
A PREDICTIVE ENGINE FOR THE QUALITATIVE
SIMULATION OF CONTINUOUS DYNAMIC SYSTEM S

Mark WIEGAND and Roy LEITCH

Intelligent Automation Laboratory ,
Department of Electrical and Electronic Engineering,

Heriot-Watt University ,
Edinburgh
Scotland

1, Introductio n
This paper describes the development of a general architecture for a reasonin g

mechanism that is able to simulate the dynamic evolution of a physical system utilisin g
qualitative and quantitative information about the variables in the system . The "predic-
tive engine" that results forms a tool component in the general-purpose toolkit being
developed under ESPRIT project P820 whose remit is to develop a set of high-leve l
tools for a range of tasks within the process industries . This set of tools now forms
the QUIC (Qualitative Industrial Control) toolkit [Leitch1989a] .

Much work has been done by various researchers in trying to develop algorithms
which perform qualitative dynamic reasoning and/or which deal with the problems
inherent in using qualitative values (e .g. ambiguity) . In attempting to exploit this ne w
technology, decisions have to be made about which ideas to include in the system ,
which ideas are redundant or superfluous, and which are already catered for in another
guise. In the development of the "predictive engine", an attempt has been made t o
keep the architecture as 'general' as possible . Rather than construct a series of sys-
tems, each applicable to a few small and artificial examples, the remit for a tool com-
ponent must include such attributes as generality and coherence . This work is an
attempt to move from conceptualising to implementation without discarding these attri-
butes. In doing this, various sources are drawn upon and the results placed in a con -
text where they can be seen to perform a specific function . Whilst the "predictiv e
engine" is perhaps sub-optimal for any specific application, it is general and flexible ,
and reflects well the principles involved in its development .

The architecture of the "predictive engine" is layered and strictly modular, eac h
module having a well-defined functionality ; see Figure 1 . Each module is completely
independent and communicates with the lower-level module via a 'Tell-and-Ask' typ e
interface . At the 'core' of the "predictive engine" lie the graph-based representations
that hold the Quantity Space (the allowable qualitative values for each system variable)
and the Time Box (a record of the temporal relationships between the changing value s
of the system variables) . Above this core, an Event Map collates the values of system
variables with their temporal extent and presents these 'tuples' to the Prediction
Module which manages the inference of the system behaviour . The results of the
inference process are passed back down to the core where they may contribute to

2

further inferences .

Figure 1 Architecture of the Predictive Engin e

This design is strongly motivated by the work of Williams, who advocates a
'rule-based' approach in his Temporal Qualitative Analysis (TQA) [Williams 1984a]
and an 'event-based' approach in his Temporal Constraint Propagation (TCP)
[Williams1986a]. The "predictive engine" reflects a generalised combination of TQ A
and TCP. In his work on reasoning in dynamic domains, Williams applied TQA to the
analysis of MOS circuits. The "predictive engine" takes Williams' classification of
feedback characteristics in electrical systems, and applies similar ideas to canonica l
forms of physical phenomena in other domains with continuous variables, notably pro-
cess control . The "predictive engine" also investigates Williams' use of an 'event-
based' architecture and TCP for qualitative reasoning as a way of handling pure-tim e
delay more efficiently than in a 'state-based' approach, e .g. [Kuipers1985a] . This par-
ticular ability is very important for at least one of the demonstrators in the ESPRIT
project P820, where a lumped parameter approximation has been used in order to
avoid consideration of a partial spatial derivative.

An 'event-based' approach needs to be able to reason with partially-ordered tem-
poral intervals . Following the work of Vilain and Kautz [Vilain1986a] which sug-
gested that an interval-based implementation may be computationally intractable, w e
utilise a point-based implementation which is based on Simmons' Quantity Lattice

- 3

[Simmons1986a] . The Quantity Lattice actually belongs to a general class of system s
which may be termed "inequality reasoners" . It manages the integration of real an d
symbolic values, allowing the reasoning mechanism to make use of quantitative infor-
mation when this is available (or necessary) .

2 . Directed Grap h

The Directed Graph constitutes the basic information storage module of the sys-
tem. Directed graphs hold both the Time Box and the Quantity Space in the "predic-
tive engine", albeit through a Quantity Lattice interface which enables the integration
of real with symbolic values .

Digraph nodes are used to represent either time points (the end points of
periods/events) or landmarks in the quantity space : the actual semantics of these nodes
will depend on the interface that the digraph is viewed through (Time Box or Quantit y
Space) . In Simmons' original description of his Quantity Lattice, nodes were also
used to hold real numbers. However, in the implementation of the "predictive engine" ,
real numbers are not stored as nodes in the digraph but are generated by the Directe d
Graph module interface as requested . In the large-scale systems for which it i s
envisaged that the "predictive engine" will be used, inclusion of reals as proper nodes
would clutter the graph : Of course, real values may be given an explicit status whe n
they form an important part of the reasoning process; this can be done by assigning a
symbolic point and giving this point the real value, for example, the 'zero' of th e
Quantity Space. Then, the symbolic point is available for the reasoning process and its
real value is available when required .

Nodes can also be expressions . Simmons' use of arithmetic expressions wa s
quite extensive in his application domain. At the moment, only binary subtraction and
binary addition are being considered; binary subtraction is required in order to handle
information about the duration of time periods (the difference between two tim e
points), and binary addition is then required as a consequence .

The nodes of the digraph are connected with labelled directed arcs . Simmons
used six labels, <, =, >,<and* . However, use of* is problematic . In the "predictiv e
engine" only the labels <, _, and > are used (with simple extensions to>_ and<_) . The
digraph arcs may be used to express partial orderings . Additional arc labels, allowin g
for the representation of 'order of magnitude' relations, have been included in the ful l
implementation of this prototype . These operators will facilitate the inclusion of some
form of ' order of magnitude ' reasoning in the Prediction Module, enabling the use o f
temporal hierarchies in the Time Box digraph, and increased (selective) granularity i n
the Quantity Space digraph .

To enable the smooth integration of real and symbolic values in the "predictive
engine", the Directed Graph also holds information about the real value of each node .
Associated with each node is a real interval which represents what is currently know n
about the real value of that node . By default, the interval is (- .,+.), or [0,+.) if it i s
known beforehand that each node is non-negative . As the value of each node become s
further constrained during use of the "predictive engine", either as a result of infer-
ences made or supplemental data, it is the Quantity Lattice that is responsible fo r
maintaining the consistency of these interval bounds across the directed arcs that con-
nect the nodes. A relationship between two nodes might be inferred from the intervals

4

associated with them, even though no labelled arc exists .

3. Quantity Lattic e
The Quantity Lattice module is responsible for maintaining the consistency of

information in the Directed Graph, and for servicing requests from the Time Box an d
Quantity Space modules . A major requirement is to 'hide' the mechanism of the
Quantity Lattice from the Time Box and Quantity Space by providing a set of general
purpose functions which control access to the graphs : the Time Box and Quantit y
Space have somewhat different requirements of the interface .

The Quantity Lattice in the "predictive engine" is based on that of Simmons.
However, as has already been stated, problems were found in using Simmons' choic e
of arc labels, i .e. <, =, >,<,>,* . These problems can best be illustrated with an exam-
ple; they centre around the use of* . Consider Figure 2 : it seems quite possible to
create this graph in Simmons' system . If we ask for the relationship between q_1 an d
q_4, the Quantity Lattice performs a breadth-first search along paths which contain a n
entry in a transitivity table for ordinal relationships . The result of this is :

q1 (=)
q_2 (5)
q 4 (<)

Note that the path q_2 to q_3 is not searched because<_ and* in series do not form a
valid relationship . However, if we ask for the relationship between q_2 and q_4, the
result is :

q_2 (=)
q_4 (<_) and q_3 (*)
q_4 (<_) and q_4 (*)
q_4 (<)

Then, combining q_15 q_2 with (0 < q_4, we should ge t

q_1 < q_4

whereas Simmons' system gave u s

q_15 q_4

This problem lies in the use of*, and in the fact that the search is linear (local) .
Several attempts have been made to solve this problem, but it seems that the only wa y
is to make the search non-linear (non-local) and much less efficient. For this reason i t
was decided to use only <, =, and > from Simmons' original label set and for thes e
relationships the above problem does not occur .

Recent work by Nokel [Noke11989a] has extended the work of Vilain and Kautz
[Vilainl986a] by further classifying the subalgebras of Allen's [Allen1983a] full rela-
tion algebra (based on thirteen primitive relations) where the global consistency chec k
can be carried out in polynomial time . Each subalgebra is formed by adopting a sub -
set of the thirteen primitive relations, say N where I N = n < 13, and allowing relation s
formed by disjunctions of these adopted primitives, of which there are then a total of

5

2* . Polynomial time consistency checking within the subalgebra depends on a propert y
of "convexity" among the disjunctive relations . Interpreting these results in a point -
based implementation, we find that the only "non-convex" relation that can be forme d
from the primitives < , = , > is that of (< or >), i .e . � . This essentially explains th e
problems we found in using the � relation in Simmons' Quantity Lattice .

Figure 2 Problems with Simmons' Quantity Lattic e

It is important that the Quantity Lattice module employs breadth-first search, as
opposed to depth-first . In particular in the Time Box digraph it is possible for ver y
long paths to be created during use, and depth-first search could prove very inefficient .
Following Simmons, the "predictive engine" caches the results of the breadth-firs t
search, though it is not clear what the pay-off for this is in efficiency terms .

The Time Box and Quantity Space require different functionality in the Quantit y
Lattice. In particular, access to the graphs is not the same for the higher leve l
modules. In the Time Box, the inference mechanism may consider relations that s r
more than one time point . However, in the Quantity Space, the continuity rules in th e
Prediction Module may only require one-step search to the next largest landmark.
Obviously different functions are required in the Quantity Lattice .

The Quantity Lattice maintains the consistency of the real intervals associate d
with nodes by numeric constraint propagation along the search paths in the graph .
This is straightforward, but the issue is complicated when we include arithmetic

6

expressions as nodes in the graph for expressing period durations . Information con-
straining the end points of a period will also constrain the duration of a period, an d
vice versa. The Quantity Lattice employs 'interval arithmetic' and 'relational arith-
metic' to move information about intervals between the expression node and its argu-
ment nodes [Simmons1986a] . To facilitate this propagation, whenever a duration nod e
is created in the Time Box graph, additional expression nodes are created to yield each
argument so that information can flow in both directions. For example, suppose we
have time point nodes t_a_3 and t_a_4 and we create the duration node :

(t a 4 - t a 3)

This duration will have an associated interval, and if this is modified the intervals for
t_a_3 and t_a_4 may be modified as a result. Therefore, the Quantity Lattice als o
creates the following nodes :

((t_a_4 - t_a_3) + t_a_3)
(t a 4 - (t a 4 - t a 3))

The first of these is connected with an = arc to t_a_4 and the second with an = arc t o
t_a_3, then information about intervals can flow in either the time points to duration o r
duration to time points direction . It is for this reason that the binary addition operato r
must also be introduced .

4 . Quantity Spac e
The Quantity Space module defines what a qualitative value for a variable can be .

Different researchers have expressed qualitative values in different ways, and the quan-
tity space has not been used consistently . The approach taken in the "predictiv e
engine" is to say: "whatever the quantity space is, it can be represented as some set of
directed graphs" . So for example, (+,0,-) qualitative values can be expressed as a
graph with three nodes, +, 0, and - . Then ,

+ has interval (0,+oo)

0

	

"

	

"

	

[0,0]
(-00,0)

Also, Kuipers' totally ordered sets of landmark values [Kuipers1985a] may b e
expressed by having a graph for each variable . Other researchers have chosen to use a
'global' quantity space, rather than have a separate one for each variable . It may be
desirable to use a common space for variables with a common meaning, e .g. the level s
of two coupled tanks .

The Quantity Space should 'hide ' the digraph implementation from the reasonin g
mechanism. So, for example, if (+,0,-) values are used for the higher order deriva-
tives, as in [Williams1984a], then the Quantity Space should handle the semantics o f
this use. This means servicing requests from the reasoning mechanism about how
values may change and how values combine in constraints .

The Quantity Space module must include functions for the creation of landmar k
points (especially if landmark discovery is employed in the reasoning mechanism) .
When a group of variables connected by a single arithmetic constraint/equation in the

7

model must all reach landmarks in their respective quantity spaces simultaneously ,
these landmarks are called 'corresponding values' [Kuipers1985a] ; 'corresponding
values' may be seen to constitute arithmetic relations between nodes appearing in th e
Quantity Space digraph .

5. Time Box
The term 'time box' was originally coined by Williams [Williamsl986a] . How-

ever, it is not completely clear from this reference what the 'time box' actually is .
Williams attempts to characterise it in terms of its required functionality :

(i) What questions will be asked?
(ii) What temporal information is available ?
(iii) What inference is needed to answer these questions ?

It is clear that the 'time box' is considered with respect to some proposed application .
Williams represented the 'time box' using Simmons ' Quantity Lattice; from this w e
can deduce an initial architecture for the module and suggest a functionality .

The Time Box uses a digraph to hold time points (the beginning and end of tim e
periods) as nodes, and what is known about the order in which these time points occu r
is expressed by labelled (<,=,>) arcs between the nodes. Time points are either
observed (if a system variable is being treated as an input to the "predictive engine")
or they are generated by the Prediction Module. A time point marks the place where
there was a qualitative change of value in some variable . Requests to create a new
time point for a variable will come to the Time Box, and this module is responsibl e
for managing the Quantity Lattice in updating the Directed Graph that holds the tem-
poral information. Any new information about when a time point occurred with
respect to other time points will be represented by connecting arcs to it . Note that the
Time Box is using symbolic time (just as the Quantity Space is symbolic) . Any infor-
mation about the actual (real) time at which time points occur is stored in the interva l
associated with each node.

As the "predictive engine" runs, the Time Box constructs a history map showin g
how the time periods are ordered . Two points arise from this . Firstly, depending on
the applications, there may come a time during the execution when information befor e
a certain time point could not possibly help in predicting behaviour, and it may b e
more efficient to delete it (or at least take it out of the graph search space) . For this
reason, history deletion functions are provided in the Time Box . Secondly, it is not
absolutely clear that this module is what Williams meant by 'time box' . It is possibl e
that Williams intended the variables' values to be held with the relevant time periods .
This is the function of the Event Map module ; the Time Box only holds information
about time periods, not value/period tuples (i .e . events) .

To those familiar with temporal logics, the Time Box may appear as a 'point -
based' implementation . The background to our adopting this approach has alread y
been explained . A set of rules in the Time Box allow queries to make use of Allen' s
'period-based' temporal logic [A11en1983a], based on a subalgebra of the 13 possibl e
relationships, by translating to 'point-based' relations .

8

As with the Quantity Space, an important function of the Time Box is to 'hide '
implementation details from the higher level modules of the system . As part of this
remit, the Time Box handles period durations smoothly by interfacing to their imple-
mentation as arithmetic expression nodes in the graph. The inclusion of arithmetic
expression nodes is a source of great inefficiency in the Quantity Lattice . If arithmetic
expression nodes are not absolutely necessary, it must be considered whether the func-
tionality for handling durations and corresponding values can be moved from the
Quantity Lattice to the Time Box and Quantity Space modules respectively .

6. Event Map
The job of the Event Map is to present 'events' as propagation units to the Pred-

iction Module, and to relay requests for information to the core of the system and pas s
back results. An 'event' in this architecture is a qualitative value/temporal period
tuple; it represents the fact that a particular variable held a particular value for a partic-
ular period or moment of time. There are two types of event in the system . The firs t
kind are termed 'period events' ; they express that a variable holds a value between tw o
distinct time points. The other kind are 'moment events' which express a variable' s
value at a time point. In much work on temporal logic the term 'interval' is used t o
refer to a 'period', and the term 'point' to refer to a 'moment' . However, in thi s
paper, 'period' and 'moment' are used to refer specifically to temporal concepts, hope -
fully avoiding confusion . The 'event history' for a variable will consist of a sequenc e
of alternating 'period events' and 'moment events', showing how that variable's quali-
tative value changes over time . For example, assuming a variable 'a' uses (+,O,-)
semantics in its quantity space, the following might represent a section of its event his-
tory :

event(a,+,(2,3))
event(a,0,3)
event(a,-,(3,4))

The first is a period event, expressing 'a"s value between time points 2 and 3 . The
second is a moment event expressing the value at time point 2 . The third is a perio d
event. Note that the event history is 'concise' [Williams1986a] ; this means that a new
event is only encountered when the variable's qualitative value changes . For example ,
the following event history is not concise :

event(a,+,(2,3))
event(a,+,3)
event(a,+,(3,4))

The Event Map presents events for propagation by the Prediction Module, an d
decomposes events into their constituent factors for expression in the relevant core
modules. We may view this process as a 'mapping' from events (the external appear-
ance) to 'pseudo-events ' (the internal representation), as follows :

- 9

event(a,+,(2,3))—> pseudo_ event(variable(a) ,
(quantity(zero) ,quantity(+oo))

(timepoint(a,2),timepoint(a,3)))

event(a,0,3)-* pseudo_event(variable(a) ,
(quantity(zero),quantity(zero))
(timepoint(a,3),timepoint(a,3)))

7 . Prediction Module
The modules so far described play only a supporting role in the overall "predic-

tive engine". The main inference mechanism resides in the Prediction Module . This
module embodies a synthesis of qualitative reasoning techniques for continuou s
dynamic systems . The techniques currently being used include those found in system s
such as Kuipers' QSIM [Kuipers1985a] and those that handle feedback effects (and
pure time delay) [Williams1986a, Williams1984a] .

The Prediction Module takes as input a set of equations or constraints represent-
ing the assumed model, and generates a prediction of the qualitative behaviour of the
system. These constraints currently include the standard arithmetic relations, and the
functional operations of monotonic relations and integration/differentiation, with primi-
tives for handling pure-time delay under development.

The interpretation of these constraints is encoded declaratively in a set of Predic-
tive Rules for handling arithmetic relations, qualitative integration, etc . The Predictive
Rules are employed by a Predictive Algorithm. This is a procedural encoding of what
might be called 'meta-level inference', expressing when and how certain rules shoul d
be applied. The algorithm is event-based and it is constructive (as opposed to th e
generate-and-test algorithm of QSIM) . The algorithm attempts to determine how a
system evolves qualitatively in response to an input function expressed in qualitativ e
terms. The input variable(s) gives us a notion of exogenous variable which is used to
determine a dynamic causal ordering using the algorithm of Iwasaki [Iwasaki 1988a]
(or rather a polynomial-time implementation developed in the ESPRIT project P82 0
[Porte1988a]) . The results of causal ordering allow the Prediction Module to deter -
mine a unique direction of propagation of information through the system model .

The system model can be differentiated (up to two times, depending on th e
modelling primitives used) and information about higher-order derivatives propagate d
through the model . In this way, the input function can be more fully characterised .
Though the Predictive Rules are based on the properties of continuous an d
differentiable functions of time, the Predictive Algorithm can also manage jum p
discontinuities in the input function; these are propagated as discontinuities through th e
system model. Note the difference between this scheme and QSIM : whereas QSIM
considers a qualitative value to be a magnitude/derivative tuple, the Prediction Module
only considers magnitude and expresses derivatives as variables in higher-order model s
of the system .

The constraints are partitioned into two classes depending on whether they impl y
the passage of time . The two sets of constraints are applied separately and sequen-
tially by the Predictive Algorithm in stages called 'causal propagation' and 'qualitative

- 10 -

integration/transition analysis' . This partitioning is directly analogous to the structure
of conventional numerical simulations of continuous dynamic systems . Static relations
(which exclude integration/differentiation and relations involving pure time delay) pro-
pagate instantaneously (i .e. during the same moment) . Dynamic relations (involvin g
integration/differentiation) require some time to elapse during propagation ._ The. nature
of the qualitative change taking place determines the type of delay that occurs durin g
integration: point-to-interval transitions occur in infinitesimal time (though not instan-
taneously), whereas interval-to-point transitions require some non-infinitesimal time t o
pass . If there are several interval-to-point transitions that may occur, then transition
ordering is required (though we use a heuristic that seems to avoid unnecessary
generate-and-testing). Finally, some of these interval-to-point transitions may not
occur at all (i.e. they may take infinite time), and a scheme for asymptotic reasoning i s
under investigation .

Also under investigation is a system for utilising information about pure time
delays expressed in the model. Such rules will enable inferences to be made when th e
system being modelled is subject to transport delays. It is to be hoped that one of th e
advantages of using an event-based scheme is that pure time delay can be handled in a
natural way . The possibility of using 'order of magnitude' relations on delay parame-
ters to express time-scale abstraction hierarchies [Kuipersl987a] is being pursue d
within one of the demonstrators of the ESPRIT project P820 where a lumped parame-
ter model is used to avoid consideration of spatial derivatives .

In addition to this equational form of representation, the issue of interfacing t o
other forms of knowledge is being examined within the work on the "predictiv e
engine". In particular, techniques and a methodology for overcoming qualitative ambi-
guity that involve the use of more detailed "empirical" knowledge of functional rela-
tionships between specific system variables are under investigation . Such ambiguity i s
bound to be a problem where there is a summation point that it not part of a feedbac k
loop, or where the feedback loop is cross-coupled with others . This issue is con-
sidered paramount for the realistic application of qualitative techniques .

The Prediction Module will eventually contain interfacing functions that us e
information held in the QUIC toolkit knowledge representations, particularly the Com-
ponent Based Language (CBL) "dynamic" domain . Empirical sources of knowledge in
the toolkit will also supply the Prediction Module (as mentioned above) . Current work
is only focusing on the information content that must be present in order to make use-
ful deductions . Once a methodology has been completely determined the appropriat e
interfaces will be implemented.

8. Conclusion

The architecture of a general-purpose "predictive-engine" for reasoning about the
dynamic evolution of physical systems has been described .

The design of the "predictive engine" makes use of the work of a number o f
Qualitative Physics researchers, notably Williams, and it should be noted that this work
is continually evolving . As new algorithms and approaches are evaluated and deeme d
fit for inclusion in the "predictive engine", it is to be hoped that the generality of the
architecture will allow this to be done without substantial re-coding .

-11 -

We argue for the usefulness of a conceptual separation such as this as opposed t o
the development of more restrictive implementations perhaps only illustrating one tech-
nique. Current work is focussed on the development of a Prediction Module capable
of operating on laboratory-scale equipment . The prototype "predictive engine" i s
developed in Prolog, and work is now underway to re-implement it in Lisp for inclu-
sion in the QUIC toolkit.

Acknowledgement
This paper describes developments undertaken in the ESPRIT project P820, partly

funded by the Commission of the European Communities within the frame of the
ESPRIT programme. Project P820 consists of a consortium composed of CISE ,
Aerospatiale, Ansaldo, CAP Sogeti-Innovation, F .L. Smidth, Framentec, and Heriot -
Watt University . The authors want to acknowledge here the contribution of all th e
members of the project team to the ideas expressed in this paper, while taking full
responsibility for the form in which these ideas are expressed .

References

Allen1983a .
J.F. Allen, "Maintaining Knowledge about Temporal Intervals," Communications
of the ACM, vol . 26, no. 11, pp . 832-843, 1983 .

Iwasaki 1988a .
Y. Iwasaki, "Causal Ordering in a Mixed Structure," in Proceedings of Sevent h
National Conference on Artificial Intelligence (AAAI-88), vol. 1, pp. 313-318 ,
Saint Paul, Minnesota, U.S .A., 1988 .

Kuipers 1985a .
B. Kuipers, "The Limits of Qualitative Simulation," in Proceedings of Ninth
International Joint Conference on Artificial Intelligence (IJCAI 9), vol . 1, pp .
128-136, Los Angeles, U .S .A., 1985 .

Kuipers1987a.
B. Kuipers, "Abstraction by Time-Scale in Qualitative Simulation," in Proceed-
ings of Sixth National Conference on Artificial Intelligence (AAAI-87), vol . 2, pp .
621-625, Seattle, Washington, U .S.A., 1987 .

Leitch 1989a:
R.R. Leitch and A. Stefanini, "High-Level Tools for Intelligent Automation, " to
appear in International Journal for Artificial Intelligence in Engineering, 1989 .

Noke11989a .
K. Nokel, "Convex Relations Between Time Intervals," in Proceedings of S .
Osterreichische Artificial-Intelligence-Tagung, ed. K. Leidlmair, Informatik -
Fachberichte 208, pp . 298-302, Springer-Verlag, Berlin, 1989 .

Porte 1988a.
N. Porte, S . Boucheron, J. Sallantin, and F . Arlabosse, "An Algorithmic View a t
Causal Reasoning," in Proceedings of Second Workshop on Qualitative Physics ,
ed. F. Gardin, IBM Paris Scientific Centre, Paris, France, 1988 .

- 12 -

Simmons 1986a.
R. Simmons, "Commonsense" Arithmetic Reasoning," in Proceedings of Fifth
National Conference on Artificial Intelligence (AAAI-86), vol. 1, pp. 118-124, Phi-
ladelphia, U.S.A., 1986.

Vilain 1986a.
M. Vilain and H. Kautz, `Constraint Propagation Algorithms for Temporal Rea-
soning," in Proceedings of Fifth National Conference on Artificial Intelligenc e
(AAAI-86), vol. 1, pp. 377-382, Philadelphia, U.S .A., 1986 .

Williams1984a.
B.C. Williams, "Qualitative Analysis of MOS Circuits," Artificial Intelligence ,
vol. 24, no. 1, pp. 281-346, North-Holland/Elsevier, Amsterdam, 1984 .

Williams1986a.
B.C. Williams, "Doing `Time: Putting Qualitative Reasoning on Firmer Ground,
in Proceedings of Fifth National Conference on Artificial Intelligence (AAAI-86) ,
vol. 1, pp. 105. 112, Philadelphia, U .S.A., 1986.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

