and a dependen t
parameter X obeying the constraint that X = C. Let B be a model wit h
two independent parameters C and D, one dependent parameter X, a range
restriction that RANGE(D) = (0,00) and obeying the constraint that X = C +
D + D 2 . Let iY be the obvious projection reformulation and it is clear tha t
A-< B. Furthermore, it is clear that A approximates B with fitting paramete r
D and approximation limit O . What is the relative change on the predicte d
value of X of a switch from A to B ?

Well, it depends . If D is close to the approximation limit 0, then the valu e
of D dominates the value of D2 and X increases . But if D is large then a switc h
to B causes X to decrease . This illustrates the need to perform intra-model
comparative analysis on a behavior of B in which the fitting parameter is clos e
to the approximation limit .

On the other hand, it seems quite possible that the restriction that the tim e
functions be equal could be relaxed . In fact proposition 4 shows that if A
approximates 5, then the two time functions converge as the fitting paramete r
tends to the approximation limit . Thus it may be possible to generalize th e
reduction theorem by requiring only topological equality.

5 SAM
We are implementing a common lisp program, SAM, to test the ideas of vali-
dation, model shifting, and inter-model comparative analysis . SAM represent s
a physical system with a graph of models [16, 13, 2, 1] where each edge in th e
graph is an approximation reformulation labeled with the fitting parameter an d
approximation limit .

SAM solves a simulation task by reasoning in three phases . First a model i s
chosen; by default, the simplest model is used . Next, a Runge-Kutta algorithm
approximates solutions for each of the parameters over an initial time interval .
At this point SAM asks for measurements of parameter values and checks thes e
against its predictions . If any discrepancies exceed a task dependent threshold ,
SAM seeks to switch models . It does this by generating a sequence of neighbo r
models to the current model in the graph . For each candidate model, SAM
performs inter-model comparative analysis (using the DQ analysis technique
[24] which calls upon the QSIM qualitative simulator [10]) . The first mode l
which appears to correct the discrepancy is tried next and the control loop
repeats . Since each model switch moves upwards in the -<,y lattice, the routine
is guaranteed to terminate either by producing an acceptable prediction or b y
failing at the most complex model .

As the implementation has just been started, no performance figures ar e
available at this time .
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6 Related Work

A number of research projects have addressed issues similar to those describe d
in this paper . Our work bears the closest resemblance to the work on PROMP T
[16] a program which uses multiple models to perform innovative design [13] .
This work introduced the notion of a graph of models (GoM) . Each node in
the graph denotes a model of the system at hand and the edge connectin g
two nodes is labeled with the set of simplifying assumptions (e .g ., no friction )
that distinguish the two models . One difference between their approach an d
ours is PROMPT's use of multiple GoMs corresponding to different domains o f
expertise [1] ; this divide and conquer approach alleviates the exponential-spac e
problem inherent in the GoM approach . Another difference is the manner i n
which a new model is chosen after a discrepancy is detected . PROMPT use s
delta vectors to trigger domain-dependent parameter-change rules [2] . Thei r
method is probably more efficient, but ours is domain independent . Future
research may lead to techniques for compiling the conclusions of inter-mode l
comparative analysis into parameter change rules, combining the best of th e
two approaches .

Falkenhainer and Forbus present an alternative paradigm for multiple per-
spective, multi-granular modeling [7] . Instead of a graph of models, Falken-
hainer and Forbus define a generating set of model pieces that can be turned o n
and off by consider assumptions. By alternately assuming all consistent sets of
consider assumptions, one could produce a graph of models, but by not doing
so explicitly, considerable space savings are realized . In addition, Falkenhainer
and Forbus introduce the important distinction between simplifying and oper-
ating assumptions . Simplifying assumptions abstract details from the device
model while operating assumptions limit consideration to subcases of behavio r
such as equilibrium operation. They demonstrate the power of their approac h
by describing an implemented question-answering program that consideres onl y
pertinent aspects of a Navy steam propulsion plant model for each question .

Davis' work on troubleshooting [4, 5] has been a major influence in our work .
His decision to represent modeling assumptions explicitly allowed his progra m
to perform diagnosis by sequentially relaxing the assumptions .

The program starts by assuming that the only possible faults are localize d
functional errors (e .g ., a broken adder chip) . If subsequent measurements guar-
antee that no single functional unit could be responsible for all observed symp-
toms, then the program retracts the assumption and considers a more detaile d
model that can represent more faults . Although Davis' implementation used jus t
two models, he postulated an algorithm that would step through a sequence of
increasingly complex models : e.g., representations for bridge faults, multipl e
faults, assembly errors, even design errors . Our work (and that of PROMPT )
extends this switching paradigm by eliminating the need for a prespecified linea r
sequence of models .

There are many additional papers of relevance . Slices, a technique for rea-
soning about electronic circuits from multiple perspectives, is described in [19] .
Time-scale abstraction [11] can be used to decompose complex systems int o
smaller parts that act with different rates, but current techniques require tha t
both the models and the pattern of model switching be hand coded . Aggrega-
tion [22] can dynamically create abstract models of a system, but only for th e
limited class of repetitious or cyclic behavior . Patil's ABEL program [15, 14 ]
constructed multiple models of a sick patient, each at a different level of detail ,
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with links to enforce correspondences . Collins and Forbus [3], building on the
work of [8], describe a system that reasons about fluids using models constructe d
in two different ontologies .

Relevant work has also been done using nonphysical domains . [9] is a classic
paper on reformulation — we are clearly inspired by his functional approach .
Subramanian and Genesereth [18] discusses techniques for reformulating a firs t
order predicate calculus theory into a simpler theory by "factoring out" fact s
that are irrelevant to a given class of queries . Van Baalen and Davis [21] describ e
a program that builds a specialized representation of a problem in order t o
capture the inherent constraints ; solving the problem is easy given the new
representation . In addition, the machine learning community has recognize d
the need for abstraction and reformulation of domain models ; see [6, 20] .

7 Future Work
Many things remain to be done :

• Can proposition 6 be generalized to eliminate the restriction that the tim e
functions are identical? Proposition 4 shows that this constraint is ver y
weak (i .e . easy to remove) given the existence of an approximation .

• The theory must be extended to deal with model whose behaviors do no t
satisfy topological equality. This should be simply a matter of defining a
more flexible method for specifying CORRESPONDING EVENTS .

• Can the theory be extended to handle system with multiple operatin g
regions? This could be difficult since proposition 6 depends crucially o n
continuity. For example, consider the assumption that string (in simpl e
phsyical examples) never breaks . This can be seen as an approximatio n
using the formalism above if one considers the BREAKING-POINT th e
fitting parameter . Wait, this isn ' t a parameter it's a value, so maybe ev-
erything works out fine . Anyway, more thought is necessary . My intuition
tells me that uniform convergence (as opposed to pointwise convergence )
is involved .

e We need to push on the idea of ONTO LOGIES as a way to implement spac e
efficient graphs of models . (In a naive implementation, the size of a Go M
is exponential in the number of possible assumptions . )

• Once SAM is complete, we need to test the power of our approach on rea l
examples .
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