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Abstract

The proliferation of possible qualitative states can be drastically reduced in some
simulation contexts by incorporating information from observation. When internal
states of the model cannot be directly assigned from system inputs or other bound-
ary conditions, the distinction between monitoring and diagnosis can become
blurred, merging into the common problem of finding a. consistent version of the
simulation model. The number of possible states is reduced by the constraints in-
troduced by sensor measurements and may be further reduced by serial iteration
in the case where component states are locally determined but neither controlled
nor measured directly . This iteration should usually terminate very quickly, espe-
cially when a good selection of initial (default) states is known, and leads to a rel-
atively efficient simulation . It may be expedient to separate out this class of con-
straints for checking the results of simulation, as opposed to incorporating it into
the running of the qualitative model.

Introduction

Qualitative Reasoning often proceeds by discretizing parameters and behaviors that
are inherently continuous. However, some components or subsystems lend them-
selves to qualitative reasoning by having a natural set of discrete states which are
more suitable for characterizing behavior than the range of continuous variation
with those states .

In the projective simulations often studied (e.g ., Kuipers 86; Forbus 85), the objec-
tive is to predict the evolu~ nn of system state from a known initial configuration
through plausible successor states, without intervention or additional information
becoming available during the simulation . Such systems typically suffer from a
proliferation of possible states as the uncertainties in the occurrence, outcome, or
timing of critical landmark changepoints compound each other. Of course, this can



be reduced by reconvergent branching, intra-state constraints, state transition con-
straints, on up to global system constraints, but the residual number often remains
necessarily large since the qualitative model does not contain the information
needed to eliminate all unrealistic behaviors (Kuipers 86).
Applied simulations are usually intended to compare their simulated behaviors with
real physical systems, however, either to monitor for faulty physical behavior or to
test the adequacy of the model. Here too, the objective is to select a vector of com-
ponent qualitative states that together describe the system . These need to be con-
sistent with each other and with system boundary conditions (static simulation), or
a path through the space of such vectors (dynamic simulation), so that all parame-
ters in the vector change state in a globally consistent way. Here too, the branch-
ing factor can be high due to local uncertainty, ambiguity, or intrinsic inability to
distinguish between predicted outcomes . The control and reduction of such explo-
sive numbers has been the object of considerable effort within the QR community
(e.g ., Kuipers and Chiu 87).
It is the objective of this paper to propose methods which will produce correct and
reasonably chosen conclusions while avoiding combinatoric search within a restrict-
ed range of circumstances. We naturally do not claim to achieve completeness
without exhaustive search, but show how a single coherent or satisficing model
can be achieved for an important class of objects : those whose qualitative state is
determined entirely by the parameters at its connections with the rest of the sys-
tem.

The next section discusses the way that observation can be used to monitor with
ambiguous models and the role of diagnosis . The following sections show how the
use of state/parameter constraints can reduce combinatorics in simulating systems
with many such objects. The paper concludes with an example from a realistic flow
system .

Observations as Constraints

The use of observation to constrain or modify a simulation model, common in mod-
el-based diagnosis, can also reduce the number of possible expected behaviors in
qualitative simulation . For example, the usual qualitative simulation of a ball that
is thrown up in the air will predict that it either keeps rising or stops. When it
actually stops at time t', any possibility of its rising after t, can be rejected . An
observation constraint, requiring a parameter to have its observed qualitative value
at a particular time, is propagated along with the system's predefined constraints
by whatever inference engine drives the simulation . As in all local constraint
propagation, the addition of more constraints should cause solution sets to be
smaller and found more quickly.
Of course, if the observation prunes all qualitative possibilities, this is a mismatch
between observation and simulation that requires diagnosis to resolve. At the ex-
pense of completeness, the most common and economical monitoring assumption is
that diagnosis is unnecessary as long as any qualitative possibilities remain consis-
tent with measurements .
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Using observation to constrain simulation is the basic premise of model-based diag-
nosis (Davis and Hamscher 88 ; De Kleer and Williams 87; Scarl 87) . Sometimes
predefined alternative fault models explicitly replace part of the simulation (e.g .,
Kuipers 87, de Kleer and Williams 89), but model-based diagnosis frequently prede-
fines only expected behaviors and uses observational evidence as a guide to model
modification . However, integrating observation with simulation is less common as a
pruning technique for monitoring than in diagnosis, perhaps because it may seem
to compromise the independence of the simulation . Some workers have used mea-
surements to distinguish between alternative models (Forbus 87; Kuipers 87), but
at this point they are doing diagnosis rather than monitoring . We might wish to
carry specific types of failure modes along, however, effectively moving certain
considerations from diagnosis back into monitoring. We could explicitly represent
the possibility that an observation is itself in error, for example. Such possibilities
can simply propagate as additional hypotheses or branch points in the simulation,
as they do in diagnosis (Scarl 89).

In the following sections, confirmation by observation is used to markedly reduce
the proliferation of behavior for a useful class of components .

Components with Locally Determined State
The complexity of simulation can be reduced for a class of system components
whose states cannot be directly determined by commands or observations . This is
particularly appropriate to the "diagnostic monitoring" problem discussed in the
previous section, where monitoring potentially produces many possible states, and
the objective is to avoid having to generate all possible sensor predictions before
pruning with data from observation. It is diagnostic in that it modifies the model
to bring it into agreement with observation. It is not diagnostic in that it neither
assumes nor derives any fault models or incorrect behaviors. The "diagnosis," if
you will, is limited to selecting the qualitative state among the component's prop-
erly working states in which it is now operating. Rather than generating all possi-
bilities, one may begin by simply assuming an operating state and then "diagnos-
ing" that assumption if it incorrectly predicts observable data .
Let us use the term Components with Locally-determined State (CLSs) to mean
components that have the following characteristics:

" Component behaviors are classifiable into a well-defined set of qualitative states
{ Qi ), selected so that:

" Component state is determined, in correct operation, by the vector x of the
component's inputs, outputs, or other local parameters that constrain or are con-
strained by the its behavior. That is, there is some function f(x) which uniquely
determines the component state Qi .

CLSs may or may not have an associated default state, that is expected to deter-
mine its properly operating behavior in the current environment.



Component "malfunctions" are limited to their not being in their assumed states .

We will refer to

as the Parameter-State Relation (PSR) between some particular state Qi of a CLS
and its local parameters . Stated as a relation, this is a test of consistency between
state and parameters. Used as a function, it produces the state consistent with x

The following qualitative iteration can now be performed to select appropriate
states for CLSs :

Assume that any CLSs with default states are now in those states . For each re-
maining CLS, select a state arbitrarily from its set of possibilities . All components
now have assigned a single qualitative state, and therefore a single simulation be-
havior, regardless of how many possible values may be envisioned as qualitative al-
ternatives or quantitative ranges for its local parameters . The model is now suffi-
ciently constrained by

1.

	

boundary conditions or system inputs,

2.

	

observations, and

3.

	

state assumptions for the CLSs

so that, for each assumption of parameters being propagated to the CLSs, the val-
ues of remaining parameters can be computed, and any derived system state can
be tested for consistency.

Parameter-State Relations and a Satisficing Method

The computation and consistency checks just described can have different out-
comes:
If no consistent state of the model as a whole can be found. This is the most difficult, in
the sense that the identification of CLSs yields minimal help . Standard diagnostic
methods (e.g ., Davis 85; Davis and Hamscher 88: De Meer and Williams 87; Scarl
87) can be invoked to resolve the discrepancy. So long as an incomplete set of so-
lutions is acceptable, so that not all consistent diagnoses or simulation models
need be determined, suspending or simply reassigning the more arbitrary CLS
state assignments is a reasonable heuristic to begin the search for a consistent so-
lution . We are, at least, no worse off than if we had enumerated all possible states
to begin with . If no CLS state reassignment yields a consistent solution, then a
failure has been detected, and the usual (expensive) diagnostic candidate genera-
tion techniques must be invoked. The PSRs have not yet been used explicitly since
predictions do not yet exist for the local parameters x Once a consistent configu-
ration of the model as a whole has been reached, they can be readily checked.
If the PSR constraints for the CLS are all satisfied: the current state assignment for the
CLSs is compatible with observation. The usual cost/completeness tradeoff will de-
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termine whether alternative state configurations should also be sought . A compro-
mise strategy is to try different state assignments for CLSs whose states were as-
signed arbitrarily or whose state determination has been marked as critical by de-
signers, while retaining the hypothesis that defaulted non-critical CLSs are work-
ing properly.
If the PSRs of some of the CLSs are violated. use the PSR as a function to assign to
each of these CLSs the state indicated by its newly determined local parameters .
This is where the major payoff of using CLSs is found. Rerun the model with
these state assignments, as a second iteration.
If in this second iteration no consistent model can be found. a failure has been detected .
We have good reason to believe that some or all of those CLSs which changed
state between iterations are malfunctioning, since a consistent model was found
"only" with these in wrong states . Naturally, it is possible that there is a totally
different set of faults which could also explain both iteration behaviors ; we claim
only to have located one plausible fault candidate set.

If in this second iteration the model is again consistent, with the PSR constraints for all CLSs
now being satisfied. another possible set of state assignments has been found. No
conclusion can be reached about the health of the CLSs, however, since both unex-
pected (first iteration) and expected (second iteration) CLS configurations agree
with observation. The changed CLSs may be faulty, but the effect of their faults
has been masked.
If the PSRs ofany CLSs remain unsatisfied: the unsatisfied PSR constraints must again
be examined to see which state changes they prescribe for the CLSs . This leads to
another iteration run, unless it would lead back a previously tested model configu-
ration ; in the latter case we would have stumbled into a pathologically cyclic and
presumably rare behavior. The outcome of such further iteration would be inter-
preted in the same way as the second iteration . Such a sequence appears unlikely
to produce very many iterations without achieving full PSR satisfaction, an incon-
sistent model, or a cycle-back to a previous state.
Note that this method is applicable whether the underlying simulation is qualita-
tive or quantitative, but the CLS states must be qualitatively distinguished .

An Example

Figure 1 shows 2 pumps (marked "SIP") driving fluid through an array of pipes
and valves . This is typical of part of the emergency water supply system found in
some nuclear power plants . The details are unimportant here, but those who like
to count will find in the diagram 21 Check Valves (CVs; 15 are shown and 6 more
implied at the center of the right edge) and 4 Pressure-Operated Relief Valves
(PORVs, marked "PRT" in the figure). These are the CLSs . Each CV has two
states, open or closed, depending on the sign of the pressure difference across it .
PORVs are usually considered to have three states : closed if the pressure differ-
ence is significantly less than a threshold Po, open if the pressure difference is
significantly greater than Po, or regulating with its pressure difference within a
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Part of a Pump and Valve System

small interval around Po. Depending upon which states they are in, the CVs and
PORVs contribute different constraints upon system operation ; these cannot be
consolidated easily into single descriptions except by the use of expressions condi-
tional upon the pressure drop. Such conditionals are not readily handled by flow
solvers, so we need to solve the system model in some particular configuration of
CV and PORV states . With 21 CVs and 4 PORVs, however, there are 21 *34 or al-
most 170 million possible state configurations .

Now, the PORVs have very definite default conditions: they are used here for
emergency protection rather than pressure regulation, and so they are expected to
be closed. Most of the CVs default open, except those at the lower right which on-
ly open if the downstream pressure drops substantially . It happens that all the
CLSs have clear default positions, although some of these may change if the envi-
ronment (e.g ., the downstream backpressure) changes significantly .

By the method described, the system solution will be found using sensor measure-
ments, valve and other commanded constraints, the pump operating characteristics,
and boundary conditions like the upstream and downstream pressures . Even if
there are PORV or CV failures, this solution will be largely validated on a single
iteration . Suppose that the PSR constraints for all CVs and PORVs are satisfied :
the pressure drop is positive across CVs assigned open, negative across those as-
signed closed, and that the drop across all PORVs is significantly less than Po. If
so, we are finished . Of course, if any of these would not affect a sensor reading
even if they were in a different state, that possibility will go unnoticed.

On the other hand, suppose that two of the PORVs have gone into their regulating
state unexpectedly and measurements have been affected . Driving the model with
those measurements should lead to PSR constraint failure at the PORVs, with
pressure drops near or greater than Po. It is quite possible that only one of their



pressure drops will show up at this point as being within tolerance of Po. Rerun-
ning the model with that PORV's state as regulating would expose the pressure
difference violation at the other PORV.

Three iterations is a considerable improvement over 170 million . If the third itera-
tion fails to arrive at a consistent state of the model, then a viable conclusion is
that the second PORV has not satisfied its PSR constraint and is in a faulty con-
dition . There are the caveats, discussed above, about masking, pathological condi-
tions, or other fault conditions not related to CV and PORV states. Should these
occur and a full analysis be practical, at least that analysis can proceed with rela-
tively little effort having been lost on state-determination for the CVs and PORVs.

Conclusion

When we can use observed measurements of an evolving physical system to con-
strain its simulation, the number of qualitative possibilities may be significantly
reduced . When we know what has actually happened, we may no longer need to
carry information about all the things that didn't happen . In particular, observa-
tions can be combined with knowledge of how local parameters determine the qual-
itative state of components. This information can be used to correct wrong initial
state assumptions for these components, with a quick convergence to a coherent
model, without having to carry all possibilities through the simulation. We are cur-
rently investigating the extension of this work to include objects whose qualitative
description is determined by internal state parameters, in addition to the local pa-
rameters at its ports.
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