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1. Introduction
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ABSTRACT

The reliable model based diagnosis of faults on continuous
dynamic systems requires that the model of the system synchronously
tracks the evolution of the observations . We argue that to achieve this
the system model must produce durations associated with the respective
qualitative states . We present a system for Model Based Diagnosis of
Dynamic Systems, based on the use of Fuzzy Qualitative Simulation,
that provides five important extensions to previous approaches : 1) The
temporal durations produced by FuSim effectively constrains the search
within the tracking process of the discrepancy generation, without the
need for heuristics . 2) The temporal information allows synchronous
tracking between predictions and observations, thereby minimising the
possibility of false negative matching based on spurious states . 3) The
reduction in spurious behaviours resulting from the use of FuSim,
without the need for numerical information or heuristics, reduces the
possibility of false positive matching . 4) Adaptive sampling of the
observations is used to minimise computation and retain important
dynamic information. 5) The resulting diagnostic mechanism well
matches the architecture of model-based diagnosis systems, allowing a
generic framework to be developed. The operation of the system is
demonstrated by application to a simple system under various fault con-
ditions.

The development of effective qualitative simulation techniques is intrinsically
important, however, the real advantage comes when such techniques are used in appli-
cation systems. Model Based Diagnosis of industrial Systems (MBDS), although well
established using numerical approaches to system modelling [4, 6], is currently flour-
ishing within the Artificial Intelligence community. The use of AI approaches to sys-
tem modelling and reasoning with incomplete and uncertain knowledge has resulted in
a number of general and powerful diagnostic systems [1, 2, 10, 14]. Whilst important,
this work has a crucial limitation that the system model within the MBDS is limited to
algebraic models of the system in equilibrium. Further, the assumption of continuity
of system variables is not used to allow the behaviour (response) of the system to be
compared with the predicted response over the temporal evolution of the system. In
this respect, the use of qualitative simulation techniques as the system model offers
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exciting prospects for extending MBDS to the diagnosis of continuous dynamic sys-
tems . Such systems would allow the early detection of incipient failures (during the
transient) and reduce the requirement of accessibility of system states by diagnosing
over time, an approach we term Model Based Diagnosis of Dynamic Systems
(MBDDS). This work is only beginning . An important contribution to this work has
been provided in [3], where a system called Mimic utilises the Qualitative Simulation
algorithm, QSim [5], as the system model. However, this approach has a number of
difficulties: 1) no temporal information on the evolution of the system is provided by
QSim, thereby making the `tracking' of the real behaviour difficult; 2) in addition to
producing a qualitative description of the real behaviour, QSim may generate many
spurious behaviours, again complicating the model tracking procedure, and, perhaps,
making it intractable.

This paper utilises, as the system model within MBDDS, a Fuzzy qualitative
Simulation (FuSim) algorithm, developed by the authors [11, 12] that has several
features useful to synchronise the model evolution with the observations :
1)

	

the temporal duration of the qualitative states is given;
2)

	

stronger functional constraints can be utilised;
3)

	

a substantial reduction in the spurious behaviours [7] is achieved as a product of
1) and 2) ;

4)

	

fuzzy sets allow the subjective element in system modelling to be incorporated
and reasoned with in a formal way.

We show that these attributes of FuSim are crucial to efficient and effective MBDDS.
At the schematic level, MBDDS can be depicted by Fig. 1. Within this primitive
architecture, the System Model explicitly describes the structure of the physical system
(the plant) to be diagnosed and an algorithm for generating the dynamic behaviour
from the plant's structure. The Discrepancy Generator compares observations from
the plant with predictions from the system model and generates appropriate discrepan-
cies, whilst the Candidate Generator uses the discrepancies to produce candidates, i.e.,
the possible faults, to be validated by the system model. The Diagnostic Supervisor
contains the meta-knowledge necessary to control the diagnostic process. This paper
discusses how this diagnostic method determines the fault conditions of a physical sys-
tem. However, we shall not focus on the supervision task but leave it as an important
future work. We first briefly review the FuSim algorithm, which produces a sequence
of system states with related temporal durations, providing a significant advantage for
refining diagnosis over time . Then, we describe an implementation of the primitive
architecture . We present, in detail, the mechanism for the comparison between the
predictions and the observations, the key technique for system-monitoring and fault
evaluation and which is the basis for discrepancy generation within MBDDS. This
shows the important contribution to diagnosing continuous dynamic systems by using
the extended functionalities provided by FuSim. Finally, we shall give a simple exam-
ple to demonstrate the method presented herein .

2. A brief review of FuSim
This section presents an overview of fuzzy qualitative representation and the

FuSim algorithm . Principal concepts are given and basic properties shown. A more
complete and formal treatment can be found in [11, 12].
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2.1 . Qualitative representation of values and constraints
The choice of representation of physical quantities plays a critical role in qualita-

tive simulation . All qualitative modelling techniques describe quantities with a small
set of symbols, called qualitative values, which are abstracted from the underlying field
that the variables of a physical system take values from. In FuSim a qualitative value
of a system variable is a fuzzy number chosen from a subset of normal convex fuzzy
numbers [15] . This subset is generated by an arbitrary but finite discretisation of the
underlying numeric range of the variable . For computational efficiency, such a fuzzy
qualitative value can be characterised through a parametric representation of its
membership function . The 4-tuple parametric representation of a qualitative value A,
[a, b, a, P], is defined as

0

	

x < a - a
a1 (x -a+a)

	

xE [a -a, a]
1

	

x E [a, b]
P-1(b + P - x)

	

x E [b, b + P]
0

	

x>b+P.

The arithmetic operations for these fuzzy numbers are well-developed, and we adopt
this representation to form the quantity space: informally, the set of all the qualitative
values that system variables can take .

Such a fuzzy quantity space maintains three desirable properties for performing
qualitative simulation, namely, finiteness, granularity, and coverage of the quantity
space. In fact, as the fuzzy quantity space is generated by a finite discretization of the
underlying range of each system variable, the variable will, of course, have a finite
number of associated qualitative values, and the whole underlying numerical range of
interest can be covered by the fuzzy qualitative values . Also, if x 1 , x2 E R character-
ize "similar things" or stand for "similar properties" of a variable x, then the relevant
qualitative values of x t and x 2 will be similar.

	

Hence, we can translate a subset of a
numeric range to one qualitative value according to what is needed in a particular
modelling process.

FuSim adopts a constraint-centred ontology in system-modelling [12] . A model is
derived from an underlying differential equation representation or from direct applica-
tion of first order energy storage mechanisms. The sets of possible values which sys
tem variables can take are restricted by either algebraic, derivative or function rela-
tional constraints amongst the variables . The algebraic operations performed within
qualitative values are those in the set of fuzzy numbers [11, 12].

As with any simulation language for dynamic systems, differential operation is
essential for determining the transient behaviour of a system . A derivative constraint
simply reflects that the qualitative value of a variable's magnitude must be the same as
that of another variable's rate of change. Different from other qualitative simulation
techniques, functional relationships within FuSim are represented by fuzzy relations
[15] . Thus, a relation expressed by a rule with the form that, if x is A;, then if y is B;,
then z is C; , can be translated into

gL, (x , y, z) = min (gA;(x ), gB; (Y ), 9C ; (z ))



When a set of n fuzzy rules is available, the resulting relation L is the union of the n

elementary fuzzy relations Li , i = 1, 2, . . ., n .

This enables imprecise and/or partial numerical information on functional dependencies
between variables to be exploited if indeed such information is available (and neces-
sary). Actually, this technique has been well-utilised for tasks like intelligent control
of industrial processes.

2.2. FuSim algorithm

Iii (x , y , z) _ ,

	

max

	

min (~IA, (x ), ILB; (y ), F'C; (z ))
a E ( t .2, . . .,n

Based on the above qualitative representation of values and constraints, FuSim
takes as input a set of system variables, a set of constraints relating the variables, and
a set of initial values for the variables, and produces a tree of states with each path
representing a possible behaviour of the system as output. Like other approaches to
qualitative simulation, FuSim is based on the fundamental assumption that the vari-
ables of the physical system being modelled are continuously differentiable functions
of time . Thus, transitions for variables to change from their current state to the suc-
cessor states are governed by a set of rules -- called the possible state transition rules
[11, 12] . From these rules, a set of transitions from one qualitative state description to
its possible successor states can be generated . Further restrictions on the possible suc-
cessor states are imposed by checking for consistency with the definition of the con-
straints and the consistency between constraints which share an argument -- called con-
straint filtering, and information on the rates of change of the system variables held as
part of the fuzzy qualitative state -- called temporal filtering. In addition, other
knowledge about the system may be used to produce so-called global filtering methods
[5, 12] .

More specifically, constraint filtering entails an operation, called refine, on each
constraint and each argument of the constraint iteratively until no further changes are
produced .

	

In general, let C : C(Q (xi )), i = 1, 2, 3, be a constraint among three argu
ments: Q(xi ), and Si be the set of qualitative values for the argument Q (xi ).

	

Then,
the refine operation is defined by

refine (C , Q (xi )) = [A i E Si	I (Aj E Si , j = 1, 2, 3, j * i ); C (At ), k = 1, 2, 3 },

where Q (xi ) denotes either the magnitude or the rate-of-change of the variable xi .
The possible successor states survived from the constraint filtering are further

checked by using the estimates of two temporal durations, named the persistence time
and the arrival time respectively [11, 12]. A persistence time is indicated by the fuzzy
magnitude and rate-of-change of a variable within a particular state, presenting a
description of the amount of time that the variable may remain in this qualitative state.
An arrival time, however, is determined by both a variable's current magnitude and
rate-of-change and the magnitude and rate-of-change of its successor state, thereby
reflecting the time that a variable takes to transition from one qualitative state to
another. In general, the temporal filtering criterion requires :

For any two system variables, x and y, if the persistence times of x and y
within the current state are ATP (x ) and ATp(y ) and the arrival times for x
and y to transition to the possible successor states are AT. (x) and AT,(y)
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respectively, then, unless x and y are independent of each other, they must
satisfy the temporal constraint as follows :

ATP (x ) + AT, (x ) n ATP (y ) + AT,, (y ) $ (D .

It is important to notice that, associated with each sequence of states, i.e ., each
path of the output tree, FuSim also generates a sequence of temporal intervals to indi-
cate how long the system will persist within a particular state. Such temporal informa
tion is determined by both the persistence time and the arrival time . This is a distinct
advantage of FuSim. Especially, when used for diagnosing dynamic systems, FuSim is
able to show which particular portion of the predicated behaviour should be matched
by an observation at a particular time point or during a particular time interval, ena-
bling a self-controlled mechanism for the prediction from FuSim and a self-guided
mechanism for the comparison between the prediction and the observation.

3. Model Based Diagnosis of Dynamic Systems
The central idea of the model-based approach to diagnosis is the use of an expli-

cit model of a system's structure, which can reflect either normal or abnormal
behaviour of the system. Such a diagnostic mechanism determines some components
(or constraints) of a physical system which account for the observed abnormalities, i.e.,
the discrepancies between the observed and designed (normal) behaviour of the sys-
tem. This section presents an approach to MBDDS using FuSim as the system model.
Our work adopts the basic concept of Mimic [3] in the sense that diagnosis is refined
over time through a hypothesise and test cycle. However, the work presented herein
fits a more general architecture of MBDS and, more importantly, it provides a way to
automatically guide and control the predictions from the model and the comparisons to
be made within the discrepancy detector without requiring further domain specific
knowledge.

3.1 . Framework
The basic structure of the diagnostic method using FuSim can be described by

Fig. 2. Within this framework, the Normal and Fault Models are represented by a set
of fuzzy constraints. The normal model describes the internal structure of the physical
system being monitored with respect to its intended design specification, while each of
the fault models represents a particular failure mode of a component within the system,
with the other components performing normally, e.g ., a leakage in a pipe or a stuck
pressure regulator. The Discrepancy Generator detects the discrepancies between the
observations and the predictions, and the resulting discrepancies are used to evoke the
Decision Tree to generate possible candidates, which most likely reflect the current
working characteristic of the plant.

Clearly, such a diagnostic system structurally matches the architecture shown in
Fig. l . It is worth pointing out that, although this method, in general, falls within the
general MBDS framework, it combines associative and model-based reasoning . Actu
ally, the associative element generates fault hypotheses and the model-based element
tests these hypotheses . Nevertheless, from the discussion later it can be seen that the
generation of the decision tree itself, which involves the associative reasoning, may
also be based on qualitatively simulating particular structural models of the plant.

176



3.2 . Discrepancy Generation
Diagnosing a physical system crucially relies upon the discrepancy detection

between the observed and predicted behaviours of the system . Thus, a technique
which is able to compare qualitative predictions against observations over time is
required . For coherent detection the comparison between the observed behaviour and
the predicted behaviour must be made at the same system state, i.e ., the same absolute
time (point or duration) . In other words, the model must operate synchronously with
the natural evolution of the plant. This brings a problem to the use of qualitative
simulators as the behaviour predictors because of the need to guide and control the
comparison between the observations and the predictions. Temporal information
becomes essential to the maintenance of synchronous behaviour. Without this it is
impossible, without resorting to heuristics, to control the evolution of the models,
including spurious behaviours and fault models . It is in this respect that FuSim pro-
vides important advantages . FuSim produces a temporal duration sequence associated
with the state sequence and substantially reduces the number of spurious behaviours
generated, thereby enabling an effective and efficient discrepancy detection method to
be developed.

The first step in the detection of discrepancies is to gather the observations and to
interpret these onto the quantity space being used to qualitatively match the predicted
and observed states . The key question here is how to determine the `sampling' time .
Two approaches to this are possible . The first leaves the time point (t� ) at which an
observation is interpreted open and (presumably) under the control of the diagnostic
supervisor . This is the approach taken in Mimic but avoids the question of how to
select the sampling intervals . The second approach would be to use a constant sam-
pling interval, related to the assumed system dynamics through Shannon's sampling
theorem. However, this may incur unnecessary computation if the system response is
slowly varying. Also, dynamics under fault conditions are normally unknown and may
be missed by a constant sampling interval . This latter requirement suggests `adaptive'
sampling dependent upon the rate-of-change of the observations. This is achieved by
the third method, and the one adopted herein . In this case, the sampling intervals, and
hence t., are determined directly from the observations . The continuous real-valued
functions obtained from the transducers measuring the observations are continuously
monitored and compared to the quantity space of the variables used in the current sys-
tem model. Only when a transition of the (fuzzy) qualitative state is detected is the
discrepancy detection mechanism activated. This produces an `adaptive' sampling
interval determined by the actual system behaviour and reduces the risk of missing
important distinctions .

The rules used to guide and control the discrepancy detection are directly deduced
from knowledge of the temporal durations of the qualitative states and can be stated as
follows:
(1) Treat the current observation, OBS(to), as the initial state of a model being

evaluated and the time when the observation is made as the initial temporal point.
(2)

	

From the next observation OBS (t 1), generate the simulated behaviour of the
model from OBS (to) until the temporal upper bound of a qualitative state meets
or covers t1 .

	

Compare this last generated state with OBS (t 1).

	

If they are
matched, redo (2) with a further observation and so on; otherwise, discard the
model currently being simulated.
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Notice that, when more than one possible behaviour results from FuSim (due to the
theoretically unavoidable ambiguities of qualitative simulation [13]), a model remains
to be further evaluated provided that one of the last states generated thus far within
these behaviours :catches with the observation. Also, the simulation will continue
from the behaviour which contains the matched state.

Illustratively, the way to track a model can be depicted by Fig. 3, and explained
in the following . Without losing generality, suppose that the first two observations
from the plant are OBS (to) and OBS (t t), FuSim then uses OBS (to) as the initial state,
FRED (TO), and starts running the simulation of the model.

	

If it generates the possible
next state, say, PRED (T 1 ), which matches OBS (t 1) under the condition that t 1 a T 1 ,

no discrepancy is detected and hence the diagnostic system waits for another observa-
tion, OBSU2), to be available.

	

After this, FuSim continues predicting the successor
state PRED (T2), however, this state's temporal information indicates that for any
t E T 2, t < t2.

	

Thus, FuSim keeps making further predictions from PRED (T2) and
results

	

in

	

both PRED (T2)

	

and PRED (T2 )

	

as possible next states .

	

Now that
PRED (T2 ) does not match with OBS (t 2), though t 2 a T2, no further predictions will
be made following the branch beginning at the PRED (T2) whatever later observations
are obtained .

	

However, since PRED (T2) matches OBS (t2) and t2 ~-_ T2 , the model
being evaluated remains as suspect and the prediction, detection, and decision-making
cycle recurs,

	

starting

	

from

	

the matched prediction

	

PRED (T2 ).

	

Otherwise,

	

if
PRED (T2) also conflicts with OBS (t 2), this model is discarded and another fault is
assumed. Clearly, due to the temporal information in FuSim only a small number of
predictions starting from certain current state(s) are generated and, also, the
discrepancy detector makes the comparison between a prediction and an observation
only when the prediction is the last one generated with respect to the latest sampling
time .

Within the above rules, discarding a model simply implies that this model is
inconsistent with the current working condition of the physical system. If a suspected
model is thus exonerated from the candidate set generated by the candidate generator,
other hypotheses must be further tested . From this point of view the diagnostic
method presented herein can be seen as a system identification tool . Methodologically,
this is rather different from model-based troubleshooters [1, 10], where only the nor-
mal system's model is necessary and a particular faulty component is determined if a
retraction of its corresponding correctness assumption makes the predicted behaviour
consistent with observations.

It is important to notice that this diagnostic mechanism tracks a model without
distinguishing if the model is the normal one or a fault one. Therefore, an on-line
diagnostic system built in this way can actually perform system-monitoring with an
identical structure. Once a discrepancy is detected, the normal model will be substi-
tuted by a fault model. The monitoring task then becomes a fault identification task .

3.3 . Candidate generation
Within the basic framework shown in Fig. 2, the Decision Tree proposes candi-

dates for further evaluation once there are some discrepancies produced. The tree is, in
fact, a set of rules able to classify the discrepancies by mapping them onto particular
fault hypotheses . The diagnostic knowledge embedded in the tree is induced from the
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results of simulating the fault models by FuSim. Such a model-based learning tech-
nique provides good coverage of the available knowledge of faults [8] . Although this
method may be rather time-consuming it has only to be done once and is performed
off-line .

This technique of developing rules for candidate generation has been reported in
[3]. We utilise this technique to obtain the decision tree . Essentially, the off-line
preparations are made through defining each particular fault model of the physical sys
tem in terms of a set of fuzzy qualitative constraints. Then, each such defined model
is simulated using FuSim, starting from each possible initial state, i.e., the possible ini-
tial operating condition with respect to the basic architecture shown in Fig. 1, and gen-
erating a complete behaviour tree for the model. From the states of each behaviour
tree, the training instances can be constructed by using the discrepancies of the states
(expressed by the fuzzy qualitative magnitudes and fuzzy qualitative rates of change)
of the observable variables against those of the normal model, generated from the
same initial states, such that each instance is labelled with the fault model used for
generating the tree . Of course, these discrepancies are subject to the temporal restric-
tion . That is to say, the comparison between the states of the normal and fault models
is only performed when both states occur at the same time . Finally, the training
instances are compressed by an inductive learning program [9] to form the desired
decision tree . Clearly, the structural model of a physical system plays the central role
in such a machine learning process, wrong models result in incorrect diagnostic
knowledge.

It is worth indicating that, when making the off-line preparations to obtain the
decision tree for a particular physical plant to be diagnosed, the comparison between
the behaviour of the normal model of the plant and the behaviour of a fault model is
executed in a similar way to that described for the on-line disrepancy detection, except
that the time used to guide and control the comparison is not the real time but that
resulting from artificially simulating the normal model with the initial time point being
zero .

An alternative approach to candidate generation is currently under investigation
by the authors. This identifies the space of the possible (likely) model variation under
fault conditions and systematically searches this space, using most likely variation first,
until a `matching' fault model is obtained. This requires that the possible model
dimensions are identified and characterised. In our approach we have identified two
dimensions based on the FuSim representation system [7] : 1) The modification of the
functional relationships represented by fuzzy relations. This is a very common cause
of faults, e .g ., increased friction or reduced mass. 2) Structural changes due to physi-
cal effects, this typically reduces the system order, i.e ., removes particular derivative
constraints. The selection of these dimensions and assertion of possible fault models is
under the control of the diagnostic supervisor which controls the `search' for possible
fault models . This approach avoids the need for explicit fault models, including the
off-line compilation of these, and replaces it with systematic search . The success is, of
course, very dependent upon choosing the right dimensions to search. However, this
approach seems promising and is the one which we are currently pursuing .
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4. Example
A simple example, of "a mass on a spring", as depicted in Fig. 4, is given to

demonstrate how a physical system is modelled within FuSim, and to show how the
diagnostic system based on FuSim determines faults . The physical system used herein
consists of three variables : the displacement of the mass from the rest point of the
spring, x, the velocity of the mass, v, and the acceleration of the mass, a . For simpli-
city, the following set of 4-tuple parametric fuzzy numbers is chosen to form the fuzzy
quantity space:

QF = {[-1, -0.7, 0, 0.1], [-0.6, -0.6, 0, 0], [-0.5, -0.1, 0.1, 0.1],

[0, 0, 0, 0], [0.1, 0.5, 0.1, 0.1], [0.6, 0.6, 0, 0], [0.7, 1, 0.1, 0]},

and is abbreviated to
QF=(-b,-0.6,-s,0,s,0.6,b) ;

with each value corresponding to a perceived meaning, for instance, -b denoting nega-
tive big and s indicating positive small.

4.1 . Normal system modelling and its qualitative behaviour
Suppose that the normal model assumes frictionless motion . Thus, the physical

system can be characterised by two derivative and one functional constraints as follows

The first and second equations establish the ordinary derivative relationships holding
amongst the distance, velocity, and acceleration of the mass. The third functional rela-
tion between a and x is a weak, but stronger than monotonic operator, form of
Hooke's law represented as a degenerated fuzzy relation [12] .

With such a system model and the initial state expressing that the mass is moved
away from the equilibrium point, x = 0, to x = 0.6 > 0, and then let go. FuSim pro-
duces a unique behaviour for each system variable, as shown in Fig. 5 (one cycle
only), with the following durations associated with the fuzzy qualitative states :

to = 0,

	

t t 6 [0.09, 1],

	

t2 E [0.63, 2.5],

	

t3 E [0.72, 3.5]

	

t4 6 [1.26, 5],

is 6 [1 .35, 6],

	

t6 E [1 .89, 7.5],

	

t7 E [1 .98, 8.5],

	

tg 6 [2.52, 10].

180

deriv x = v, deriv v a,

-a x -b -0.6 -s 0 s 0.6 b
-b 0 0 0 0 0 1 1
-0.6 0 0 0 0 1 1 0
-s 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0
s 0 1 1 0 0 0 0
0.6 0 1 1 0 0 0 0
b 1 1 0 0 0 0 0'



4.2 . Diagnosing faults
To be concise, presume that the system only has two kinds of possible faults :

either a non-zero friction condition or a mass-stuck condition . The friction condition
can be modelled as five fuzzy constraints, namely,

deriv x = v,

	

deriv v = a,

	

a = a 1 + a2,

where additional variables a 1 and a 2 are introduced to include the effectiveness of the
friction . Two fuzzy relations, a 1 - x and a 2 - v are modelled in a very similar way
to the weak form of Hooke's law shown above, and are not explicitly presented
because of lack of space. Within this model we assume that the damping coefficient is
medium, although in a real situation we may also need to consider cases with small or
big damping coefficients . The stuck model is simple since such a system is equivalent
to a friction system with an infinite damping coefficient. Thus, the model can be
described by

x=xo, v=a=0,

with xo being the displacement where the mass is stuck.

Suppose the diagnostic system is initially used to monitor the normal system and
starts monitoring from the same initial operating condition as the system . It is neces-
sary, however, to point out that this starting condition is thus presumed purely for the
reason of easy presentation, other observations from the system can also be used to
serve as the initial working condition of the diagnostic system. When an observation
is obtained at t r = 0.5 from observable variables (x, v) such that
OBS(Tr) = (0.3, -0.4), where the observed values are normalised with respect to vari-
ables' underlying numerical ranges . Based on the normal model, FuSim predicts the
immediate next state from the initial one, (s, -s), which matches with the observation
under the condition that the predicted state temporally covers the observation time (see
the result shown in the preceding sub-section) . This indicates that the physical system
is performing normally. In the same way, two further observations,
OBS (1.6) = (0, -0.6) and OBS(2.7) = (-0.35, -0.45), also guide the system model to
make the next two predictions that match with the observations . Now, the fourth
observation is obtained such that OBS(3.8) = (-0.45, 0), whose temporal information
is used, as usual, to guide FuSim to produce a predicted state in a synchronous
manner. However, from the normal model FuSim generates the state (-0.6, 0) as the
successor state of the previous state (-s , -s ) (matched with OBS(2.7)), thereby result-
ing in a discrepancy.

Now that the discrepancy between the current observation and prediction has been
detected and FuSim produces unique behaviour from the normal model, this model is
discarded and, hence, the MBDDS system alerts that the physical system is `faulty' .
Therefore, the original monitoring task is changed into a diagnostic one. The
discrepancy detected is used to evoke the two possible fault models through the candi-
date generator. With the initial state being (-0.45, 0), predictions can be generated
from the fault models. Under the guidance of the temporal information from the next
observation OBS(4.9) = (-0.2, 0.35), two predictions from the two models are (-s, s )
and (-s, 0), respectively . The latter state, (-s, 0), of the stuck model can be, of
course, expressed directly by (-0:45, 0) if we do not intend to use any quantity space



to qualitatively represent this model. Clearly, the prediction from the friction system's
model matches with the observation but that from the mass-stuck system does not.
Henceforth, the stuck model does not reflect the actual working condition of this
mass-on-a-spring system and can then be exonerated from the suspect list . The diag-
nostic system thus returns the friction condition as the fault that the physical system is
operating on . Alternatively, it may continue tracking the possible fault model if it is
necessary to confirm that the physical system is suffering from this fault. For instance,
from two further made observations, OBS (5 .0) = (0, 0.45) and OBS(6.1) = (0.25, 0.3),
FuSim will generate two matched states based on the friction model: (0, s) and (s, s) .
The whole monitoring and diagnosing process explained above is shown in Fig. 6 (for
the variable x), where the temporal points (to, t1, . . ., 0) satisfy those given in the pre-
vious sub-section.

5. Discussion and conclusion
This paper presents important extensions to model-based diagnosis of continuous

dynamic systems by using Fuzzy Qualitative Simulation as the system model.
Although diagnosing dynamic systems using Artificial Intelligence techniques is just at
its beginning, FuSim makes such a task feasible, since it can generate a qualitative
description of the dynamic behaviour of a system with related temporal durations,
allowing the synchronous detection of discrepancies between the observations and
predictions of the system.

The work presented here was inspired by Mimic, the pioneering approach to diag-
nosing continuous dynamic systems by the use of qualitative simulation [3]. However,
approach presented herein provides five important extensions to previous work on
MBDDS:
1) The temporal durations produced by FuSim effectively constrains the search

within the tracking process of the discrepancy generation, without the need for
heuristics .

2)

	

The temporal information allows synchronous tracking between predictions and
observations, thereby minimising the possibility of false negative matching based
on spurious states .

3)

	

The reduction in spurious behaviours resulting from the use of FuSim, without the
need for numerical information or heuristics, reduces the possibility of false posi-
tive matching .

4)

	

Adaptive sampling of the observations is used to minimise computation and retain
important dynamic information.

5)

	

The resulting diagnostic mechanism well matches the architecture of model-based
diagnosis systems, allowing a generic framework to be developed .
Work is on-going in two directions . The first is to refine the diagnostic mechan-

ism and take the diagnostic supervision task into consideration. The second, to seek a
way to combine this mechanism with techniques developed for model-based troub
leshooting, in particular, with those reported in [2, 14] that utilise fault models as well
as normal model but are still restricted to static models . We believe, the outcome of
the merger of the dynamic and static approaches would be beneficial to model-based
diagnosis of physical systems. This is a major focus of a new EEC ESPRIT project on
MBDS (P5143), named ARTIST, to which the authors are contributing .
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