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Abstract
In this paper we present a techniquefor automatically generating constraints on

parameterderivativesthat reduce ambiguity in the behaviour prediction. Starting with
a behaviourprediction using an initial library containing general domain knowledge
the technique employsfeedback about correct and incorrect states of behaviour and
knowledgeabout the causaldependenciesbetweenthe parametersin the modelin order
to determine the constraintsthat removethe incorrect or undesiredstatesof behaviour
that result from ambiguity. In addition, the technique points out the assembly of
physicalobjects to which the generatedconstraints apply.

1 Introduction

A recurring issue in qualitative predictionof behaviour (ci. [1; 9]) is the problemof con-

structing a model that is not ambiguousin the sensethat it only predictsbehaviours
that can actually occur. In particular,when usinga library of partial behaviourmodels
modellinggeneraldomain knowledge(like processes[5] and devicebehaviours[3]) theam-
biguity introducedby the qualitative calculus,togetherwith the requirementof modelling

device behaviourindependentfrom the context in which it operates(the ‘no function in

structure’ principle, ci. [3]), makesit difficult to define adequateprediction modelsfor
a specific system. In order to get rid of ambiguity additional constraintsmust be speci-
fied which model: (1) orderof magnitudes[8], (2) assemblyspecific behaviour(functional

view), and (3) conservationof quantities for the systemas a whole. In this paperwe

presenta techniquethat automaticallyderivestheseconstraintsby analysingcorrectand

incorrect behaviourpredictions from the set of possiblebehavioursand a model of the
underlying causality. In addition, the approachlocalises the physical structure, and its

specific modeof behaviour,to which the constraintsapply.



The contentsof this paperis as follows. Section 2 providesbackgroundinformation
abouthow the knowledgeengineercanbe supportedduringthe modellingprocess.Section
3 describesthe framework for qualitativeprediction of behaviouras we use it. Section
4 discussescausesof ambiguityand the relatedproblemswhich we tackle in this paper.
Section 5 presentsa method for generatingthe constraintsneededfor reducingthe am-
biguity in a behaviourprediction. In particular,it focuseson how to generatecandidate
constraintsandhow to discriminatebetweencompetingconstraints. Section6 describes
how the physicalstructurecanbe localisedto which the constraintsapply. Section 7 dis-
cussesthe notion of furtherspecificationafter oneor more constraintshavebeenaddedto
the knowledgein the library. Finally, in section8 we summarisethemajor resultsof our
research.

2 Supporting the KnowledgeEngineer: AutomatedMod~
elling

Our approachcanbe thoughtof assupportingaknowledgeengineerwho,on the basisof a
library containinggeneraldomain knowledge,hasto developaspecific modelthat can be
usedfor abehaviourpredictiontask.’ Givensuchalibrary with generaldomainknowledge
the knowledgeengineeris confrontedwith two problems: (1) relatingthe elementsfrom
the real-world systemthat has to be modelledto the canonicalentitiespresentin the
library, and(2) modellingadditionalconstraintsto reducethe ambiguity in the behaviour
prediction.

Typically, the knowledgeengineergoes througha debugging/refinementprocess,de-
pendingupon the behaviourprediction that the qualitativepredictionengine produces.
Each predictedstatereflects a correct or an incorrect form of behaviourand as such
providesfeedbackfor how the modelsfrom the initial library must be modified.

The problemof modelling is complexandcannot be automatedall at once. In this
paperwe concentrateon derivingadditionalconstraintson the derivativesof parameters
that arerequiredto removeundesiredstatesof behaviourthat result from ambiguity. An
assumptionthereforeis that theinitial knowledgein the library is sufficient for predicting
at least all possiblebehaviours,but that it can be too generalin the sensethat it may
alsopredict behavioursthat do not occur.

Building andrefining qualitative knowledgefollows a debuggingcycle as depictedin
figure 1. After the knowledgeengineerhasclassified(c.q. modelled)somesystemfrom the
real-worldinto termsof the canonicalelementspresentin theinitial library, the prediction
enginegeneratesa graph of possiblebehaviours. Although in principle this graph may
includeall possiblebehaviours(correctandincorrect)that canbe derivedon the basisof
thegeneralknowledgein the library, it is usuallynecessaryto limit thenumberof statesto
asubsetthat canstill be understoodandusedby the knowledgeengineer(partial behaviour
prediction). Next, for eachstateof behaviourtheknowledgeengineerdetermineswhether
it representsacorrector an incorrect stateof behaviourby comparingit with the actual
behaviourof the systemin the real-world. The sets of correct and incorrect statesof
behaviourareinput for the processof refining the knowledgein the library.2 The learning

‘For example,qualitativepredictionof behaviourof adeviceasasubtaskof adiagno8ticproblemsolver.
21t could also be thecasethat the canonicaldescriptionhasto be changed(redoclassify),but we will



taskis now to find new constraintsthat will excludefalsepredictions(without excluding
the correctpredictions).It mustdiagnosethe setof correct andincorrectbehavioursand
determinewhichconstraintshaveto be addedto whatpartsof theknowledgein the library
in order to removethe ambiguity.

3 Frameworkfor Qualitative Predictionof Behaviour

In this sectionwe describesomeimportantaspectsof the frameworkfor qualitativepredic-
tion of behaviourthat we use. This framework is implementedas adomainindependent
qualitativereasoningshell,calledGARP, which can be usedby aknowledgeengineerfor
developingpredictionmodels. (ci. [2]).

Systemelementis an important(often implicit) notion in theprocessof building qual-
itative models, It refers to (1) how objects from the real-world are representedin the
predictionmodel, and (2) how theserepresentationsare applied to guide the behaviour
analysis(i.e. the searchfor applicablebehaviourmodels).

In contrastto using apure componentorientedapproach[3] (modelling the physical
world as componentsconnectedby conduits) or a pure processoriented approach[5]
(modelling the physical world as physicalobjectsthat interactvia processes),we claim
that it is essentialto useboth componentand processoriented abstractionsin a single
predictionmodel. In addition,systemelementsmayalso refer to functional abstractions
of the physical reality andassuch do not haveto mapdirectly ontophysicalobjects.

Similar to the componentandprocessorientedapproach,our qualitativeprediction
engineusesa library of partial behaviourmodelsfor determiningthe behaviourof some
real-world system.The knowledgein thelibrary discriminatesbetweenstatic,processand
agentmodels. Staticmodelsrepresentgeneralpropertiesof systemelements,Theycanbe
further divided into single description,composition,and decompositionmodels,referring

to modelling the propertiesof a single systemelement,a collection of systemelementsor

to how a systemelementcan be decomposedinto its sub-structure. Processesdescribe
changesthat are basedon inequalitiesbetweeninteractingquantitiesof different system

Figure1: Stepsin building predictionmodelsfrom generallibrary knowledge

not discussthis option in this paper.



elements. Agent modelsare used for modelling changesthat are causedby agentsand
mayhavetheir impact on oneor moresystemelements.

The knowledgerepresentationfor modellingpartial behavioursis as follows:

Supertype relation The partial model can be asubtypeof otherpartial models(mul-
tiple inheritance).This meansthat the superbehaviourmodelsmustbe applicable
in order for the subtypeto be applicable.

Conditions Eachpartial model has its own specific conditions that must hold before
the knowledgethat is specified in the consequencesof the model can be used.The
following five knowledgetypes can be conditions:

1. Systemelements:The abstractionfrom the physicalworld to which the partial
model applies.

2. Parameters:Propertiesof systemelementsusedby parametervaluesand/or
relations.

3. Parametervalues: Parametervaluesthat musthold.

4. Parameterrelations: Relations (constraints)betweenparametersthat must
hold.

5. Partial behaviourmodels:Otherpartial modelsthat specify certainknowledge
about the behaviourof the real-world systemthat must be knownbefore the
partial model maybe used(=applies-tohierarchy).

ConsequencesWhen a partial model is applicable the consequencesspecify the addi-
tional knowledge about the behaviour of the real-world systemthat is derivable.
The following five knowledge types can be derived:

1. Systemelements:For processesit may be the casethat new entities in the
real-world arecreatedbecauseof the behaviour of the system(for example:gas
when boiling liquid).

2. Parameters:(New) propertiesthat areintroducedby the partial model.

3. Parametervalues: New valuesfor parametersthat hold.

4. Parameterrelations: Additional constraintsthat hold betweenparameters.

5. Partial behaviourmodels:(Other) partial modelsthat canbe derived.

Finally, table1 presentsan overview of theparameterrelationsthat canbe usedfor mod-
elling the behaviourdependenciesbetweenparameterderivatives, The proportionalities
andinfluencesaresimilar to thosedefinedby Forbus[5]. Theinequalitiesbetweenderiva-
tivesaresimilar to the notionof confluencesdefinedby de Kleer [3].3 The proportionalities
andinfluencescanbeusedfor modellingcausaldependencies,whereasthe inequalitiescan

31n theexamplediscussedin this paperArgl refersto aparameterandArg2 refersto eitheraparameter
or to thevaluezero. Theformercanbeusedfor modellingconstraintsbetweenapairof parameters,whereas
the latter canbe usedfor relating thederivativeof aparameterto zero. The relation d..equal(zero, plus(
Argi, Arg2 )) is aspecificversionof modelling that asumequalszero. In general,eachargument(Arg) of
an inequality constraintmay (recursively)refer to thesum of two derivatives. For theexamplepresented
in this papera ‘sum’ constraintbetweentwo derivativesis sufficient.



[Types Specific relations Reference

Inequalities d..smaller-or..equal(Argi, Arg2 ).
d...greater..or.,equal(Argi, Arg2 ).

d_equal(Argi, Arg2).
d.,greater(Argi, Arg2).
d..smaller( Argi, Arg2).

1
2
3
4
5

d_equal(zero,plus( Argi, Arg2 ) ). 6

Proportionalities prop_pos(Pan,Par2).
prop..sieg( Pan, Par2).

Influences inf_pos,.by(Pail, Par2 ).
inf.,neg_by(Pan,Pan2 ).

Table 1: Dependenciesbetweenparameter derivatives

be usedto furtherconstrainthe ambiguityintroducedby thesecausalrelationsor for mod-
elling constraintson derivativesthat lack aclearcausaldependency.As arguedin [2] both
the causalandnon-causaldependenciesareessentialfeaturesof aqualitativemodel.

4 Causesof Ambiguity

The needfor refinementof the knowledgepresentin the initial library can be illustrated
with a prediction model for the refrigerator. Figure 2 visualisesthe importantphysical
objects of the refrigerator. To model the behaviourof theseobjects a combinationof

modelling devicebehaviourand processesbetweenphysical objects is required (see [2]
for moredetails). Both the compressorand the throttle valve can be modelledas agent
modelsthat influence the amountof substancein the condensorand in the evaporator.

SUrmund~ ~r$I (wodd)

Figure 2: A model of the refrigerator



Thesesubstancescan be modelled as ‘closed contained substances’as described in the
processcentered approach (cf. [5]). Also the world and the cooling area canbe modelled
in this way, although the knowledgerepresentedby thesemodels may neglectthe pressure
and the amountof substance.A direct proportional relation betweenthe temperatureand
the heatis sufficient to modelthe behaviourof theseentities. Finally, the prediction model
must include processeslike heat flow, evaporation and condensation. The causal model
(proportionalities and influences) that is representedby thesepartial behaviour models is
shownin figure 3.

Temp Temp
(Con. Sub.) (World)

4f1

Pressure Heat ~ Flow Rate ~ Heat
(Con. Sub.) ~4~” (Con. Sub) ‘~‘V~(Heatflow) ~TW’(World)

~ Amount *~
~ (Con. Sub.) ~ Legend

ExpRate CompRato ..44. Influence Flow Rate
(Throttle valve) (Compressor) ..—.—~‘ Proportionality (Heat flow)

Isolation
~ Amount ~

(Evap. Sub.)

4
Pressure Heat ~ Flow Rate Heat

(Evap. Sub.) ~4~”(Evap.Sub) ‘~V(Heat flow) ~W~1C. Area)

4 4
Temp Temp

(Evap. Sub.) (C. Area)

Figure 3: Causaldependenciesin the refrigerator

Presentingthis modelto the predictionengine(CARP)resultsin 179 possiblestatesof
behaviour(total envisionment).The first specificationstep(finding all the setsof partial
behaviourmodelsthat apply to the canonicalproblem description)producesalready 15
possiblestatesof behaviour.The valuesof the parameterderivativesin thesestatesare
shownin table 2.

Most of the 179 statesrepresentincorrect behaviourof the refrigerator,i.e. statesof
behaviourthat arequalitatively possible,but which do not representactualbehaviourof
the refrigerator.A typical exampleof suchbehaviouris aheatflow from the surrounding
world into thesubstancecontainedby the condensorwhicheventuallyresultsin an increase
in the temperatureof the cooling area. In amodel representingcorrectbehaviourof the
refrigerator,no suchheatflow shouldoccur. This requiresanextraconstrainton the heat
flow from thesurroundingworld to the substancein the condensor.

A largenumberof incorrectbehavioursresultsfrom ambiguity,i.e. the relativeimpact
of competinginfluencesis not representedin the generallibrary of partial behaviourmod-
els. Additional constraintsare requiredwhich representassemblyspecificbehaviourand



Parameters II States

~iII I i~i!i ~ii~i~I~iI i~ii~ii~ii~!i
Press (Evap. Sub.) - - - 0 + - - - 0 + - - - 0 +
Amount (Evap. Sub.) - 0 + + + - 0 + + + - 0 + + +
Heat (Evap. Sub.) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp (Evap. Sub.) - - - 0 + - - - 0 + - - - 0 +
Press (Con. Sub.) - - - - - 0 0 0 0 0 + + + + +
Amount (Con. Sub.) - - - - - 0 0 0 0 0 + + + + +
Heat (Con. Sub.) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp (Con. Sub.) - - - - - 0 0 0 0 0 + + + + +
Heat (C. Area) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp (C. Area) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Heat (World) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Temp (World) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E-Rate (T_valve) ? ? ? ? ? ? ? ? ? ? ? ‘1 ? ? ?

C-Rate (Compressjor) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Table2: The first 15 states generatedfor the refrigerator (only 11 is correct)

therebyreducethe amountof ambiguity. Consider,for example,the amountof substance
in the condensor. The condensor hasapositiveinfluenceon this when it is working, but
the throttle valve allows substanceto flow out andconsequentlyinfluencesthe amount
negatively. The resulting derivativefor the amount is ambiguous,i.e. it can increase
(the effect of the compressoris greater),decrease(the out flow via the throttle valve is
greater),or stayconstant(the effects areequal).Whenthe amountdecreasesthis leadsto
apressureand temperaturedecreaseandthereforeto a heat flow from the world into the
condensor.This is an undesiredsequenceof behaviour.When the compressoris ‘working’
the amountof substancemayonly increase,or stayconstant,but not decrease.

The problemis evenworsebecausethe influenceof heatflow countersthe effect of the
pressureincrease,Again thereis ambiguity: the temperaturemay increase(the effect of

the pressureincreaseis greater),decrease(the effect of the heat flow is greater),or stay
constant(the effects areequal), However,as mentionedbefore, for a correct functioning

refrigeratorthe effect of the pressureincreasecausedby a ‘working’ compressoris greater.
In both examplesthespecific configurationof physicalobjectsis such that only certain

behaviourstake place. A behaviourpredictionconsistingof correct statesof behaviours
can only be obtainedwhen the constraintsfor assemblyspecific behaviourare addedto
the knowledgein the (initial) library.

A secondsourcefor ambiguity is the lackof conservationconstraints.Startingwith the
initial library thereis no knowledgeavailablethat representsthe conservationof quantities
for a certain device. In the caseof the refrigeratorthereis at leasta needfor a constraint

that modelsconservationof substancebetweenthe condensorand the evaporator.When
this constraintis lacking this meansthat theambiguitydiscussedabovefor the condensor
is mirrored for the evaporator,which results in 9 times 9 possible statesof behaviour.
Including behavioursin which both the amountof substancein the condensorand in the
evaporatorareincreasingor decreasing(seefor examplestate 1 in table 2). Conservation
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of quantitiesis essentialfor disambiguatingthesefaults in the predictionmodel.

5 Determining CandidateConstraints

This section describeshow the constraintsfor disambiguationof the predictionmodel
can be derivedon the basisof feedbackabout correctand incorrect statesof behaviour
and the causalitythat underliesthe model. The first section describeshow candidate
specialisationsof the library in the form of extraconstraintscan be generatedandthe
secondsectiondiscusseshow we can discriminatebetweencompetingconstraints.

5.1 GeneratingConstraints

For generatingconstraintstwo sourcesof information are available: (1) the statesof
behaviourthat representcorrectbehaviourand(2) the statesof behaviourthat represent
incorrect behaviour.The conclusionsthat canbe derivedfrom thesesetsdependon the
scope of the prediction. If the prediction is complete, i.e. all correctand all incorrect
stateshavebeengenerated,thentheparameterderivativescanbe usedto generatesetsof
constraintsthat excludeall statesof behaviourthat haveincorrect valuesfor derivatives
(table 3) and/or incorrect combinationsof derivatives (table 4).

Derivative Consistent constraints J Inconsistent constraints

— 1V5 2V3V4
0 1V2V3 4V5
+ 2V4 1v3V5

Table 3: Derivatives and related constraints

Generating a set of constraints is not self-evident, becausethere may be multiple

(independent) causesresponsible for the generation of an incorrect state of behaviour.
The problem is to determine which constraints betweenwhich parametersshould remove
which statesof behaviour. There is, for example, no way to decidewhetherthe first
incorrect stateof behaviour(seetable 2) is causedby lack of knowledgeaboutorder of
magnitude (amountof substancein condensoralways increasesor stays constant,but
neverdecreases)or by alack of knowledgeaboutconservationof quantities(the changes
in the amountof substancein the condensorandin theevaporatorshould equalzero).

The processis evenmorecomplicatedwhenthebehaviourpredictionispartial,which is
usually the case.Although the reliability of the informationstemmingfrom the incorrect
statesbecomesgreater when more statesof behaviourhavebeenpredicted,it is very
likely that not all faultsmanifestthemselvesin acertainpartial behaviourprediction. In
other words, constraintswhich first seemedto representa discriminatingfactor between
correct and incorrect statesmayturn out to be inappropriate. The problem is not to
select a constraintthat will rule out acorrect stateof behaviourthat was not predicted

yet. Specifying,for example,that the derivativeof the temperatureof thesubstancein the
condensoris alwaysgreaterthan the derivativeof the temperatureof the substancein the

evaporatorerroneouslyexcludesfuture statesof behaviourin which the two are equal.
In orderto copewith the two problemsdescribedabovewe canfocusprimarily on the

information that canbe derivedfrom thecorrectstatesof behaviour,The constraintsthat
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Derivative pairs Consistentconstraints Inconsistentconstraints

-,- 1V2V3 4V5V6
-,0 1v5 2V3V4V6
-,+ 1V5V6 2v3v4
0,- 2v4 1v3v5v6
0,0 1V2v3V6 4v5
O,+ 1V5 2V3V4V6
+,- 2v4v6 1V3V5
+,0 2v4 1V3V5V6
+,+ 1v2v3 4V5V6

Table4: Derivativecombinationsand relatedconstraints

excludeincorrect statesof behaviourshould be consistentwith the information captured
in the correctstatesof behaviour,In other words:

• the constraintsthat excludeincorrect statesof behaviourshould be in the set of all
the constraintsthat are consistentwith the derivativesin the knowncorrect statesof

behaviour.

Therearetwo potentialproblemsto this approach.Firstly, the setof parametersdescrib-
ing astateof behaviourshouldnot be too large,in order for the setof possibleconstraints
to explode,andsecondly,thereis a dangerof proposing dependenciesbetweenparame-
terswhich are false, becausetheseparameters are essentiallyunrelated.The problemof
proposingrelationsbetweenunrelatedparameterscould leadto exclusionof correctstates
of behaviour.However, the selectionprocedure,discussedbelow, is basedon the causal-
ity betweenparametersand thereforeautomaticallypreventsthe selection of constraints
betweenunrelatedparameters.

Thegenerationof constraintsconsistsof the identificationof threetypes of constraints:

1. The derivativeof acertain parametermayonly havespecific values.

2. The derivativesof two parametersmusthavecorrespondingvalues.

3. The derivativesof certain parametersmay be limited, becauseof conservationof
quantities.

The constraintsfor single derivativesaregeneratedaccordingto table3. For eachparam-
eter all constraintsare found that are consistentwith all derivativesof this parameterin
all the correctstatesof behaviour,If, for example,a parameterhasderivatives+ or 0 in
the correctstatesof behaviourthenconstraints2V 4 and 1 V 2V 3 areconsistentwith these
derivatives. Constraint2 is consistentwith both derivativesandis thereforea candidate
for disambiguatingthebehaviourprediction. In our example(seetable2) thereis onecor-
rect stateof behaviour(state11) and 14 parameters(2 with unknownderivatives,which
thereforemaynot be used).Using table 3 this initially resultsin 30 candidateconstraints
for disambiguationof the prediction.

The constraintsfor relatedderivativesare generatedaccording to table 4. For each
pair of parametersall constraintsarefound that are consistentwith all the derivativesof
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parametersin the correctstatesof behaviour.If, for example,apair of parametershasthe
derivatives(+,+) or (—,0) in the correctstatesof behaviour,then theconstraints1V2V3
and 1 V 5 areconsistentwith thesederivatives.Constraint1 is consistentwith bothpairs
of derivatives. In the refrigeratorexample,the correctstateof behaviourfacilitates 140
candidateconstraintsbetweenpairs of parameterderivatives.

Generatingconstraintsfor conservationof quantitiescanbe guidedby knowledgeabout
the causalrelationsbetweenparametersin order to limit the numberof constraintsthat
will be found. The idea is that dependenciesbetweenparameterscan be factoredinto
clustersthatinfluenceeachother, but areindependentof otherparameters.4We shallcall
theseclusterscausalunits. A causalunit startswith aparameterthat is beinginfluenced
(by an influencerelation), traversesvia the proportionallyrelatedparameters,andends
with aparameterthat hasno causaleffect on anyotherparameterby meansof apropor-
tionality. A causalunit is essentiallya graph that may haverecursiveloops,more than
one starting point and more than one terminal node (notice that a causalunit can consist
of oneor more causalpaths).5 In ourexampleof the refrigerator(seefigure 3) thereare
6 causalunits. Two of thoseare:

Heat (Con. Sub.) ~ Press (Con. Sub.) —~ Temp (Con. Sub.)
Amount (Con. Sub.) —~ Press (Con. Sub.) ~ Temp (Con. Sub.)

Constraintsfor conservationof quantitiesmaybedefinedbetweenparametersthat: (1)
belongto differentcausalunits, (2) modelthe sametypeof quantity,and(3)areinfluenced
by the sameinfluence. Usually an influence(c.q. a flow rate) consistsof two parts,one
that decreasesa quantity andone that increasesa quantity. Both are requiredbefore
a conservationconstraintmay be defined. In the caseof the refrigeratorconservation
constraintsare generatedbetweenthe parameters:

Amount (Con. Sub.) & Amount (Evap. Sub.)
Heat (Con. Sub.) & Heat (World)

Heat (Evap. Sub.) & Heat (C. Area)

The model doesnot allow aheat flow betweenthe cooling areaandthe world, otherwise
the conservationconstraintfor heat(s)would haveincluded the four heatparametersin a
singleconservationconstraint.

5.2 Selection of Appropriate Constraints

The generationof constraintsas describedaboveresultsin 173 candidateconstraintsfor
clisambiguationof thepredictionmodel. A numberof rulescanbe definedto discriminate
betweentheseconstraints.

Removenon-discriminativeconstraints Constraints that do not discriminate be-
tweencorrectandincorrectstatesof behaviourcanbe disregarded,This rule applies
for eachof the threetypes of constraintsdiscussedabove. Usually, non discrimina~
tive constraintsresult from equal derivativesin both correctand incorrect statesof

4This correspondsto the ideaof ‘factoring’, see [6].
5Wediffer from Forbus[5] who doesnot allow aparameterto be influencedboth directly andindirectly.

However,the specificchoicein this respecthasno effect on the techniquepresentedin this paper.
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behaviour.For example,specifyingthat the heatof the world equalszerodoes not
discriminatebetweencorrectand incorrect statesof behaviour.

Prefer weakerconstraintsabovestrongerconstraints d..greater..or...equal is
a weakerconstraint (allowing more values) than either greateror equal. In gen-
eral, combinationsare weaker,andshould be preferred. Therefore, if a parameter
(or a pair of parameters)hasboth the strongerandthe weakerconstraintthen the
former must be removed.This rule prohibits that on the basisof incompleteinfor-
mationa too restrictiveconstraintis selected.The morerestrictiveconstraintswill
only be selectedafter the weakerconstraintsfail to excludeincorrect statesof be-
haviour. This correspondsto asearchstrategyin the searchfor specialisationsfrom
generalto specific. The prefer weakerrule doesnot effect conservationconstraints
becausethey arealwaysof typeequal.

Thesetwo rulesremovea largenumberof the constraintsthat wereproposedduring the
generationstep. In fact only 54 constraintsremain after applying thesetwo rules: 6 on
specific derivatives,47 concernedwith pairsof derivatives,and 1 conservationconstraint.

It should not comeas a surprisethat most of the removedconstraintsare concerned
with specific derivativesand with pairs of derivatives. In contrastto the generationof
conservationconstraintsthe generationof theseconstraintsis not guidedby any specific
knowledge. For efficiency reasonswe mayof coursedecide to make the generation more
knowledgeintensive by including the abovetwo rules in the generation step and directly
limit the numberof constraintsbeinggenerated.

The nextsetof rules,that canbe usedto selectamongcompetingcandidates,is based
on the notion of causalunits in the domain model(seealsofigure 3). In generalwe want
to (1) removeconstraintsbetweencausallyindependentparameters,(2) defineconstraints
on parametersthat directly effect each other (i.e. adjacentin the causalunit), and(3)
constrainparameters‘early’ in the causalunit.

Removecausally independentconstraintsRemove all constraintsproposing rela-
tionsbetweenparametersthat arenot partof asinglecausalunit. Ambiguity always
resultsfrom multipleinfluences(proportionalitiesand/orinfluences)on acertainpa-
rameter,therefore,the disambiguationhasto effect the parametersthat are related
in this way. For example,a constraintbetweenthe temperatureof the substancein
the evaporatorand the pressureof the substancein the condensoris not allowed.
This rule effects the constraintsbetweenpairs of parameterderivativesandhas an
important impact. It removes41 of the candidateconstraintsbetweenpairs.

PreferadjacentconstraintsaboveintermediatedconstraintsPrefer constraints
betweenadjacentparametersin a causal unit above constraintsthat are related
via oneor more intermediateparameters.If, for example,aconstraintis proposed
both betweenthe amount& the pressureandbetweenthe amount & the tempera-
ture of thesubstancein the condensor,thenthe formershouldbe preferred(seealso
figure 3). The rationalebehindthis rule is that the disambiguationshould propose
constraintsthat follow the causaldependenciesin acausalunit. This rule only ef-
fectsconstraintsbetweenpairs of parameterderivatives. In the exampleit removes3
of the 6 remainingconstraints,asfor instance,preferringtheconstraintbetweenthe
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amount& the pressureabovethe constraintbetweenthe amount& the temperature
of thesubstancein the evaporator.

Prefer constraintson early parametersin the causalunit This rule appliesto all
three types of constraints. The rationalebehind this rule is that the disambigua-
tion should start at the beginning of the causal dependencies.In the caseof pairs
of derivatives it should prefer constraints betweenadjacent parameters that appear
early in the causalunits aboveconstraintsbetweenadjacent parameters that are po-
sitioned later in this unit. If, for example,a constraint is proposedboth between the
amount& thepressureand betweenthe pressure& the temperatureof the substance
in the condensor, then the former should be preferred.

This rule can also be used for constraints on a single parameter derivative. A con-
straint on the derivative of the amount, for example, should be preferredabove
a constraint on the temperature. In the refrigerator example, this rule removes 4
constraints on specific parameters by preferring constraints on the amountabove
constraints on the pressureand the temperaturefor both the substancein the con-
densor and in the evaporator.

In addition to pairs and single parameter derivatives this rule can also be applied
for conservation constraints: if there existsmore than one conservation of quantity
constraint betweenquantities belonging to different causalunits andthe causalpath
is similar for theseunits (within the rangeof theseconstraints)then the constraint
between the parametersearlier in the causalpath should be preferred. However, we
could not think of an examplefor the refrigeratorfitting this rule. It seemsthat this
caseis impossibleby definition.

The set of constraints that remainsafter all the aboverules have beenapplied is
shownin table 5. The set can be divided into two parts, one concernedwith conservation
of quantities andone with order of magnitudes (or assemblyspecific behaviour). The
constraints on specificderivatives and betweenpairs of derivatives belong to the latter.

Constraints II Eliminated states

Constraintfor conservation

d..~qual(zero, plus( Amount-ConSub, Amount-EvapSub)) Iii, 2, 6, 8, 9, 10, 12, 13, 14, 15

Constraintson derivativepairs

d..greater..or_equal(Press-EvapSub,Amount-EvapSub) 2, 3, 4, 7, 8, 9, 12, 13, 14
d..smaller...or_equal( Pressure-EvapSub,Heat-EvapSub) 5, 10, 15
d..smaller..or,.equal(Heat-ConSub,Press-ConSub) 1, 2, 3, 4, 5

Constraintson specificderivatives

d..greater..or.,equal(Amount-ConSub, zero) 1, 2, 3, 4, 5
d..smaller..or_equal(Amount-EvapSub,zero ) 3, 4, 5, 8, 9, 10, 13, 14, 15

Table 5: Remainingconstraintswith the statesthat are eliminated.

Thus far, we havenot beenconcernedwith the numberof incorrectstatesthat is being
excluded.The rulesareonly basedon the causalitythat hasbeenrepresentedin prediction

model. The constraintsthat remainafter applying the abovedescribedrules cannotbe
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discriminatedany further in this respect. For decidingupon which constraintsmust be
addedto the knowledgein the library, the following aspectsareimportant:

IndependentconstraintsConstraintsthat only excludestatesof behaviourthat arenot
excludedby anyotherconstraintsarenecessaryfor the disambiguationof the model
and must be added to the library knowledge. However, thereare no independent
constraintsin table5.

OverlappingconstraintsOverlappingconstraintscannotbe discriminatedanyfurther,
exceptfor the notion that the ‘super’ constraintexcludesthe most statesof incorrect
behaviour.It seemsreasonableto prefer this constraint. In table 5 this would imply
that the constraintsbetweenthe pressureand the heat (both for the substancein
the condensorand for thesubstancein the evaporatorshould be removedin favour
of the constraintson the derivatives of the amounts

Partially overlappingconstraints Partiallyoverlappingconstraintsthatexcludesome
statesof behaviourthat are not excludedby any other constraints,but they also
excludesimilar statesof behaviour.Theseconstraintsare necessaryfor the disam-
biguation of the model and must be added to the library knowledge. In table 5
the conservation constraint, the two constraints on the derivatives of the amountof
substancein the condensorand the amountof substancein the evaporator, and the
constraint betweenthe pressureand the amountof substancein the evaporator, are
partially overlapping.All four constraintsproposeconstraintsthat removestatesof
behaviourthat arenot removedby the other constraints.

A possibleheuristicfor dealingwith partially overlappingconstraintsis the following:

• Preferconservationconstraintsaboveconstraintsbetweenpairsof parameterderiva-
tives andconstraintson asingleparameterderivative.

• Prefer constraintsbetweenpairs of parameterderivativesabove constraintson a
single parameterderivative.

The orderintroducedby this heuristicis basedon the ideathat morecomplexconstraints
are more likely to be correct than lesscomplexconstraints. However, in the caseof a
partial behaviourprediction the only safeway is to havethe knowledgeengineerdecide
amongthe final set of competingconstraints.

In the caseof a full behaviourpredictionoverlappingconstraintsintroduceno problem
becauseall correct statesof behaviourare facilitated by the constraintsand they can
thus simply be addedto the model. Still it is impressiveto discoverhow evena small
set of correctstates(in our examplejust 1) providessufficient information for the above
describedtechniqueto generateexactly those constraintsthat fully disambiguatedthe
predictionmodel(seetable6).

6 Localise Partial Behaviour Model

After the constraintsfor disambiguationon the behaviourpredictionhave beendeter-
mined, thenext stepis to determinethe placein thelibrary whereeachof theconstraints
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Constraints Eliminated states

d..~qual(zero, plus( Amount-ConSub, Amount-EvapSub)) 1, 2, 6, 8, 9, 10, 12, 13, 14, 15
d..greater...or..equal( Press-EvapSub,Amount-EvapSub ) 2, 3, 4, 7, 8, 9, 12, 13, 14
dgreater..or...equal(Amount-ConSub,zero) 1, 2, 3, 4, 5
d..smaller...or_equal(Amount-EvapSub,zero) 3, 4, 5, 8, 9, 10, 13, 14, 15

Table 6: Resulting set of constraints that fully disambiguatesthe prediction model

should be added. Essentially two ways of augmenting the library are possible: either the
constraints are added to an already existing partial behaviour model, or the constraints
have to be representedin a new behaviour model. The method for localising the partial
behaviour model is similar in both cases.

Firstly, the dependenciesthat the parameters in the proposed constraint have with
existing influence relations and proportionality relations have to be determined. Each of
theserelations contributes to the ambiguity that hasto be removed by the constraint. The
behaviour modelsthat introduce theserelations are therefore conditional for the behaviour
model to which the new constraint hasto be added. If, for example, a constraint has to
be added between the amountand the pressureof the substancein the condensor then
(1) the influence of the compressionrate, (2) the influence of the expansionrate, (3) the
proportional relation with the heatand consequently(4) the influenceof the flow rate(from
the heat flow) are contributors to the ambiguity that will be reduced by this constraint
(seealso figure 3). The notion of causalunits is again important, in the sensethat the set
of contributing relations is a subset of the causalunits to which the parametersbelong. In
particular, this subsetstarts with the influencing relations, moveson via proportionalities
up to the place where the parameters themselvesare located. The relations locatedhigher
in the causalunit do not contribute to the ambiguity.

Having found the set of relations that contributes to the ambiguity the secondstep
is to find the set of behaviour models that introduced theserelations. In the example
mentioned abovethesemodels are: (1) the heat flow process,(2) the model of the active
compressor, (3) the model of the active throttle valve, and (4) the behaviour model for
the closedcontained substance(=the condensor). In order to place the new constraint
theremust be either a partial behaviourmodel that has this list of behaviour models
as a condition or a new assemblyhasto be created. In the latter case,which is more
likely, the conditionalpartial behaviourmodelsconstitutethe aggregatethat introduces
the disambiguatingconstraint. In the aboveexamplethis assemblycould be referredto
as the ‘condensingassembly’of the refrigerator.

7 Further Specification

Insteadof immediatelyaddingall constraintsthat havebeenproposedby the technique
discussedaboveto the library, the behaviourpredictioncanbe enlargedin orderto create
more discriminativepowerfor groundingthe constraints.In our examplewe could have
addedone transformationstep which would have createdan initial set of 38 statesof
behaviour.

However,alsoif oneor moreof thecandidateconstraintshasbeenaddedto the library
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it maystill be necessaryto furtherspecify the knowledgein thelibrary. Therearein fact
threereasonswhy this may be the case: (1) strongerconstraintsfor alreadyconstraint
parameter(s),(2) constraintsfor parameter(s)that did not behaveincorrectly yet, and (3)
constraintsfor newly introducedparameter(s).

It is very likely that weakconstraintsaddedto the library knowledgeeventuallymust
be replacedby strongerones. Also it is to be expectedthat parametersthat appeared
to be correct, start behavingin ways that are incorrect and/or undesired. So further
prediction is required to find theseparameters. Finally, it may be the casethat some
behaviourmodel introducesparametersthat were not in the behaviourprediction yet.
Requiredconstraintson theseparametersmust also be found.

8 Concluding Remarks

In this paperwe havepresenteda techniquefor automatedgenerationof the constraints
that are neededfor disambiguationof abehaviourprediction. Startingwith abehaviour
prediction using an initial library containinggeneral domain knowledgethe technique
employsfeedbackabout correct and incorrect statesof behaviourand knowledgeabout
the causaldependenciesbetweenthe parametersin the model in order to determinethe
constraintsthat removethe incorrect or undesiredstatesof behaviourthat result from
ambiguity. In addition,the techniquepointsout the assemblyof physicalobjectsto which
the constraintsapply.

The work that is most similar to this is by Mozetic (e.g. [7]). By representingmodels
in a logical languagethe refinementproblembecomessimilar to refinementof logic pro-
grams. To our knowledgetherehasbeenno previouswork on refining knowledgethat is
representedasqualitative constraints.DeJong’swork ([4}) focuseson explanation-based
learning in the contextof plausiblereasoningratherthanrefinement.

The refinementalgorithm presentedin this paperis similar to generalincremental
learning techniques.It is specialin the representationandinferenceengine,an important
addition is the useof factoringinto causalunitsandthe learningbiasbasedon the causal
structureand the global conservationconstraints.

The scope of our techniqueis limited in that only dealswith derivatives. Incorrect
statesof behaviourresulting from parametervalues and relationsbetweenthesevalues
cannot be dealt with (althoughit seemslikely that partsof the techniquecan be used
for this purposeas well). Also the techniquerequiresthat the knowledgepresentin the
initial library is correctand sufficient, i.e. it shouldat leastpredict all possiblestatesof
behaviour,

However, theseproblemsare not limitations of the technique.Instead,they refer to
different aspectsof the modelling processthat must be dealt with in order to further
automatethe processof qualitativemodelconstruction,The techniquefor generatingthe
disambiguatingconstraintsfor parameterderivativespresentsan important stepin this
direction.
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