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1 Introduction

This research attempts to extend the conventional model-based diagnosis (MBD) paradigm [4, 13] to
the domain of cardiovascular physiology, where feedback mechanisms of varied timescales are prevalent.
Most MBD systems have been developed within the domain of digital electronics, where typical device
models lack feedback and have well-defined inputs and outputs. However, the basic MBD paradigm, as
developed for GDE [4], places no such restrictions upon a diagnosible model. GDE only requires an ability
to propagate information throughout the model in order to derive contradictions between predicted and
observed variable readings. Feedback loops do not interfere with this process as long as the feedback model
represents only the steady-state relations between variables.

Steady-state models of physiological systems are not hard to find, however, physiological systems are
rarely in steady state (even at fairly coarse observational granularities) due to the plethora of homeostatic
mechanisms, which frequently alter some variables in order to stabilize others. This complicates MBD,
because contradictions during constraint propagation can ambiguously indicate either faults or temporary
instabilities. To ameliorate this problem, we propose two extensions to the GDE methodology. First,
observations must take place at different time slices. Second, the conflicts and candidates generated at
each slice must be analyzed in light of information about the general time-varying behavior of the system’s
component mechanisms.

2 AI in Medicine versus Model-based Diagnosis

Most Al research in automated diagnosis lies within one of two fields: Alin Medicine (AIM) or Model-based
Diagnosis (MBD). Contemporary work in both areas uses “first-principle” or “deep-model” information
as the basis for diagnostic reasoning. Ilowever, the stereotypical domains of each field: physiology and
electronics, respectively, admit dilferent types of models.

Electrical devices consist of well-defined components having local properties that are accurately de-
scribed by physical laws. Standard MBD techniques propagate information through these component
models, compare predictions to observations, and close in on the faulty component, i.e., one whose local-
variable values violate a physical constraint. The constraint-based reasoning indigenous to MBD supports
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dependency tracking, which in turn paves the way for assumption-maintenance machinery such as the
ATMS [5). De Kleer and Williams [4] capitalized on the powers of constraints and the ATMS to design
The General Diagnostic Engine (GDE), which provides a domain-independent means of (a) diagnosing
multiple faults, and (b) formally determining ‘best’ measurements.

Local components with well-defined behaviors are also abundant in physiology, but they predominantly
occur at a microscopic granularity. The coarse-grained components of physiological systems are far more
complex than those of electronics. Even a simple blood vessel is far removed from the idealized conduits of
electronics and hydraulics. When blood flow increases in a vessel, its walls expand and decrease resistance,
but if flow rises considerably, regulatory mechanisms cause resistance increases. A physiological system
consists of many such components plus the local and global regulatory mechanisms that monitor them.
This makes deep-model development significantly more difficult in physiology than in electronics.

AIM researchers have combatted this complexity by exploiting empirical associations between variables
as the basis for deep models [12, 14]. Although these models often lack (a) a solid foundation in physi-
cal laws, and (b) a clear mapping between modular physical structures and behaviors, they nonetheless
illustrate first-principle relationships between physiological mechanisms and behaviors.

Patil [11] argues that MBD offers little hope for medical diagnosis, because current medical knowledge
provides few causal pathways from anatomical structures (i.e., physical components) to physiological be-
haviors. However, ‘component’ need not imply a physical object, just as ‘structure’ in qualitative physics
can mean anything from ‘physical topology’ to ‘differential equation’. Instead, components may be abstract
regions or mechanisms, so long as they exhibit modularity. For instance, Ironi et. al. [9] show the utility
of compartmental models in medical diagnosis. Compartments have no necessary mapping to physical
space, yet they abstract physiological systems to a level of interacting modules. Hence, the extension of
MBD to medicine should not be dismissed solely on the grounds given by Patil, because many standard
physiological ontologies are modular yet non-anatomical. By representing these modules as constraints and
by employing a suitable constraint-propagation technique, we can make physiology amenable to the MBD
paradigm.

3 Extending MBD to Physiological MBD

This research uses physiological mechanisms as the prerequisite modules for MBD. A properly working
mechanism satisfies constraints among its local and shared variables. After a perturbation, some mecha-
nisms have a non-zero delay period before their constraints become resatisfied, and some may have only a
finite duration, after which their constraints become violated again. Variations in the delays and durations
of mechanisms account for the multiple time scales of physiological activity.

When faulty, a mechanism will fail to satisfy its constraints even during its ‘duration’ period. So a
PMBD (Physiological MBD) system should detect faulty mechanisms in the same way that GDE finds
a broken adder. Ilowever, the temporal aspects of mechanisms lead to problems. To wit, if we take
observations from a real physiological system, propagate them through the mechanism constraints, and
derive a contradiction, then at least one of the mechanisms must either be (a) faulty, or (b) in a delay
or post-duration period. Conventional MBD algorithms assume only case (a), but systems with feedback
mechanisms, especially of multiple time scales, must admit both possibilities.

As a further complication, a medical diagnostician often does not know the time at which a fault
first oceurred. This precludes complete knowledge of which regulatory mechanisms should be active at
symptom-observation time. But by taking measurements at different times, the diagnostician can gain
relative temporal information which can help disambiguate faulty from inactive mechanisms.

In short, the temporal aspects of both physiological mechanisms and the diagnostic process necessi-
tate two important extensions to the MBD paradigm: (1) observations at multiple time slices, and (2)
comparative analyses of diagnoses generated in different slices, in light of temporal information associated
with the physiological mechanisms. We consider these issues in more detail after first describing Widman'’s
constraint-based modeling technique.
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4 Widman’s Constraint-based Modeling Technique

Widman [15, 16] uses a modeling technique based on classical systems analysis to capture the functional
relationships among objects in a system whose parameters can be described with flexible precision. In
this context, an “object” is a measurable or potentially measurable variable in the system. For example, a
model of a car might include as objects, or variables, the position of an accelerator pedal and the rotational
velocity of the axle. The functional relationships, or mechanisms, that relate the objects to each other are
represented as links among the objects. In the case of a car model, for example, the output of the pedal
position object might be linked by a linear relationship to the input of the axle velocity object. This
relationship would then represent abstractly the mechanism by which the pedal position regulates axle
velocity. In a more detailed model, this relationship would be represented by, for example, the mechanisms
in the engine by which pedal position affects the axle velocity.

The fundamental notions are: (1) each object is a quantity or set of quantities (see below) whose
magnitude(s) are determined by its relationship with each of its inputs. These relationships are the ezternal
mechanisms by which the object is aflected by the inputs. (2) objects fall into characteristic types for a
given system being modeled. For example, a fluid-flow system would have storage containers, valves,
sources, and sinks. An electrical system would have capacitors, resistors, and inductors, as well as sources
and sinks. Each object, or variable, type has characteristic relationships to its inputs. For example, storage
containers sum their sources and subtract their sinks, while valves divide their fluid inputs in accordance
with their valve position inputs. These characteristic relationships reflect the internal mechanisms of the
objects being modeled.

Some object types can be complex. For example, a distensible fluid storage container would contain, at
a given moment, a certain volume of fluid stored at a certain pressure associated with a certain compliance
(the change in pressure resulting from an incremental change in stored volume). In the cardiovascular
system, the arteries and veins require representation of yet another aspect, namely the net effect of the
inputs that modify the vessel compliance independently of the contained volume. Thus, (3) objects of
complex type represent several scalar quantities whose magnitudes are determined by relationships with
each other. For example, in the distensible fluid-storage type object, the pressure is determined by the
current volume and the current compliance. (4) the relationships between inputs and an object and the
relationships within an object can be described as difference equations. And, (5) the parameters in the
difference equations may be left unspecified if they are not known or may be estimated with whatever
semi-quantitative precision is available. Unknown parameters are assigned default values that generate
reasonable qualitative behaviors or envisionments.

The envisionment method for this model is direct numerical simulation. Unlike QSIM [10], this forward
reasoning method does not permit multiple behaviors to be inferred from a given model. Rather, each model
yields exactly one behavior. Multiple behaviors are obtained by creating a set of models to represent the
range of reasonable parameter values. This technique proves useful in modeling complex systems with
numerous feedback loops, and many parameters that are difficult to estimate precisely but that can be
estimated approximately. Such complex systems have traditionally been difficult to represent and simulate
by pure qualitative methods.

Even in a relatively simple heart model from cardiovascular domain [17)], there are a dozen individual
feedback relationships and several dozen parameters that cannot be estimated in individual patients. Per-
haps because the cardiovascular system has evolved to be stable under stress [8], the model that represents
it is likewise well-behaved under a variety of conditions [17].

An attractive feature of this semi-quantitative technique is that the explicit mapping onto numerical
difference equations of the external and internal relationships, or mechanisms, that determine each object’s
behavior, permits expectation-driven diagnostic reasoning. For this purpose, each of the difference equa-
tions is considered to be a constraint equation that is satisfied at steady-state but not during transient
changes or in faulty states. Then, each object’s behavior is equivalent to one or more constraint equations
that can be used to test for consistency among the inter-object and intra-object mechanisms of the model’s
objects [15, 16]. As noted above, the ability to detect failure of constraints is fundamental to model-based
diagnostic reasoning.

Control systems frequently include feedback loops that operate at characteristic time scales. For ex-
ample, the loop by which the sympathetic nervous system regulates heart rate operates on the order of
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seconds, while the loop by which volume depletion regulates fluid excretion operates on the order of a few
hours. Another advantage of mapping object behaviors onto explicit mathematical equations is that these
time scales, and the delays they imply, can be included in diagnostic models. Thus, the model representing
the assumption that cardiac contractility fell within the past hour would support the inference that (i.e.,
include the control loops predicting that) the heart rate would increase in compensation, but would not
support the inference that compensatory fluid retention could be observed. The parallel model for the
assumption that cardiac contractility fell several weeks ago, in contrast, would support the second infer-
ence. It would exclude the first inference, however, because the short-term mechanism adapts to the new
blood pressure within a few days, and thus is no longer active at the second time point. This flexibility
of representation follows naturally from the explicit mathematical representation of the behavior of the
objects that constitute the system being modeled.

Finally, the object-oriented aspect of the semi-quantitative modeling technique supports hierarchical
diagnosis. A limitation of the equations describing object behavior is that they cannot describe the mech-
anisms underlying them. The symbolic data for each object, in contrast, can point to a submodel that, in
abstract, is represented by the object.

For example, the link between blood pressure and the sympathetic nervous system can usefully be
thought of as a direct causal relationship. In fact, the relationship is complex: blood pressure is sensed
by mechanical stretch receptors in the carotid sinuses, located in the carotid arteries, and the aortic arch.
These receptors regulate nervous system inputs to poorly understood areas in the brainstem, which then
modify the activity of the sympathetic nervous system. This extended reasoning chain can be represented
within the model as a submodel. Such a submodel would be useful in diagnosing, for example, patients
with syncope (loss of consciousness). One consideration in these patients is excessive sensitivity of the
carotid sinuses, leading to inappropriately large decreases in blood pressure in response to pressure on the
carotid arteries. The model can ask about a history of neck surgery or throat cancer when exploring this
diagnosis only if the deeper causal chain is available to it. In general, of course, the simpler, more abstract
relationship is preferable.

5 The PMBD Diagnostic Scenario

This work addresses situations in which the diagnostic program has data from tests taken at multiple time
slices during the course of the ailment. The program freely moves about the time slices gathering data
and refining candidates. This “time hopping” is analogous to a doctor’s ability to check a patient’s history
or to further analyze samples or specimens taken from the patient at earlier times. ! Time hopping will
often create situations in which the same variables have not been considered at all of the time points.
Our diagnostic procedure accounts for these across-time data-set differences in comparing candidates from
distinct time slices.

6 Temporal Enhancements of Model-Based Diagnosis

To handle the temporal aspects of PMBD, we enhance the basic MBD operations of conflict and candidate
generation with focusing heuristics that exploit the delays and durations of mechanisms. These heuristics
rely heavily on the presence of multiple time points of observation, which lead to conflict and candidate
sets associated with each temporal slice.

Let ® be the set of observation time points, where each point is defined relative to an estimated ‘time
zero’ at which the first fault(s) occurred. ? Next, Vt; € ® let MV/(t;) = {V : measured_variable(V,t;)} and
PV(t;) = {V : value_predicted_for?(V,t;)}, where predictions are derived from observations via constraint
propagation. Conflicts occur when the sign of variable’s normalized predicted value disagrees with the sign
of its normalized observed value. Then, Vt; € ® there exist Conflicts(t;) and Candidates(t;) derived solely
from MV(t;) and the mechanism constraints.

1This scenario also occurs during data-intensive types of diagnosis such as core-dump analysis, where the diagnostician
can look at time-tagged data points but certainly does not want to look at ALL of the data.

2Qur best estimate of time zero is the time at which the first symptoms were observed (by the physician) or reported (by
the patient).
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‘Active’ assumptions about mechanisms make up the conflicts and candidates, where an ‘active’ mech-
anism is both unfaulted and operating within its ‘duration’ period. Conversely, a ‘dormant’ mechanism
is unfaulted but not within its duration period. We assume that no faults are intermittent, so a faulted
mechanism will never satisfy its constraint, while a dormant mechanism will only have violated constraints
during delay and post-duration periods. This section presents heuristics for determining whether an inac-
tive mechanism is faulted or dormant.

A conflict consists of a disjunction of —active(M) assumptions, while a candidate is a conjunction
of =active(My)s that logically satisfies each conflict. The ‘suspect mechanisms’ of a time slice are those
involved in conflicts:

SM(Mg,t;) « 3C € Conflicts(tj) 3 —active(My) € C (1)

Also define the ‘incriminating measurements’ of mechanism M during a particular time slice as those sets
of observed variables that led to the derivation of a conflict that contains M;:

IM(My,t;) = {S:5C MV(tj) A 3C € Conflicts(t;) 3
—active(My) € C A supporting_measurements(C) = S} (2)

As shown by de Kleer and Williams [4], if the constraint propagator makes only deterministic predictions
based on a given observation set, then the predictions derived by any superset of those observations will
be a superset of the original predictions. An analogous type of monotonicity pertains to observation sets
in different time slices. Namely:

MV(t:;) C MV(t;) = PV(t;) C PV(t;) (3)

Unfortunately, the above antecedent entails no strong relationships between Conflicts(t;) and Conflicts(t;),
since the antecedent says nothing about the values of the observed variables. Those values may differ be-
tween observation times, thereby leading to completely different conflict sets, regardless of the similarity
between MV (t;) and MV(t;).

However, the fact that a mechanism M} appears in a conflict of ¢; but not of ¢; indicates that M; is
probably not faulty, but that it might have been dormant at t;.

Vi, g, k: [MV(t;)) C MV(t;) A SM(Mg,t;) A ~SM(Mg,t;)]
~+ dormani(Mg,t;) (4)
Above, ‘~+’ denotes a heuristic implication. The relationship between the M Vs indicates that the constraint
propagator had at least as much information at t; as at ¢;, but it could not find a reason to suspect M;.

In fact, a weaker antecedent that employs only My’s incriminating measurement sets, yields the same
confidence in the conclusion:

Vi, j, k:[[VS € IM(M,t;) : S C MV(t;)] A SM(Mg,t;) A ~SM(My,t;)]
~+ dormant(Mj,t;) (5)

The above heuristic becomes stronger with the addition of temporal information about M:

Vi, j, k: [[VS € IM(My,t;) : S C MV(t;)] A SM(Mg,t;) A ~SM(Mg,tj) A
t; < delay(My) < tj < delay(My) + duration(M})]
~+ dormant(Mg,t;) A became_active(My, (t;,1;)) (6)
where the became-aclive predicate implies that the mechanism went from dormant to active sometime
between the two time points.

Conversely, the sudden appearance of a mechanism within a conflict set (that has no more incriminating
information than a previous conflict set) may indicate a shift to dormancy rather than a fault:

Vi, j k: [[VS € IM(Mg,t;) : S C MV (t;)] A ~SM (Mg, t;) A SM(Mg,t;) A
delay(My) < t; < delay(My) + duration(M;) < tj]
~ became_inactive(My, (t;,t;)) A dormant(Mg,t;) (7)
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These hypothesized transitions between dormant and active states provide grounds for pruning con-
flicts and candidates. Specifically, became_active(My, (t;,t;)) encourages us to favor candidates containing
—aclive(M;) for all observation times

th € 3ty < delay(My) < tj. (8)
became_aciive( My, (ti,1;)) also advocates the removal of ~active(My) from all conflicts at times
ta€® 3 t; < delay(Mi) < tg < delay(Mi) + duration(My). (9)
Similarly, became_inactive(My, (;,t;)) recommends candidates containing —active(M;) for time slices
o €D 3 ty > delay(Myg) + duration(Mg) > t;. (10)
It also supports the removal of —active(M;) from all conflicts at observation times
tg € P 3 delay(M;) < tg < delay(My) + duration(My) < ¢;. (11)

In sum, the above heuristics integrate information about conflicts, the measurements used to derive
them, and the normal temporal behavior of mechanisms to differentiate dormancies from true faults.
Although the grounding of these heuristics in standard GDE conflicts supports the diagnosis of multiple
faults, the heuristics assume that all faults happened at time zero. Hence, all expected reaction times
(i.e., delays) of regulators are measured relative to the time of the initial perturbations/faults. Improved
heuristics that allow for multiple time-varying faults would require the relativization of delays to the times
of particular perturbations that normally trigger each mechanism. Such an improvement would enable
diagnosis of situations where regulators cause perturbations that trigger other regulators. However, for the
time being, we must content ourselves with situations in which the true faults happen at time zero while
dormancies can happen anytime.

7 An application of Physiological MBD

Consider a simplified version of Widman’s cardiovascular model [17] in which we consider only ten vari-
ables: blood volume (BV), extracellular volume (ECV), fluid intake (FI), heart rate (HR), mean arterial
pressure (MAP), pulmonary capillary wedge pressure (PCW), renal blood flow (RBF), salt retention (SR),
sympathetic nervous system stimulation (SNS), and urine output (UO). The constraints in the table below
represent relationships between the normalized values of the above variables. The normalized value of a
variable is given by its current value divided by its normal value, minus one. Thus, the normalized values
of the variables in a system at normal steady state will all be zero.

( Mechanism Constraint | Delay | Duration |

Impulse Transmission (IT) HR = SNS 0 00
Baroreceptor Response (BR) SNS = -.6*MAP 0 1 day
Tubular Retention (TR) SR = 3*SNS - .5*PCW | 2 hours 00

Urine Production (UP) UO = RBF - SR 3 hours 00
Fluid Conservation (FC) ECV =FI-UO 3 hours 00
Renal Hydraulics (RII) RBF = MAP - 1.75*SNS | 2 mins 3 days
Capillary Fluid Balance (CFB) BV = ECV 5 mins 0
Vascular Compliance (VC) MAP = .2*BV 5 mins oo

Table 1: Circulatory Model

As shown in Table 2, each mechanism has associated faults that can often explain its violated constraint.
Consider the case of an acute hemorrhage, which, in our model, implies a violated fluid-conservation
(FC) constraint. A hemorrhage reduces BV, which lowers MAP. The baroreceptors sense the pressure drop
and react by increasing SNS stimulation. A raised SNS increases both HR (which raises cardiac output
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I Mechanism | Faults l

Impulse Transmission (IT) Damaged Nerves, SA-node problems
Baroreceptor Response (BR) Faulty Stretch Receptors
Tubular Retention (TR) Improper potassium or protein levels, damaged JGA
Urine Production (UP) Problems in Glomerulus, Bowman’s Capsule or Tubules
Fluid Conservation (FC) hemorrhage, excessive sweating, diarrhea
Renal Hydraulics (R1I) abnormal renal resistance to blood flow
Capillary Fluid Balance (CFB) improper plasma protein levels
Vascular Compliance (VC) varicose veins, hardening of arteries

Table 2: Circulatory Faults

and MAP) and renin secretion, which leads to increased salt retention, SR. This causes fluid retention,
which decreases urine output, UO, which then helps raise BV and MAP up closer to normal.

Changes to HR occur almost instantly, but salt retention takes hours. Hence, the tubule-retention
(TR) mechanism will have a violated constraint for the first few hours after hemorrhage onset. Also, the
baroreceptor response tends to wear off after about a day of continually low MAP. Hence, the BR constraint
eventually becomes violated as MAP remains low but SNS returns to normal.

Assume that we measure 5 key variables (in a human) at three different time points and come up with
the normalized values of Table 3. The only missing data is the value of PCW at 16 hours.

[ Variable [ 1 hour | 16 hours [ 1.5 days ||
Fluid Intake (FI) 0 0 0 ]
Mean Arterial Pressure (MAP) -.1 -.06 -.05
Ileart Rate (HR) .06 .04 0
Pulmonary Capillary Wedge Pressure (PCW) -5 ki -2
| Urine Output (UQ) 0 -3 -3

Table 3: Observations

At each time slice, constraint propagation through the model leads to contradictions between the signs
of predicted and observed values. Ilence, PMBD determines the minimal conflicts and candidates for each
slice, as shown in Table 4. 3

| Time | Minimal Coﬁicts | Minimal Candidates:]
(BR,RIL.TR,UP), | (RH,CFB),(RU,FC),(RH,VC),(TR,CFB) (TR,FC) |
lhour | (IT,RILTR,UP), (TR,VC),(UP,CFB),(UP,FC),(UP,VC),
(CFB,FC,VC) (BR,IT,CFB),(BR,IT,FC),(BR,IT,VC)
16 hours (CFB,FC,VC) (CFB),(FC),(VC)
15 dars [BR.IT), (BR,CFB),(BR,FC),(BR,VC)
(CFB,FC,VC) (IT,CFB), (IT,F_C), (IT,VC)

Table 4: Conflicts and Candidates

In Table 4, note that the 16-hour slice holds only one conflict and hence singleton candidates. So the
PMBD system might conclude that the extra conflicts in the first and third slice are clearly due to dormant
mechanisms. Hence, one of CFB,FC or VC must be the faulted mechanism. Although this is true, the
above reasoning is incorrect due to an unmeasured PCW at 16 hours. PCW is a necessary observation in

3In Table 4, the notation (M, M;, ..) is shorthand for = active (M;)O=active(M;)9.., where O denotes ‘or’ for conflicts and
‘and’ for candidates.
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the derivation of the first two 1-hour conflicts. The absence of a PCW value at 16 hours indicates that
more conflicts could be derived in its presence. Thus, the BR, RH, TR, UP, and IT mechanisms are not
exonerated at the 16-hour slice, since each has PCW in its ‘incriminating measurements’ set at 1 hour.
Instead, we must apply the heuristics of the previous section to follow a more logically safe path to a
diagnosis.

Notice that TR and UP disappear from conflicts after the first measurement. This indicates that
heuristic (6) might be useful, but it does not apply between the 1-hour and 16-hour slices, since 4

IM(TR, 1.hour) = IM(UP, 1_.hour) = (MAP, HR, PCW,UQ) € MV (16_hours)

However, it does apply between the first and third time slices, since (a) M V(1_hour) C MV(1.5_days),
and (b) TR and UP both have delays greater than 1 hour. The successful applications of (6) yield:

became_active(T R, (1-hour,1.5_days)) A became_active(U P, (1_hour, 1.5.days))

This information, along with the satisfaction of relation (8), entails a preference, among 1-hour candi-
dates, for those containing TR or UP.

Conversely, the reappearance of BR in the 1.5-day conflicts (after an absence in the 16-hour conflicts)
indicates that the baroreceptors may lLave deactivated. The additional fact that IM(BR,1.5.days) C
MV(16_hours) permits the application of heuristic (7) to yield became_inactive(BR, (16_hours, 1.5_days)).
Furthermore, knowledge of BR's 0-delay advocates (via relation (11)) the removal of BR from all 1-hour
conflicts. This change removes all triplet 1-hour candidates, and it also indirectly exonerates the IT
mechanism, which no longer appears in any minimal candidates. Additionally, the 1.5-day candidates
containing BR become preferred. Table 5 shows the updated conflicts and candidates, as well as the
preferred (starred) candidates at each time slice.

l Time | Minimal Conflicts | Minimal Candidates ||
1 hour (RIILTR,UP), (RH,CFB),(RILFC),(RI,VC),*(TR,CFB)**(TR,FC)*
(CFB,FC,VC) *(TR,VC)*,*(UP,CFB)*,*(UP,FC)*,*(UP,VC)*,
16 hours (CFB,FC,VC) (CFB),(FC),(VC)
1.5 days (BR,IT), *(BR,CFB)**(BR,FC)*,*(BR,VC)*
(CFB,FC,VC) (IT,CFB), (IT,FC), (IT,VC)

Table 5: Revised Conflicts and Candidates

At the first and third time slices, the PMBD system can focus on the preferred candidates, each of
which can be reduced via the removal of the presumably dormant mechanisms. This reduction yields the
same three singleton candidates at each of the three slices: (CFB), (FC), and (VC). PMBD must then
determine the best time slice and variable at which to take the next measurement.

It pays off to measure variables within time slices at which the suspect mechanisms should be active.
Otherwise, PMBD is likely to derive more candidates with dormant mechanisms. Thus, PMBD prefers
to take measurements at time slices that have a minimum ratio Q(t;), of potentially-dormant mechanisms
among the slice’s preferred suspects:

| {Mi : PSM (Mg, ti) A PDM(My, t:)} || (12)
| {Ms : PSM (Mg, t:)} ||

Q(!,‘) =

where|| denotes set cardinality, and PSM stands for a ‘preferred suspect mechanism’: any mechanism that
is (a) within the most preferrable candidates of a time slice, and (b) not assumed dormant. Finally, a
‘potentially dormant mechanism’, PDM, is defined as:

PDM (Mg, t;) « t; < delay(My) V t; > delay(My) + duration(M}) (13)

In the above example, Q(1.hour) = 1/3, while Q(16_hours) = Q(1.5.days) = 0. The problem with
the first time slice is that fluid conservation (FC), a prime suspect, is potentially dormant there. PMBD

4Since, in this example, each mechanisms slice-dependent incriminating-measurements (IMs) consist of a single set, we
simplily the IM predicate to denote that set, instead of the more cumbersome set-of-sets used in the above general heuristics.
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must now choose between the latter two time slices. The 1.5-day slice seems most appropriate since it
has the same candidates (once PMBD reduces the preferred 1.5-day candidates) as the 16-hour slice, but
the 1.5-day candidates are based on more measurements. Also, the choice of best measurement within the
1.5-day slice should be easier, since fewer unmeasured variables remain.

Within the 1.5-day slice, the five unmeasured variables are SNS, RBF, SR, BV, and ECV. Looking
at the constraints in Table 1 for the three suspect mechanisms (FC, CFB, and VC), note that only two
unmeasured variables participate in those three constraints: BV and ECV. Measuring BV would exonerate
either VC, or both FC and CI'B (i.e., come up with a definitive diagnosis that VC was faulted). Similarly,
measuring ECV would exonerate either FC, or VC and CFB. None of the other 3 unmeasured variables can
exonerate any of the prime suspects. So, after one or two measurements, the PMBD system would know
that ECV = -.25, and that clearly contradicts the positive value predicted by VC (given FI = 0 and UO
= -.3, the earlier observations), but it agrees with the ECV value predicted by the conjunction of VC and
CFB and the observation that MAP = -.05. Hence, PMBD diagnoses the fluid conservation mechanism
as faulty, and potential causes such as hemorrhage, excessive sweating, or diarrhea must be considered.
A differentiation among these possibilities might require another round of MBD at a different granularity
and with a new set of mechanisms and constraints.

8 Related Work

A few recent projects [1, 7] have integrated temporal information into model-based diagnosis in order to
detect faults that only become evident during dynamic behavior. These approaches use dynamic models
for behavior prediction and then generate candidates based on the values of system variables over time.
However, the candidates themselves lack temporality: they hold at all times. Conversely, we perform
constraint propagation across steady-state models at different time slices to derive time-tagged candidates.

Qur approach is domain driven, since physiological systems often pass through a series of stages in
adjusting to perturbations, where each stage has characteristically violated constraints. Therefore, we
stick to the simpler (and more readily available in physiology) steady-state equations and apply them at
(hopefully) significant time slices.

This time-slice orientation ressembles recent work in data interpretation [2], since both projects pro-
duce slice-dependent explanations (i.e., p-interps for Decoste, candidates for us) and then compare them
across slices to provide global interpretations or diagnoses, respectively. However, DeCoste uses qualitative
dynamic models, requires an a-priori complete envisionment, and diagnoses faulty measurements rather
than mechanisms.

Finally, if we relax the distinction between faults and dormancies, our time-dependent-candidate ap-
proach is at least peripherally related to the intermittent-fault problem. The aforementionned stages of
physiological adjustment are often defined by perturbations caused internally by regulators. Whether these
count as intermittent faults is a matter of definition, but from a human diagnostician’s point of view, they
are symptom-causing factors whose causal origin (i.e., external or internal) is often irrelevant.

9 Discussion

We have shown how conventional model-based diagnosis can be applied to a medical domain. The important
prerequisistes to this extension are (a) a dissection of physiological systems into modular mechanisms, (b)
the representation of these mechanisms in terms of steady-state constraint equations, (c) the ability to
propagate observations through these constraints in order to derive contradictions between predictions and
observations, (d) the analysis of conflicts and candidates across multiple time slices in order to account for
the varied timescales of physiological mechanisms.

Widman'’s semi-quantitative modeling approach provides a modular view of physiological mechanisms
along with constraint equations summarizing their normal behaviors. This representation unifies the en-
visionment model used for predicting future behavior, and the diagnostic model for reasoning backwards
in time from symptoms to faults. This paves the way for multi-directional constraint propagation through
the many feedback loops of physiological models. The contradictions derived via constraint propagation
then enable standard MBD over the mechanisms involved in the derivation. However, the non-zero delays
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and finite durations of physiological mechanisms necessitate MBD at multiple time points in order to dif-
ferentiate faulted from dormant mechanisms. We provide a few of the necessary extensions to MBD such
as (a) heuristics for assuming dormancy based upon temporal knowledge of mechanisms and comparative
analyses of conflicts and candidates across time, (b) criteria for focusing diagnosis based upon dormancy
assumptions, and (c) guidelines for selecting measurements across temporal slices.

As future work, we hope to integrate the implemented aspects of this research with the theoretical
developments discussed above. Although Widman’s semi-quantitative simulator has been implemented
and employed in cardiovascular diagnosis, we have yet to use it for incremental model-based diagnosis;
that is, as a generator of both diagnostic hypotheses and next-best measurements. To this end, we must
also formalize measurement-making decisions across multiple time slices, hopefully via a temporal extension
of the popular information-theoretic approach of [4].

Finally, we hope to integrate fault models [3, 13, 6] into the PMBD framework, since some faults in
physiological systems are more easily described as abnormal variable settings than as violated constraints.
A combination of both representations appears advantageous for hierarchical diagnosis, since a violated
constraint at one level is often explained by the value of a lower-level variable. For instance, a violated
capillary fluid balance (CFB) constraint might point to a low plasma protein level. In addition, fault
modes will assist in intermittent-fault diagnosis, since many regulator-induced faults involve alterations to
common variables such as arterial resistance and venous compliance.
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