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Abstract

We investigate the relationship between discrete and continuous time in dynamic
physical systems. Employing the common-sense picture behind derivatives, dif-
ferential equations are translated into discrete-time analogues. The properties of
qualitative simulation in discrete time are discussed. It is furthermore shown that
discrete time can be embedded in continuous time in a natural way without the need
to introduce the notion of infinitesimals. This provides a new perspective on the
extended prediction problem. In addition, it is demonstrated that qualitative differ-
ential equations (QDEs) are abstractions not only of ordinary differential equations
(ODEs), but also of an important class of integro-differential equations (IDEs). This
extends qualitative simulation to the realm of IDEs.
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1 Introduction

There are many ways to model time. A broad distinction can be made between the point-
based and period-based paradigms [1]. Much of the work in Al is based upon the period
approach [2]. In reasoning about physical systems, however, it is common to work within
the point paradigm. As evidenced by the pervasive use of differential equations, physics
itself conventionally uses a continuous time, whereby time is represented by the structure
of the reals. Differential equations are also the starting point of much computational work,
including numerical simulation and qualitative reasoning [3; 4]. But since the computer
is a discrete machine, it is necessary in Al and other branches of computer science such
as simulation to take a mixed view and to also employ discrete models of time, e.g., in
terms of the structure of the integers. There are sometimes also strictly physical reasons to
consider discrete time, for example when the dynamics of the system is naturally modeled
in terms of instantaneous events such as collisions between particles. In such cases it
sometimes even happens (for example in nuclear-reaction theory) that both discrete and
continuous physical theories exist for the same phenomenon.

Hence, there is already an interesting variety within the point ontology of time. This
is one of the first papers that explores the interrelationship of different point represen-
tations of time in dynamic physical systems. As far as I know, neither in mathematical
physics nor in AI much work has been done on this topic. In dynamical systems theory,
a central distinction is made between continuous dynamics (differential equations) and
discrete dynamics (iterated maps, difference equations), but usually only a single, separate
representation of time is considered. For example, the KAM system of Yip [5] restricts
itself to discrete maps, while the POINCARE system of Sacks [6] analyzes differential
dynamics only. A partial exception is [7], studying how discrete processes can be ag-
gregated into a larger continuous process. The present paper however investigates the
connection between different temporal views on one and the same process. We develop a
formal mathematical theory of the relationship of discrete and continuous dynamics, and
new aspects of quantitative as well as qualitative reasoning are brought forward.

First, in Sec. 2 we describe how differential equation systems may be translated into
common-sense analogues in discrete time. Next, in Sec. 3 we show how these analogues
can be related to the original differential equations in an alternative way that avoids the
notion of derivatives and infinitesimals. We then discuss some ensuing consequences for
the extended prediction problem [8; 9]. Section 4 generalizes qualitative simulation to
discrete-time systems. Finally, in Sec. 5 we prove that qualitative differential equations
[4] are abstractions not only of ordinary differential equations but also of infinite delay
equations. This provides a method to qualitatively simulate a new class of physical
systems.

171



2 Doing Away with Derivatives

We consider here continuous-time processes that are modeled by differential equation
systems of the form:

%x;(t) = fi(z(t), - zi(), .. an(t), i=1,...,N. (1)

Here, we employ the usual continuous time parameter , represented by the real numbers.
The z; are real variables. In the present paper we restrict ourselves to functions f; that
are linear in their arguments z;. As is well known, higher-order differential equations
can always be rewritten in the form (1). There is no restriction on the system order or
dimension N.

For the discrete-time processes to be considered we will employ a discrete time
parameter S (for ‘step’) that is represented by the integers. Clearly, if one wants to obtain
a discrete system analogous to Eq. (1) one has to get rid of the derivatives. This can be
done in many ways, but the most straightforward one is to look at the formal definition of
the differential quotient:

and to drop the limiting process, thus imposing that 7 takes on a finite, non-zero value.
We can now replace the real continuous-time variable z(t) by a real discrete-time variable
X(S), assuming that the continuous time point ¢ links to the discrete time point S and
t + 7 to the next discrete instant S + 1. For convenience, we introduce the notation

AX(S) ¥ X(S+1) - X(S).

On this basis, the differential equation system (1) becomes translated into the following
discrete-time system:

%X,-(S) = fi(X(S), ..., X;(S), ..., Xn(S)), i=1,...,N. (2)

We will call this discrete-time system the common-sense analogue of the continuous
system (1). Other discretizations are possible and are standardly used in numerical
simulation, but Eq. (2) is the simplest one and is closest to intuition. In actual fact,
it matches the way in which Leibniz himself introduced the differential quotient in his
original work [10], namely, as a finite divided difference — albeit with special calculus
rules. Obviously, the connection between the above discrete and continuous dynamic
systems may be simply established by taking the limit = — 0. This leads us into the
problem how to make predictions over extended periods of time in a finite number of steps
[8]. As we will see in the next section, however, there are other ways to establish this link
that avoid this limiting process.
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3 A Discrete Perspective on the Extended Prediction Prob-
lem

As borne out by out by Eq. (1), differential dynamics consists of constraints on the
simultaneous ¢ values of physical quantities. Shoham [8] states that this instantaneous
flavor of the rules of physics is the reason that predictions about extended periods are
hard to make. Namely, a differential equation allows prediction only for a very short (in
fact: infinitesimally small) interval forwards, and this has to be iterated many (in fact: an
infinite number of) times. This he calls the extended prediction problem. In his comment
[9]1, Rayner calls this way of interpreting derivatives a “cardinal sin”. Now, let us commit
this cardinal sin!, but still show that efficient extended prediction is possible on this basis.
To this end, we will develop a novel perspective on differential dynamics.

3.1 Probabilistic embedding of discrete dynamics

As pointed out, we will consider the time lapse 7 in Eq. (2) not as an infinitesimal quantity
(leading to a proper differential equation) but as a finite, non-zero one. It is then easy to
rewrite the common-sense discrete-time analogue (2) of the differential system (1) into a
form that is suitable for extended prediction:

X;(S+ 1) = X,(S) + Tf,'(Xl(S),..,.,XJ‘(S),. ..,XN(S)), = 1,. ..,N. (3)

This is called an iterated map in dynamical systems theory. The situation at the next
discrete time point is found by performing one iteration. This can be done very efficiently,
since for each iterate only one function evaluation (see the right-hand side) is necessary.
Accordingly, extended prediction for the discrete-time system is simple.

The everyday approach to extended prediction for the analogous continuous-time
system now is to simply use this discrete method (or similar, more sophisticated ones)
also for the differential dynamics, thereby making = sufficiently small and striking a
careful balance between the required accuracy and additional computational costs incurred
by calculating more points. This seems to me an adequate approach (and here Rayner
rightfully refers to the common-sense view of working scientists) because formal estimates
can be given for the local and global errors made in using discrete methods (i.e., finite 7)
for integrating differential problems.

There is however an interesting alternative. First we note that in the conventional
approach the discrete time points S are uniformly embedded in continuous time, with

1To stress his criticism, Rayner more than once refers to the common-sense views of mathematicians
and physicists. I am certain, however, that committing this cardinal sin is a daily practice among working
physicists. Leibniz is my other witness. Formally, the evolution operators f; related to differentiation are
called the generators of the infinitesimal time translation!
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fixed spacing 7. Thus, the assumption is that X (S) = z(t = S7), in other words, the
discrete time points are obtained by uniform sampling from the continuous time line. But
one can introduce other, nonuniform and probabilistic, ways of sampling by introducing
the probability P(¢, S) that at continuous time point t precisely S discrete steps have
occurred?. Then, if we know the discrete-time variable X (5) from extended prediction
in discrete time, we can obtain the corresponding continuous-time variable z(t) from

z(t) = i P(t, S)X(S). (4)

One can imagine many different possibilities for the way in which the discrete points
S are randomly distributed in continuous time, and later on in Sec. 5 we will construct a
whole class of them. In this section we will be content with a single form of probabilistic
embedding. Let us suppose that the discrete steps take place on the continuous time axis
completely independent from each other. It is known that occurrence of uncorrelated
events is associated with a Poisson distribution:

Pr(t,5) = 5(>) exp(~2). )

Here, the finite parameter 7 represents the average time lapse (spacing) between two
subsequent discrete time points.

3.2 Extended prediction of differential dynamics

Now, the connection between discrete and differential dynamics is provided by the fol-
lowing theorem.

Proposition 1 Let X(S) be the solution of the discrete system (2), and let z(t) be the
corresponding continuous-time variable satisfying Egs. (4) and (5). Then z(t) is the
solution of the differential equation system (1) for all times t.

Proof. By direct verification. Substitute Eq. (5) into (4) and differentiate both sides
with respect to . Rearranging the terms with respect to S and inserting Eq. (2) shows that
z(t) satisfies Eq. (1). O

Phrased in more popular terms, we may say that differential equations are equal
to discrete-time equations plus probabilistic Poisson sampling.®> Thus, we can deal
with differential equations in a way that explicitly avoids the notion of derivatives or
infinitesimal time steps, as shown by the right-hand side of this pseudo-equation. This
yields an alternative solution to the extended prediction problem. A straightforward
algorithm can be given for this:

2This idea stems from the theory of stochastic processes, see [11; 12].
3Incidentally, this idea can be used to show that the graph-theoretic approach to computational and
physical causality proposed by [13] generalizes to discrete-time systems.
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Step 1. Compute the solution X (.S) of the discrete-time system (2) through the iterated
map algorithm (3). If the continuous-time interval of interest is (0, T'), the needed
total number of discrete steps is on the order of M = T'/7.

Step 2a. If one is interested in only one or a few future time points {, it is easiest to
calculate Egs. (4) and (5) directly, cutting off the summation at the point where
additional terms contribute less than a preset negligible fraction.

Step 2b. If one is interested in a prediction covering the whole interval, one can generate
the needed continuous time points by the following sequential Poisson sampling
algorithm: draw a random number sequence p; € (0,1) using a standard pseudo-
random number generator; then calculate the spacing to the next continuous time
point as At; = —7In(p;).* If so desired, accuracy can be increased by repeating
this procedure and averaging the results using so-called stratified sampling.

The computational complexity of each of these steps is O(M). Several variations or
improvements are possible. It is interesting to note that this stochastic Poisson sampling
also occurs in computer graphics as a technique to improve the quality of images [14;
15]. Here, other algorithms can be found (such as the dart-throwing algorithm) that
are applicable to more dimensions but are somewhat less efficient in one dimension.
In sum, efficient extended prediction based on differential equations is possible through
probabilistic embeddings of discrete common-sense analogues in continuous time, without
invoking differentials or infinitesimals.

Hlustration 1: the radioactive decay law. A nice and simple example to illustrate the
above is radioactive decay. Suppose we have a block of radioactive material and a Geiger
device counting the decay events. Discrete time S is naturally provided by subsequent
(groups of) clicks of the Geiger device and X (.S) is the fraction of nuclei that has not yet
decayed. An obvious model is to postulate that in a given finite time span T a constant
fraction decays, so 2X(S) = —2X(S) (0 < @ < 1), and that the nuclear decay events
occur independently, so that Eq. (5) applies. By symbolically solving Eqs. (3) and (4)
we immediately see without using differential calculus (as standard text books do) that
the fraction z(t) in continuous time decreases in an exponential fashion. The algorithm
discussed above gives a realistic animation of the Geiger counting process, in strictly
discrete and finite terms.

4 Qualitative simulation in discrete time

The previous section has focussed on quantitative reasoning about discrete dynamics in
its relation to continuous dynamics. An interesting issue is how this extends to qualitative

“That this indeed yields a Poisson distribution can be mathematically proved, ¢f. Sec. 5.




reasoning. We will follow here the mathematically transparent exposition of Kuipers
[4] regarding qualitative simulation of ordinary differential equations (ODEs). Does
this qualitative simulation machinery generalize to discrete-time systems of the finite
difference equation (FDE) type (2), and if so, how?

Already upon a first inspection it is clear that one has to tackle several problems
in the discrete case. First, the abstraction of time is necessarily different: Kuipers
abstracts continuous time as an alternating sequence of distinguished time points and
open intervals. But open intervals do not exist in discrete time. More importantly,
a discrete-time function may transition between qualitative regions without assuming
the landmark value itself at all. Hence, the very notion of distinguished time points
becomes problematic. Second, several proofs in [4] depend on trend functions being
‘reasonable’ (essentially, continuously differentiable and behaving not too pathologically).
For example, the intermediate value theorem is used. However, the notions of continuity
and differentiability are lost in discrete time. The latter problem was already pointed out
in [7]. On the other hand, it is evident that quantitative simulations with respect to Egs. (1)
and (2) are close if 7 is not too large. Therefore, one would expect that a similar situation
applies to qualitative simulation.

Upon translation from continuous to discrete time, the definition of the qualitative value
qval of a trend function X: Z — R remains intact. The same holds for the qualitative
constraint predicates ADD, MULT, MINUS and M*. Due to the lack of continuous
differentiability, redefinitions are needed for the DERIV predicate and for the qualitative
change gdir. These can be furnished however by taking into account the common-sense
ideas underlying derivatives discussed in Sec. 2:

Definition 2 The qualitative change value of a discrete-time trend function X (S) is given
by qdir = inc, std, dec, if AX(S) >0,=0, <0.

Definition 3 The qualitative constraint predicate DDIFF(Y ,X) holds iff Y(S) =
AX(S)forall S € [a,b] C Z. DDIFF is the discrete-time analogue of DERIV.

On this basis, any FDE (2) can be abstracted to qualitative constraint sets, just as in the
case of ODEs. We now propose to abstract the discrete time axis as an alternating sequence
of (closed) intervals relating to qualitatively steady state regions and of distinguished time
points, whereby if necessary the latter are simply added if the trend function does not
assume the landmark value itself. It is then straightforward to check that the QSIM I-
and P-rules for possible transitions still apply. Thus, we have established the following
proposition.

Proposition 4 Qualitative simulations of the ODE (1) and of its common-sense FDE
analogue (2) in discrete time yield the same results, with the possible exception of the
distinguished time points.

Hence, the QSIM machinery does extend to discrete time, but we have to give a
special position to the distinguished time points. This idea can be made more precise,
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by generalizing Kuipers’ notion of a ‘reasonable’ function such that the distinguished
time points of the ODE (1) are separated out without spoiling the reasonable nature of
the function to be integrated. This can be achieved by using the so-called Lebesgue
integration theory, which constitutes a generalization over standard Riemann integration
(which is also used in qualitative simulation). The basic idea is that an integrable (or
reasonable) function may be changed at isolated points without changing the value of the
integral, because isolated points have ‘no length’ (formally: form a set of measure zero
on the real line). One says that a property P holds ‘almost everywhere’ if the points where
P does not hold form a set of measure zero. We will not go into detail here but refer the
reader to standard text books such as [16].

By virtue of the Lebesgue theory the following proposition (a formally more precise
version of the above proposition) is valid.

Proposition 5 (i) The distinguished time points form a set of measure zero.

(ii) Let C be the class of functions that are equal to the solution z(t) of the ODE (1) almost
everywhere, namely, with the possible exception of the distinguished time points. Then
qualitative simulation of the FDE (2) yields all behaviors that are compatible with the
function class C.

In sum, qualitative simulation in discrete time is ‘almost equivalent’ to qualitative
simulation in continuous time: the former yields the same results but is slightly more crude,
in the sense that it cannot distinguish between ‘everywhere’ and ‘almost everywhere’. This
completes our discussion of discrete qualitative simulation.

Dlustration 2: decay and oscillation. The previous example of radioactive decay is
very naturally modeled qualitatively by the axioms DDIFF(Y,X) and Mg (Y,X). Then
the discrete version of QSIM, like the continuous one, correctly predicts that the radioac-
tive fraction always keeps decreasing and becomes zero at infinity. Another example is
the harmonic oscillator. A ‘stroboscopic’ view on the undamped spring gives the quan-
titative model A?X(S) + w?72X(S) = 0, and the qualitative constraints DDIFF(Y,X),
DDIFF(Z,Y’) and Mg (Z,X). Qualitative simulation produces the same oscillatory behav-
iors as in the continuous case (including the ambiguities concerning damping, conserva-
tiveness or runaway), while numerical simulation of the FDE shows oscillatory motion
whereby the landmark value zero might be missed in discrete time, depending on the
actual values of w and 7. This shows the ‘almost equivalence’ of discrete and continuous
qualitative simulation.

S Are QDEs abstractions of ODEs only?

This section will lead us to a rather remarkable theorem about qualitative abstraction and
simulation of system types that have not previously been considered in AI. We have already
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shown that differential and discrete dynamics are almost equivalent from the viewpoint of
qualitative simulation. We have also seen that these forms of dynamics are quantitatively
equivalent if (and only if) they are linked by probabilistic Poisson sampling. So, a natural
question is: what happens if we use other stochastic sampling methods that do not yield a
Poisson distribution? Although this requires some mathematical sophistication, the results
are rewarding.

5.1 A construction method for probabilistic embeddings

In order to tackle this problem, we will first give one method to construct different
probabilistic embeddings P to be used in Eq. (4) [11; 12]. As in the Poisson case, we
suppose that the discrete steps S occur at random instants in continuous time. Foreach step
we assume that the time lapsed since the occurrence of the preceding step is determined
by a generic probability density () satisfying

Viet) 20 [ el =1. (6)

There are no otherrestrictions on . As a result we obtain a very wide class of embeddings
P, each suitable function ¢ yielding an instance. The probability P(t,.S) can be induc-
tively constructed from ¢ as follows. For S = 0 we take P(t, S) to be the probability that
no step has occurred at continuous time ¢. This is formally expressed by:

P(t,0) % x(t) = 1~ [ (et (1)

Next, P(t,S = 1) is the probability that precisely one step has occurred at time ¢. This is
formally given by the convolution expression

t
P(t,1) = Convlp, ] & [ x(t = )e(t)at’ ®)
0
This procedure is continued to yield a recursive expression for P for all S:
P(t, S+ 1) = Convlp, P(t, S)]. (9)

One obtains the Poisson distribution (5) via this procedure by taking for ¢ an exponential
distribution: ¢p(t) = 2 exp(—%). We mention in passing that this provides the rationale

P

for the sequential Poisson sampling algorithm discussed in Sec. 3.

5.2 Quantitative and qualitative reasoning implications

After these preliminaries we are able to derive both a quantitative and a qualitative theorem,
the latter being the central result of this section.
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Proposition 6 Ler X (S) be the solution of the discrete system (2), and let z(t) be the
corresponding continuous-time variable satisfying Eqs. (4) and (7)—(9). Then for all times
t, z(t) satisfies an integro-differential equation (IDE) system of the form:

t
-(%a:;(t) = /O dt' M(t =1 fu(z:(t),...,z;(t'),...,zn(t)), i=1,...,N. (10)
Proof. The proof is most elegantly set up in matrix notation. Take the Laplace trans-
form of Eq. (4). Then, the summation can be carried out symbolically using the Faltung
theorem, upon insertion of Egs. (7)—(9) and of Eq. (2) in its iterated map formulation (3).
Comparison with the solution for z;(t) obtained by Laplace transformation of Eq. (10)
now establishes the proposition, in addition yielding the relation between M and ¢.°> O

Unlike an ODE, the IDE (10) is not a constraint on simultaneous values of quantities.
One also needs all past state values in order to evaluate the time evolution of the system.
Thus, IDEs (also called infinite delay equations) have a memory M, whereas ODEs are
memory-less (thatis, M is a Dirac delta function). IDEs naturally occur in nonequilibrium
statistical mechanics and quantum mechanics, and have applications for example in nuclear
and chemical physics. The above proposition says that IDEs can be seen as discrete
equations plus probabilistic sampling. Hence, also for IDEs extended prediction is possible
without using the notion of infinitesimals, along the same lines as discussed in Sec. 3.

The view that IDEs and ODE:s all constitute discrete-time equations of the type (2)
plus some form of probabilistic embedding in continuous time, has also interesting con-
sequences for qualitative reasoning. Qualitative simulation abstracts the continuous time
axis such that it does not know anything about the duration of the qualitatively steady
intervals. Only the fact that they occur and their ordering may be deduced by qualita-
tive simulation. Consequently, it is not visible for qualitative simulators such as QSIM
what the precise locations of the distinguished time points or their relative spacings are
on the continuous time axis. By implication, it is immaterial to qualitative simulation
how the discrete steps S are embedded in continuous time; we may locally ‘stretch’ or
‘shrink’ the time axis without changing the qualitative simulation results. The different
ways of probabilistic embedding discussed above only differ in the way they execute this
positioning of discrete events in continuous time. In other words, qualitative simulation
cannot distinguish between different shapes of the memory function M. This leads us to
the following conclusion.

Propeosition 7 Qualitative simulation cannot distinguish between ODEs (1) and IDEs
(10). They fall into the same equivalence class of abstraction to qualitative differential
equations.

This has two consequences. First, not one (the ODE) but many (the IDEs) differential
equations are abstracted to the same qualitative differential equation. Therefore, qualita-

SThe relationship between the memory kernel M and the event spacing distribution @ is given by
M* =u/[1/p* — 1] or, equivalently, ¢* = [u/M* + 1]71. Here, u is the complex frequency (the variable
conjugated to time) and the asterisk denotes the Laplace transform.
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tive simulation is much more coarse than previously thought. Second, it has become clear
how to qualitatively simulate a new class of dynamic systems, viz. the IDEs, namely, via
replacing them by the corresponding ODE.

Ilustration 3: nuclear reactions. If in illustration 1 about radioactive decay we
would postulate correlated decay events, that is, a non-Poisson distribution P or a non-
exponential ¢, we would obtain an IDE (10) in continuous time. It is not difficult (e.g.,
for ¢ being a Dirac delta function) to verify that the qualitative behavior as discussed
in illustration 2 remains the same (we add that this also applies to the example of the
spring). Correlated events in this case are physically not really expected. However, in
other nuclear domains (cf. [12] and references therein) there are recent claims that corre-
lated events actually give a better fit to experiment, for example in the field of heavy-ion
collisions. Here, z;(t) is read as the probability that a heavy ion has mass z, S represents
the subsequent exchange events of protons and neutrons between the colliding heavy ions,
and the memory kernel M may be taken to be exponential or Gaussian.

6 Conclusion

The dynamics of physical systems may be expressed in terms of both discrete time and
continuous time. Theoretical physics typically prefers real continuous time, as exemplified
by its use of differential equations. On the other hand, modeling in discrete time (in the
structure of the integers) is of great computational interest. This work has studied the
question how these two conceptions of time are related in reasoning about dynamical
systems.

The major results of this paper are:

e Efficient extended prediction of differential equation systems is possible, since
differential equations have been proved to be equivalent to discrete dynamics plus
probabilistic sampling of the continuous time line. This new approach completely
avoids the notion of infinitesimal time steps and differentials.

e The machinery of qualitative simulation of differential dynamics has been shown
to carry over to discrete-time systems with minor adjustments. With the possible
exception of sets of measure zero on the time axis, qualitative simulation yields
the same results for differential equations and their discrete-time common-sense
analogues.

e Qualitative differential equations have been proved to be abstractions not only of
ordinary differential equations, but also of integro-differential equations that contain
a memory function and that naturally occur in statistical and quantum mechanics.
In other words, the equivalence class of qualitative abstraction is much larger than
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previously thought. At the same time this result shows how to carry out qualitative
simulation of integro-differential equations.

These results are illustrated by examples from recent literature on nuclear physics.
Thus, our approach of introducing probabilistic embeddings of discrete point events in
continuous time proves very fruitful in developing a formal theory of the quantization of
time in dynamic physical systems.
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