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Abstract

We investigatetherelationship betweendiscreteandcontinuoustimein dynamic
physical systems. Employing the common-sensepicture behindderivatives,dif-
ferentialequationsare translatedinto discrete-timeanalogues.The propertiesof
qualitativesimulationin discretetime are discussed.It is flirthennoreshownthat
discretetimecanbeembeddedin continuoustimein anaturalwaywithouttheneed
to introducethe notion of infinitesimals. This providesanew perspectiveon the
extendedpredictionproblem. In addition,it is demonstratedthat qualitativediffer-
entialequations(QDEs)are abstractionsnot only of ordinarydifferentialequations
(ODEs),butalsoof animportantclassof integro-differentialequations(IDEs). This
extendsqualitativesimulationto therealm of IDEs.
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1 Introduction

Therearemanywaysto model time. A broaddistinctioncanbe madebetweenthepoint-
basedandperiod-basedparadigms[1]. Muchof thework in Al is basedupontheperiod
approach[2]. In reasoningaboutphysicalsystems,however,it is commonto workwithin
thepoint paradigm.As evidencedby thepervasiveuseof differentialequations,physics
itselfconventionallyusesacontinuoustime, wherebytimeis representedby thestructure
ofthereals.Differentialequationsarealsothestartingpointof muchcomputationalwork,
includingnumericalsimulationandqualitativereasoning[3; 4]. But sincethecomputer
is a discretemachine,it is necessaryin Al andotherbranchesof computersciencesuch
assimulationto takea mixed view andto alsoemploy discretemodelsof time, e.g., in
termsof thestructureof theintegers.Therearesometimesalsostrictlyphysicalreasonsto
considerdiscretetime, for examplewhenthedynamicsofthesystemis naturallymodeled
in termsof instantaneouseventssuchascollisions betweenparticles. In such casesit
sometimesevenhappens(for examplein nuclear-reactiontheory) thatbothdiscreteand
continuousphysicaltheoriesexist for thesamephenomenon.

Hence,thereis alreadyan interestingvarietywithin thepoint ontologyof time. This
is one of the first papersthat exploresthe interrelationshipof differentpoint represen-
tationsof time in dynamicphysicalsystems. As far asI know, neitherin mathematical
physicsnor in Al muchwork hasbeendoneon this topic. In dynamicalsystemstheory,
a centraldistinctionis madebetweencontinuousdynamics(differential equations)and
discretedynamics(iteratedmaps,differenceequations),butusuallyonly asingle,separate
representationof time is considered.For example,the KAM systemof Yip [5] restricts
itself to discretemaps,while thePOINCARE systemof Sacks[6] analyzesdifferential
dynamicsonly. A partialexceptionis [7], studyinghow discreteprocessescanbeag-
gregatedinto a largercontinuousprocess.The presentpaperhoweverinvestigatesthe
connectionbetweendifferenttemporalviewson oneandthesameprocess.We developa
formalmathematicaltheoryof therelationshipof discreteandcontinuousdynamics,and
newaspectsof quantitativeaswell asqualitativereasoningarebroughtforward.

First, in Sec.2 wedescribehow differential equationsystemsmaybe translatedinto
common-senseanaloguesin discretetime. Next, in Sec.3 we showhow theseanalogues
can be relatedto theoriginal differential equationsin an alternativeway thatavoidsthe
notionof derivativesandinfinitesimals.We thendiscusssomeensuingconsequencesfor
the extendedpredictionproblem[8; 9], Section4 generalizesqualitativesimulationto
discrete-timesystems.Finally, in Sec. 5 weprovethat qualitativedifferential equations
[4] areabstractionsnotonly of ordinarydifferential equationsbut alsoof infinite delay
equations. This providesa method to qualitatively simulatea new classof physical
systems.
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2 Doing Away with Derivatives

We considerherecontinuous-timeprocessesthat aremodeledby differential equation
systemsof theform:

~x~(t) = f~(x1(t),... , x~(t),,. . , XN(t)), i = 1,. . . ,N. (1)

Here,we employtheusualcontinuoustimeparametert, representedby therealnumbers.
The x~are realvariables. In thepresentpaperwe restrictourselvesto functionsft that
are linear in their argumentsx~.As is well known, higher-orderdifferential equations
canalwaysbe rewrittenin theform (1), Thereis no restrictionon the systemorderor
dimensionN.

For the discrete-timeprocessesto be consideredwe will employ a discretetime
parameterS(for ‘step’) thatis representedby theintegers.Clearly,if onewantsto obtain
a discretesystemanalogousto Eq. (1) onehasto getrid of thederivatives.Thiscan be
donein manyways,but themost straightforwardoneis to look attheformaldefinitionof
thedifferential quotient:

d def . x(i + r) — x(t)
—x(t) = urn
dt r—~O r

andto dropthe limiting process,thus imposingthat r takeson afinite, non-zerovalue.
Wecannowreplacetherealcontinuous-timevariablex(t) by arealdiscrete-timevariable
X(S), assumingthat thecontinuoustime point t links to the discretetime point S and
t + T to thenextdiscreteinstantS+ 1. Forconvenience,we introducethenotation

AX(S) ~! X(S +1) * X(S).

Onthisbasis,thedifferentialequationsystem(1) becomestranslatedinto thefollowing

discrete-timesystem:

~X~(S) = f~(X1(S),,. . , X~(S),,. . , XN(S)), i = 1,. . . , N. (2)

We will call this discrete-timesystemthe co~nmon-senseanalogueof the continuous
system(1). Other discretizationsare possibleand are standardlyusedin numerical
simulation, but Eq. (2) is the simplest one and is closestto intuition. In actualfact,
it matchesthe way in which Leibniz himself introducedthe differentialquotientin his
original work [10], namely,asa finitedivideddifference— albeit with specialcalculus
rules. Obviously, the connectionbetweenthe abovediscreteand continuousdynamic
systemsmay be simply establishedby taking the limit r —+ 0. This leadsus into the
problemhow to makepredictionsoverextendedperiodsoftimein afinite numberof steps
[8]. As wewill seein thenextsection,however,thereareotherwaysto establishthis link
thatavoidthis limiting process.
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3 A DiscretePerspectiveon theExtendedPredictionProb~
tern

As borne Out by out by Eq. (1), differential dynamicsconsistsof constraintson the
simultaneousI valuesof physicalquantities. Shoham[8] statesthat this instantaneous
flavor of the rules of physics is the reasonthat predictionsaboutextendedperiodsare
hardto make.Namely,a differentialequationallowspredictiononly for avery short (in
fact: infinitesimally small)interval forwards,andthis hasto be iteratedmany(in fact: an
infinite numberof) times. Thishe callstheextendedpredictionproblem.In his comment
[9], Raynercallsthiswayof interpretingderivativesa“cardinalsin”. Now, let uscommit
thiscardinalsin1,butstill showthat efficientextendedpredictionispossibleon thisbasis.
To thisend,wewill developanovelperspectiveon differentialdynamics.

3,1 Probabilisticembeddingof discrete dynamics

As pointedout,wewill considerthetime lapser in Eq. (2)not asaninfinitesimalquantity
(leadingto a properdifferentialequation)but asafinite, non-zeroone. It is theneasyto
rewritethecommon-sensediscrete-timeanalogue(2) of thedifferentialsystem(1) into a
form that is suitablefor extendedprediction:

X1(S + 1) = X~(S)+ rf1(X1(S), .. . , X,(S),. . . , X~r(S)), i = 1,. . . , N. (3)

This is calledan iteratedmap in dynamicalsystemstheory. The situationat the next
discretetimepointis foundbyperformingoneiteration.Thiscanbedoneveryefficiently,
sincefor eachiterateonly onefunctionevaluation(seetheright-handside) isnecessary.
Accordingly,extendedpredictionfor thediscrete-timesystemis simple.

The everydayapproachto extendedprediction for the analogouscontinuous-time
systemnow is to simply usethis discretemethod(or similar, moresophisticatedones)
also for the differential dynamics,therebymaking r sufficiently small and striking a
carefulbalancebetweentherequiredaccuracyandadditionalcomputationalcostsincurred
by calculatingmorepoints. This seemsto mean adequateapproach(andhereRayner
rightfully refersto thecommon-senseviewof workingscientists)becauseformalestimates
canbegivenfor thelocal andglobalerrorsmadein usingdiscretemethods(i.e.,finite r)
for integratingdifferentialproblems.

There is howeveran interestingalternative. First we note that in theconventional
approachthe discretetime points S are uniformly embeddedin continuoustime, with

1To stresshis criticism, Raynermore thanoncerefers to thecommon-senseviews ofmathematicians
and physicists.I am certain,however,thatcommittingthis cardinalsin is a daily practiceamongworking
physicists. Leibniz is my otherwitness. Formally, theevolutionoperatorsf~relatedto differentiationare
calledthegeneratorsof theinfinitesimaltime translation!
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fixed spacingr. Thus, theassumptionis that X(S) = x(t = Sr), in otherwords, the
discretetimepointsareobtainedby uniformsamplingfrom thecontinuoustime line. But
onecanintroduceother,nonuniformandprobabilistic,waysof samplingby introducing
the probability 2(1, 5) that at continuoustime point I preciselyS discretesteps have
occurred2.Then, if weknow thediscrete-timevariableX(S) from extendedprediction
in discretetime,wecanobtain thecorrespondingcontinuous-timevariablex(t) from

x(l) = E2(t,S)X(S). (4)

Onecanimaginemanydifferentpossibilitiesfor theway in which thediscretepoints
S arerandomlydistributedin continuoustime, andlateron in Sec.5 wewill constructa
wholeclassof them. In this sectionwewill becontentwith asingleform of probabilistic
embedding.Let us supposethat thediscretestepstakeplaceon thecontinuoustime axis
completelyindependentfrom eachother. It is known that occurrenceof uncorrelated
eventsis associatedwith a Poissondistribution:

Pp(t,S)= 1(t)Sexp(t) (5)

Here, the finite parameterr representsthe averagetime lapse(spacing)betweentwo
subsequentdiscretetime points.

3.2 Extendedpredictionof differential dynamics

Now, theconnectionbetweendiscreteanddifferential dynamicsis providedby the fol-
lowing theorem.

Proposition1 Let X(S) be the solutionof thediscretesystem(2), and let x(t) be the
correspondingcontinuous-timevariable satisfyingEqs. (4) and (5). Then x(t) is the
solutionofthedifferentialequationsystem(1)forall timest.

Proof, By direct verification. SubstituteEq. (5) into (4) anddifferentiateboth sides
with respectto I. Rearrangingthetermswith respectto SandinsertingEq. (2) showsthat
x(l) satisfiesEq. (1). 0

Phrasedin more popularterms, we may say that differential equationsare equal
to discrete-time equationsplus probabilistic Poisson sampling,3 Thus, we can deal
with differential equationsin a way that explicitly avoids the notion of derivativesor
infinitesimal time steps,asshownby theright-handside of this pseudo-equation.This
yields an alternativesolution to the extendedpredictionproblem. A straightforward
algorithmcanbe givenfor this:

2This ideastemsfrom the theoryof stochasticprocesses,see[11; 12].
3lncidentally, this ideacan be used to show that the graph-theoreticapproachto computationaland

physicalcausalityproposedby [13] generalizesto discrete-timesystems.
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Step1. Computethe solutionX(S) of thediscrete-timesystem(2) throughtheiterated
mapalgorithm(3). If thecontinuous-timeintervalof interestis (0, T), theneeded
total numberofdiscretestepsis on theorderof M = T/r,

Step2a. If one is interestedin only one or a few future time points t, it is easiestto
calculateEqs. (4) and(5) directly, cuttingoff the summationat the point where
additional termscontributelessthanapresetnegligiblefraction.

Step2b. If oneis interestedin apredictioncoveringthewhole interval,onecangenerate
theneededcontinuoustime pointsby the following sequentialPoissonsampling
algorithm: drawa randomnumbersequencep E (0, 1) using a standardpseudo-
randomnumbergenerator;thencalculatethespacingto thenextcontinuoustime
point as L~t2= —r ln(p~).4If sodesired,accuracycan be increasedby repeating
this procedureandaveragingtheresultsusingso-calledstratifiedsampling.

Thecomputationalcomplexityof eachof thesestepsis 0(M). Severalvariationsor
improvementsarepossible. It is interestingto notethat this stochasticPoissonsampling
also occurs in computer graphics as a technique to improve the quality of images [14;
15]. Here, otheralgorithmscan be found (such as the dart-throwingalgorithm)that
are applicable to more dimensions but are somewhat less efficient in one dimension.
In sum, efficient extendedprediction basedon differential equationsis possiblethrough
probabilistic embeddingsofdiscretecommon-senseanaloguesin continuoustime, without
invokingdifferentialsor infinitesimals.

illustration 1: theradioactivedecaylaw, A nice andsimpleexampleto illustratethe
aboveis radioactivedecay.Supposewehaveablock ofradioactivematerialandaGeiger
devicecounting thedecayevents, Discretetime S is naturallyprovidedby subsequent
(groupsof) clicksof theGeigerdeviceandX(S) is thefractionof nuclei thathasnot yet
decayed.An obviousmodel is to postulatethat in a givenfinite time spanr a constant
fractiondecays,so eX(S) = —?X(S) (0 < o < 1), andthatthenucleardecayevents
occur independently,so that Eq. (5) applies. By symbolically solving Eqs. (3) and (4)
we immediatelysee without usingdifferential calculus(asstandardtext booksdo) that
the fractionx(t) in continuoustime decreasesin an exponentialfashion. The algorithm
discussedabovegives a realistic animationof the Geigercountingprocess,in strictly
discreteand finite terms.

4 Qualitativesimulationin discretetime

The previoussectionhasfocussedon quantitativereasoningaboutdiscretedynamicsin
its relationto continuousdynamics.An interestingissueis how this extendsto qualitative

4Thatthis indeedyieldsa Poissondistributioncanbemathematicallyproved,cf. Sec.5.



reasoning. We will follow herethe mathematicallytransparentexpositionof Kuipers
[4] regardingqualitativesimulation of ordinary differential equations(ODEs). Does
this qualitativesimulation machinerygeneralizeto discrete-timesystemsof the finite
differenceequation(FDE) type(2), andif so,how?

Already upon a first inspectionit is clear that one has to tackle severalproblems
in the discretecase. First, the abstractionof time is necessarilydifferent: Kuipers
abstractscontinuoustime as an alternatingsequenceof distinguishedtime pointsand
openintervals. But open intervalsdo not exist in discretetime. More importantly,
a discrete-timefunction may transition betweenqualitative regionswithout assuming
the landmarkvalueitself at all. Hence,the very notion of distinguishedtime points
becomesproblematic. Second,severalproofs in [4] dependon trend functionsbeing
‘reasonable’(essentially,continuouslydifferentiableandbehavingnot toopathologically).
Forexample,theintermediatevaluetheoremis used.However,thenotionsof continuity
anddifferentiability arelost in discretetime. Thelatterproblemwasalreadypointedout
in [7]. Ontheotherhand,it is evidentthatquantitativesimulationswith respectto Eqs.(1)
and(2) arecloseif r is not too large.Therefore,onewouldexpectthata similarsituation
appliesto qualitativesimulation.

Upontranslationfrom continuousto discretetime,thedefinitionof thequalitativevalue
qval of a trendfunction X: Z —* R remainsintact. The sameholds for thequalitative
constraintpredicatesADD, MULT, MINUS and M±. Due to the lack of continuous
differentiability,redefinitionsareneededfor theDERIV predicateandfor thequalitative
changeqdir. Thesecanbe furnishedhoweverby taking into accountthecommon-sense
ideasunderlyingderivativesdiscussedin Sec.2:

Definition 2 Thequalitativechangevalueofa discrete-timetrendfunctionX(S) is given
byqdir= inc,std,dec,if~.X(S) >0, = 0, <0.

Definition 3 The qualitative constraintpredicate DDIFF(Y,X) holds if Y(S) =

~X(S)for all S e [a, b] C Z. DDIFF is the discrete-timeanalogueofDERJV.

Onthis basis,any FDE(2) canbeabstractedto qualitativeconstraintsets,just asin the
caseofODEs. Wenowproposetoabstractthediscretetimeaxis asanalternatingsequence
of(closed)intervalsrelatingto qualitativelysteadystateregionsandofdistinguishedtime
points, wherebyif necessarythe latteraresimply addedif the trend function doesnot
assumethelandmarkvalue itself, It is then straightforwardto checkthat the QSIM I-
andP-rulesfor possibletransitionsstill apply. Thus, wehaveestablishedthefollowing
proposition.

Proposition4 Qualitative simulationsof the ODE (1) and of its common-senseFDE
analogue(2) in discretetime yield the sameresults, with thepossibleexceptionof the
distinguishedtimepoints.

Hence, the QSIM machinerydoesextendto discretetime, but we have to give a
specialposition to the distinguishedtime points. This ideacan be mademoreprecise,
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by generalizingKuipers’ notion of a ‘reasonable’function such that the distinguished
time points of the ODE (1) are separatedout without spoilingthe reasonablenatureof
the function to be integrated. This canbe achievedby using the so-calledLebesgue
integrationtheory,whichconstitutesa generalizationoverstandardRiemannintegration
(which is alsousedin qualitativesimulation). The basicideais that an integrable(or
reasonable)function may be changedat isolatedpoints without changingthe valueof the
integral,becauseisolatedpointshave‘no length’ (formally: form a setof measurezero
on the real line). One saysthat a property P holds ‘almost everywhere’if thepointswhere
P doesnot hold form a setof measurezero. We will not go into detailherebutrefer the
reader to standard text books suchas [16].

By virtue of the Lebesguetheory the following proposition (a formally more precise
versionof the above proposition) is valid.

PropositionS (i) The distinguishedtimepointsforma setofmeasurezero.
(ii) LetCbe theclassoffunctionsthatare equalto thesolutionx (I) oftheODE (1)almost
everywhere,namely, with the possibleexceptionofthe distinguishedtimepoints. Then
qualitative simulation of the FDE (2) yieldsall behaviorsthat are compatiblewith the
functionclassC.

In sum, qualitative simulation in discrete time is ‘almost equivalent’ to qualitative
simulation in continuoustime: the former yieldsthesameresultsbut is slightly morecrude,
in thesensethat it cannotdistinguish between‘everywhere’ and’almosteverywhere’. This
completesour discussionof discretequalitative simulation.

illustration 2: decayand oscillation. Thepreviousexampleof radioactivedecayis
very naturally modeledqualitativelyby theaxiomsDDIFF(Y,X) andM~(Y,X). Then
thediscreteversionof QSIM, like thecontinuousone,correctlypredictsthattheradioac-
tive fractionalwayskeepsdecreasingandbecomeszeroat infinity. Anotherexampleis
the harmonicoscillator. A ‘stroboscopic’view on theundampedspringgives thequan-
titative modelz~.2X(S)+ w2r2X(S)= 0, andthequalitativeconstraintsDDIFF(Y,X),
DDIFF(Z,Y) andM~(Z,X).Qualitativesimulationproducesthesameoscillatorybehav-
iors as in thecontinuouscase(including theambiguitiesconcerningdamping,conserva-
tivenessor runaway),while numericalsimulationof the FDE showsoscillatorymotion
whereby the landmarkvaluezeromight be missedin discretetime, dependingon the
actualvaluesofw andr. This showsthe‘almost equivalence’of discreteandcontinuous
qualitativesimulation.

5 Are QDEsabstractionsof ODEsonly?

This sectionwill leadusto aratherremarkabletheoremaboutqualitativeabstractionand
simulationofsystemtypesthathavenotpreviouslybeenconsideredin Al. Wehavealready
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shownthatdifferentialanddiscretedynamicsarealmostequivalentfrom theviewpointof
qualitativesimulation.We havealsoseenthat theseformsof dynamicsarequantitatively
equivalentif (andonly if) theyarelinked by probabilisticPoissonsampling. So,anatural
questionis: whathappensif weuseotherstochasticsamplingmethodsthatdonotyield a
Poissondistribution?Althoughthisrequiressomemathematicalsophistication,theresults
arerewarding.

5,1 A constructionmethodfor probabilistic embeddings

In order to tackle this problem, we will first give one method to constructdifferent
probabilistic embeddingsP to be usedin Eq. (4) [11; 12]. As in thePoissoncase,we
supposethat thediscretestepsSoccuratrandominstantsin continuoustime. Foreachstep
we assumethat thetime lapsedsincetheoccurrenceof theprecedingstepis determined
by a genericprobability density~(t) satisfying

Vt ~(t) � 0; j ~(t)dt = 1. (6)

Therearenootherrestrictionson ~. As aresultweobtainaverywide classofembeddings
‘P. eachsuitablefunction~ yielding an instance.The probability 2(1,S) can be induc-
tively constructedfrom ~pasfollows. For S = 0 we take2(1,5) to be theprobabilitythat
no stephasoccurredat continuoustime t. This is formally expressedby:

2(1,0)~ x(t) = 1 — ~(t’)dt’. (7)

Next, 2(1,S = 1) is theprobability thatpreciselyonestephasoccurredat time I. This is

formally givenby theconvolutionexpression
2(t, 1) = Conv[~,x] ~ j x(t — t’)~(i’)dt’. (8)

Thisprocedureis continuedto yield arecursiveexpressionfor 2 for all 5:

‘P(t,S+ 1) = Conv[~p,2(t,S)]. (9)

OneobtainsthePoissondistribution(5) via this procedureby takingfor ~ an exponential
distribution: ~p(t) = ~ exp(—3). We mentionin passingthat thisprovidestherationale
for thesequentialPoissonsamplingalgorithmdiscussedin Sec.3.

5,2 Quantitativeand qualitativereasoningimplications

After thesepreliminariesweareabletoderivebothaquantitativeandaqualitativetheorem,
thelatterbeingthecentralresultof this section.
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Proposition6 Let X(S) be the solution ofthe discretesystem(2), and let x(t) be the
correspondingcontinuous-timevariablesatisfyingEqs.(4)and(7)—(9). Thenfor all times
1, x(t) satisfiesan integro-differenrialequation(IDE) systemoftheform:

d ,
—x~(t)= / dl M(t — I) f1(xi(t ),. . . , x~(t),. . . , XN(t )), z = 1,. . . , N. (10)
dl .io

Proof. Theproofis mostelegantlysetup in matrix notation.TaketheLaplacetrans-
form of Eq. (4). Then, the summationcanbe carriedout symbolicallyusingtheFaltung
theorem,upon insertionof Eqs. (7)—(9) andof Eq. (2) in its iterated map formulation (3).
Comparison with the solution for x(t) obtained by Laplace transformation of Eq. (10)
now establishesthe proposition, in addition yielding the relation betweenM and ~ 0

Unlike an ODE, the IDE (10) is not a constraint on simultaneousvaluesof quantities.
One also needsall past statevalues in order to evaluatethe time evolution of the system.
Thus, IDEs (also called infinite delay equations)have a memory M, whereasODEs are
memory-less(thatis, M is aDirac delta function). IDEs naturally occurin nonequilibrium
statisticalmechanicsandquantummechanics,andhaveapplicationsfor examplein nuclear
and chemical physics. The above proposition says that IDEs can be seenas discrete
equationsplusprobabilistic sampling. Hence,alsofor IDEs extendedprediction ispossible
without using the notion of infinitesimals, along the samelinesas discussedin Sec. 3.

The view that IDEs and ODEs all constitute discrete-time equations of the type (2)
plus someform of probabilistic embeddingin continuous time, has also interesting con-
sequencesfor qualitative reasoning. Qualitative simulation abstracts the continuous time
axis such that it doesnot know anything about the duration of the qualitatively steady
intervals. Only thefact that they occur and their ordering may be deducedby qualita-
tive simulation. Consequently,it is not visible for qualitative simulators such as QSIM
what the preciselocations of the distinguished time points or their relative spacingsare
on the continuous time axis. By implication, it is immaterial to qualitative simulation
how the discrete steps S are embeddedin continuous time; we may locally ‘stretch’ or
‘shrink’ the time axis without changingthe qualitative simulation results. The different
ways of probabilistic embeddingdiscussedaboveonly differ in theway theyexecutethis
positioningof discreteeventsin continuoustime. In otherwords,qualitativesimulation
cannotdistinguishbetweendifferentshapesof thememoryfunctionM. This leadsusto
the following conclusion.

Proposition7 Qualitative simulation cannotdistinguishbetweenODEs (1) and IDEs
(10). Theyfall into thesameequivalenceclassofabstractionto qualitativedifferential
equations.

This hastwo consequences.First,notone(theODE)butmany(theIDEs) differential
equationsareabstractedto thesamequalitativedifferentialequation.Therefore,qualita-

5Therelationshipbetweenthe memorykernel M and theeventspacingdistribution ~ is given by
= u/[l/~,’ — 1] or,equivalently,çc’~= [u/M’ + 1]’l. Here,u is thecomplexfrequency(thevariable

conjugatedto time) andtheasteriskdenotestheLaplacetransform.
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tive simulationis muchmorecoarsethanpreviouslythought.Second,it hasbecomeclear
how to qualitativelysimulateanewclassofdynamicsystems,viz, theIDEs, namely,via
replacingthemby thecorrespondingODE.

illustration 3: nuclear reactions. If in illustration 1 about radioactivedecay we
would postulatecorrelateddecayevents,that is, anon-Poissondistribution7) ora non-
exponential~, we would obtain an IDE (10) in continuoustime. It is not difficult (e.g.,
for ~ beinga Dirac deltafunction) to verify that the qualitativebehavioras discussed
in illustration 2 remainsthe same(weadd that this also appliesto the exampleof the
spring). Correlatedeventsin this casearephysically not really expected. However,in
othernucleardomains(cf. [12] andreferencestherein)therearerecentclaimsthatcorre-
latedeventsactuallygive a betterfit to experiment,for examplein thefield of heavy-ion
collisions. Here, x1(t) is readastheprobabilitythat aheavy ion hasmassi, Srepresents
thesubsequentexchangeeventsof protonsandneutronsbetweenthecolliding heavyions,
andthememorykernelM maybe takento beexponentialorGaussian.

6 Conclusion

The dynamicsof physicalsystemsmaybeexpressedin termsof bothdiscretetime and
continuoustime. Theoreticalphysicstypicallyprefersrealcontinuoustime,asexemplified
by its useof differential equations.On theother hand,modelingin discretetime (in the
structureof the integers)is of greatcomputationalinterest. This work hasstudiedthe
questionhow thesetwo conceptionsof time arerelatedin reasoningaboutdynamical
systems.

The majorresultsof this paperare:

• Efficient extendedprediction of differential equationsystemsis possible,since
differential equationshavebeenprovedto be equivalentto discretedynamicsplus
probabilisticsamplingof thecontinuoustime line. This newapproachcompletely
avoidsthenotionof infinitesimal time stepsanddifferentials.

• The machineryof qualitativesimulationof differential dynamicshasbeenshown
to carry over to discrete-timesystemswith minor adjustments.With the possible
exceptionof setsof measurezero on thetime axis, qualitativesimulationyields
the sameresultsfor differential equationsand theirdiscrete-timecommon-sense
analogues.

• Qualitativedifferentialequationshavebeenprovedto be abstractionsnot only of
ordinarydifferentialequations,butalsoofintegro-differentialequationsthatcontain
a memoryfunction andthat naturallyoccurin statisticalandquantummechanics,
In otherwords,theequivalenceclassof qualitativeabstractionis muchlargerthan
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previouslythought.At thesametime this resultshowshow to carryoutqualitative
simulationof integro-differentialequations.

Theseresultsare illustrated by examplesfrom recentliteratureon nuclearphysics.
Thus, our approachof introducingprobabilistic embeddingsof discretepoint eventsin
continuoustimeprovesveryfruitful in developinga formal theoryof thequantizationof
time in dynamicphysicalsystems.

Acknowledgment. I amgratefulto JarkeJ.van Wijk (ECN)for someusefuldiscussions
on ray tracingandantialiasingin computergraphics.
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