Reducing Ambiguity by Learning
Assembly Behaviour

Bert Bredeweg
Cis Schut
Kees van den Heerik
Maarten van Someren

Department of Social Science Informatics (S.W.1.)
University of Amsterdam, Roetersstraat 15
1018 WB Amsterdam (The Netherlands)
Telephone: +31-20-525 6788, Telefax: +31-20-525 6896
E-mail: bert@swi.psy.uva.nl

June 17, 1992

Abstract

In this paper we presenl a fechnique for auiomatically generating consiraints on
parameler derivatives thal reduce ambiguily in the behaviour prediciion. Starting with
a behaviour prediction using an initial library containing general domain knowledge
the technique employs feedback about correct and incorrect states of behaviour and
knowledge about the causal dependencies between the parameters in the model in order
to determine the constraints that remove the incorrect or undesired stales of behaviour
that result from ambiguily. In addition, the lechnique points out the assembly of
physical objects to which the generated consirainis apply.

1 Introduction

A recurring issue in qualitative prediction of behaviour (cf. [1; 9]) is the problem of con-
structing a model that is not ambiguous in the sense that it only predicts behaviours
that can actually occur. In particular, when using a library of partial behaviour models
modelling general domain knowledge (like processes [5] and device behaviours [3]) the am-
biguity introduced by the qualitative calculus, together with the requirement of modelling
device behaviour independent from the context in which it operates (the ‘no function in
structure’ principle, cf. [3]), makes it difficult to define adequate prediction models for
a specific system. In order to get rid of ambiguity additional constraints must be speci-
fied which model: (1) order of magnitudes [8], (2) assembly specific behaviour (functional
view), and (3) conservation of quantities for the system as a whole. In this paper we
present a technique that automatically derives these constraints by analysing correct and
incorrect behaviour predictions from the set of possible behaviours and a model of the
underlying causality. In addition, the approach localises the physical structure, and its
specific mode of behaviour, to which the constraints apply.

The contents of this paper is as follows. Section 2 provides background information
about how the knowledge engineer can be supported during the modelling process. Section
3 describes the framework for qualitative prediction of behaviour as we use it. Section
4 discusses causes of ambiguity and the related problems which we tackle in this paper.
Section 5 presents a method for generating the constraints needed for reducing the am-
biguity in a behaviour prediction. In particular, it focuses on how to generate candidate
constraints and how to discriminate between competing constraints. Section 6 describes
how the physical structure can be localised to which the constraints apply. Section 7 dis-
cusses the notion of further specification after one or more constraints have been added to
the knowledge in the library. Finally, in section 8 we summarise the major results of our
research.

2 Supporting the Knowledge Engineer: Automated Mod-
elling

Our approach can be thought of as supporting a knowledge engineer who, on the basis of a
library containing general domain knowledge, has to develop a specific model that can be
used for a behaviour prediction task.! Given such a library with general domain knowledge
the knowledge engineer is confronted with two problems: (1) relating the elements from
the real-world system that has to be modelled to the canonical entities present in the
library, and (2) modelling additional constraints to reduce the ambiguity in the behaviour
prediction.

Typically, the knowledge engineer goes through a debugging/refinement process, de-
pending upon the behaviour prediction that the qualitative prediction engine produces.
Each predicted state reflects a correct or an incorrect form of behaviour and as such
provides feedback for how the models from the initial library must be modified.

The problem of modelling is complex and cannot be automated all at once. In this
paper we concentrate on deriving additional constraints on the derivatives of parameters
that are required to remove undesired states of behaviour that result from ambiguity. An
assumption therefore is that the initial knowledge in the library is sufficient for predicting
at least all possible behaviours, but that it can be too general in the sense that it may
also predict behaviours that do not occur.

Building and refining qualitative knowledge follows a debugging cycle as depicted in
figure 1. After the knowledge engineer has classified (c.q. modelled) some system from the
real-world into terms of the canonical elements present in the initial library, the prediction
engine generates a graph of possible behaviours. Although in principle this graph may
include all possible behaviours (correct and incorrect) that can be derived on the basis of
the general knowledge in the library, it is usually necessary to limit the number of states to
a subset that can still be understood and used by the knowledge engineer (partial behaviour
prediction). Next, for each state of behaviour the knowledge engineer determines whether
it represents a correct or an incorrect state of behaviour by comparing it with the actual
behaviour of the system in the real-world. The sets of correct and incorrect states of
behaviour are input for the process of refining the knowledge in the library.? The learning

! For example, qualitative prediction of behaviour of a device as a subtask of a diagnostic problem solver.
%It could also be the case that the canonical description has to be changed (redo classify), but we will

Classify Canonical

description Real
behaviour
s .
{Initial) . Predicted if
Real library Predict behaviour Classify
world ‘ {In-)correct
behaviour

Repgir/ Possuible Diagnose »
modify repairs

Figure 1: Steps in building prediction models from general library knowledge

task is now to find new constraints that will exclude false predictions (without excluding
the correct predictions). It must diagnose the set of correct and incorrect behaviours and
determine which constraints have to be added to what parts of the knowledge in the library
in order to remove the ambiguity.

3 Framework for Qualitative Prediction of Behaviour

In this section we describe some important aspects of the framework for qualitative predic-
tion of behaviour that we use. This framework is implemented as a domain independent
qualitative reasoning shell, called GARP, which can be used by a knowledge engineer for
developing prediction models. (cf. [2]).

System element is an important (often implicit) notion in the process of building qual-
itative models. It refers to (1) how objects from the real-world are represented in the
prediction model, and (2) how these representations are applied to guide the behaviour
analysis (i.e. the search for applicable behaviour models).

In contrast to using a pure component oriented approach [3] (modelling the physical
world as components connected by conduits) or a pure process oriented approach [5]
(modelling the physical world as physical objects that interact via processes), we claim
that it is essential to use both component and process oriented abstractions in a single
prediction model. In addition, system elements may also refer to functional abstractions
of the physical reality and as such do not have to map directly onto physical objects.

Similar to the component and process oriented approach, our qualitative prediction
engine uses a library of partial behaviour models for determining the behaviour of some
real-world system. The knowledge in the library discriminates between static, process and
agent models. Static models represent general properties of system elements. They can be
further divided into single description, composition, and decomposition models, referring
to modelling the properties of a single system element, a collection of system elements or
to how a system element can be decomposed into its sub-structure. Processes describe
changes that are based on inequalities between interacting quantities of different system

not discuss this option in this paper.

elements. Agent models are used for modelling changes that are caused by agents and
may have their impact on one or more system elements.
The knowledge representation for modelling partial behaviours is as follows:

Super type relation The partial model can be a subtype of other partial models (mul-
tiple inheritance). This means that the super behaviour models must be applicable
in order for the subtype to be applicable.

Conditions Each partial model has its own specific conditions that must hold before
the knowledge that is specified in the consequences of the model can be used. The
following five knowledge types can be conditions:

1. System elements: The abstraction from the physical world to which the partial
model applies.

2. Parameters: Properties of system elements used by parameter values and/or
relations.

3. Parameter values: Parameter values that must hold.

4. Parameter relations: Relations (constraints) between parameters that must
hold.

5. Partial behaviour models: Other partial models that specify certain knowledge
about the behaviour of the real-world system that must be known before the
partial model may be used (=applies-to hierarchy).

Consequences When a partial model is applicable the consequences specify the addi-
tional knowledge about the behaviour of the real-world system that is derivable.
The following five knowledge types can be derived:

1. System elements: For processes it may be the case that new entities in the
real-world are created because of the behaviour of the system (for example: gas
when boiling liquid).

Parameters: (New) properties that are introduced by the partial model.
Parameter values: New values for parameters that hold.

Parameter relations: Additional constraints that hold between parameters.
Partial behaviour models: (Other) partial models that can be derived.

RN o B A

Finally, table 1 presents an overview of the parameter relations that can be used for mod-
elling the behaviour dependencies between parameter derivatives. The proportionalities
and influences are similar to those defined by Forbus [5]. The inequalities between deriva-
tives are similar to the notion of confluences defined by de Kleer [3].> The proportionalities
and influences can be used for modelling causal dependencies, whereas the inequalities can

3In the example discussed in this paper Arg1 refers to a parameter and Arg2 refers to either a parameter
or to the value zero. The former can be used for modelling constraints between a pair of parameters, whereas
the latter can be used for relating the derivative of a parameter to zero. The relation d.equal{ zero, plus(
Argl, Arg2)) is a specific version of modelling that a sum equals zerc. In general, each argument (Arg) of
an inequality constraint may (recursively) refer to the sum of two derivatives. For the example presented
in this paper a ‘sum’ constraint between two derivatives is sufficient.

Specific relations | Reference nr.

| Types
Inequalities d.smaller-or.equal(Argl, Arg2). 1
d_greater_or_equal(Argl, Arg2).
d_equal(Argl, Arg2).

d_greater(Argl, Arg2).

d.smaller(Argl, Arg2).

d_equal(zero, plus(Argl, Arg2)).
Proportionalities | prop.pos(Parl, Par2).

prop.neg(Parl, Par2).

DO b 0

Influences inf_pos_by(Parl, Par2).
inf_neg by(Parl, Par2).

Table 1: Dependencies between parameter derivatives

be used to further constrain the ambiguity introduced by these causal relations or for mod-
elling constraints on derivatives that lack a clear causal dependency. As argued in [2] both
the causal and non-causal dependencies are essential features of a qualitative model.

4 Causes of Ambiguity

The need for refinement of the knowledge present in the initial library can be illustrated
with a prediction model for the refrigerator. Figure 2 visualises the important physical
objects of the refrigerator. To model the behaviour of these objects a combination of

Sumounding ares (world)

Theottle-vaive Conpressor

Evaporator Q
Cooling area / Thermostat

Figure 2: A model of the refrigerator

modelling device behaviour and processes between physical objects is required (see [2]
for more details). Both the compressor and the throttle valve can be modelled as agent
models that influence the amount of substance in the condensor and in the evaporator.

These substances can be modelled as ‘closed contained substances’ as described in the
process centered approach (cf. [5]). Also the world and the cooling area can be modelled
in this way, although the knowledge represented by these models may neglect the pressure
and the amount of substance. A direct proportional relation between the temperature and
the heat is sufficient to model the behaviour of these entities. Finally, the prediction model
must include processes like heat flow, evaporation and condensation. The causal model
(proportionalities and influences) that is represented by these partial behaviour models is
shown in figure 3.

Temp Temp
(Con. Sub.) {(World)

f f

Pressure Heat Flow Rate Heat ¥
(Con. Sub.) € (Con. Sub) "@'(Heat flow) "@’(World) : <
f €
Amount
(Con. Sub.) Legend
ExpRate CompRate @& - Influence Flow Rate
(Throttle valve) (Compressor) = =« Proportionality (Heat flow)
wougwwm = Isolation
Amount
(Evap. Sub.) PY
Pressure Heat Flow Rate Heat [
(Evap. Sub.) ¢ (Evap. Sub) ‘@ (Heat flow) %’(c. Area) & <
Temp Temp
{Evap. Sub.) (C. Area)

Figure 3: Causal dependencies in the refrigerator

Presenting this model to the prediction engine (GARP) results in 179 possible states of
behaviour (total envisionment). The first specification step (finding all the sets of partial
behaviour models that apply to the canonical problem description) produces already 15
possible states of behaviour. The values of the parameter derivatives in these states are
shown in table 2.

Most of the 179 states represent incorrect behaviour of the refrigerator, i.e. states of
behaviour that are qualitatively possible, but which do not represent actual behaviour of
the refrigerator. A typical example of such behaviour is a heat flow from the surrounding
world into the substance contained by the condensor which eventually results in an increase
in the temperature of the cooling area. In a model representing correct behaviour of the
refrigerator, no such heat flow should occur. This requires an extra constraint on the heat
flow from the surrounding world to the substance in the condensor.

A large number of incorrect behaviours results from ambiguity, i.e. the relative impact
of competing influences is not represented in the general library of partial behaviour mod-
els. Additional constraints are required which represent assembly specific behaviour and

| Parameters I States I
[f1l2f3 456|789 [10f11f12[13]14]15]

Press (Evap. Sub.) == - O E - -] 10+ - - |- 10 |+
Amount (Evap. Sub.) |- O |+ [+ |+ |- {0+ |+]+ |- 0 |+ |+ [+
Heat (Evap. Sub.) 0({0j0 [0 |0 O[O0 |0 |O |[O O |0 {O |O
Temp (Evap. Sub.) ==l 10+ - 10+ |- - - 10 |+
Press (Con. Sub.) -1 f- 101070100 |+ A+ |+ |+ |+
Amount (Con. Sub.) - l-1-t-1-10]0J0JO0 O i+ N+ 1+ |+ |+
Heat (Con. Sub.) 0{0}j0 |0 |0]|OJO[O (O[O O JJO |O O |O
Temp (Con. Sub.) = - 1- - 41- 10101000 f{+ I+ 1+ 1+ |+
Heat (C. Area) 0(0|0 |0 |0 J0O]JOjO OO JJO JO |O JO |O
Temp (C. Area) 0jo0fojofof0f0OjO OO0 JJO O [0 |O |O
Heat (World) 0{ofo (o jofof0oj0 0|0 O 10 |0 (O [O
Temp (World) ojfojo |0 fjOof0O|0O]JO OO IO fO (O |O |O
E-Rate (T-valve) A N N N A A A A A AR | A | Y A A
C-Rate (Compressjor) 7 1217 |7 [?2 }?7 1?2172 |7 |7 ? FOR O I S

Table 2: The first 15 states generated for the refrigerator (only 11 is correct)

thereby reduce the amount of ambiguity. Consider, for example, the amount of substance
in the condensor. The condensor has a positive influence on this when it is working, but
the throttle valve allows substance to flow out and consequently influences the amount
negatively. The resulting derivative for the amount is ambiguous, i.e. it can increase
(the effect of the compressor is greater), decrease (the out flow via the throttle valve is
greater), or stay constant (the effects are equal). When the amount decreases this leads to
a pressure and temperature decrease and therefore to a heat flow from the world into the
condensor. This is an undesired sequence of behaviour. When the compressor is ‘working’
the amount of substance may only increase, or stay constant, but not decrease.

The problem is even worse because the influence of heat flow counters the effect of the
pressure increase. Again there is ambiguity: the temperature may increase (the effect of
the pressure increase is greater), decrease (the effect of the heat flow is greater), or stay
constant (the effects are equal). However, as mentioned before, for a correct functioning
refrigerator the effect of the pressure increase caused by a ‘working’ compressor is greater.

In both examples the specific configuration of physical ob jects is such that only certain
behaviours take place. A behaviour prediction consisting of correct states of behaviours
can only be obtained when the constraints for assembly specific behaviour are added to
the knowledge in the (initial) library.

A second source for ambiguity is the lack of conservation constraints. Starting with the
initial library there is no knowledge available that represents the conservation of quantities
for a certain device. In the case of the refrigerator there is at least a need for a constraint
that models conservation of substance between the condensor and the evaporator. When
this constraint is lacking this means that the ambiguity discussed above for the condensor
is mirrored for the evaporator, which results in 9 times 9 possible states of behaviour.
Including behaviours in which both the amount of substance in the condensor and in the
evaporator are increasing or decreasing (see for example state 1 in table 2). Conservation

242

of quantities is essential for disambiguating these faults in the prediction model.

5 Determining Candidate Constraints

This section describes how the constraints for disambiguation of the prediction model
can be derived on the basis of feedback about correct and incorrect states of behaviour
and the causality that underlies the model. The first section describes how candidate
specialisations of the library in the form of extra constraints can be generated and the
second section discusses how we can discriminate between competing constraints.

5.1 Generating Constraints

For generating constraints two sources of information are available: (1) the states of
behaviour that represent correct behaviour and (2) the states of behaviour that represent
incorrect behaviour. The conclusions that can be derived from these sets depend on the
scope of the prediction. If the prediction is complete, i.e. all correct and all incorrect
states have been generated, then the parameter derivatives can be used to generate sets of
constraints that exclude all states of behaviour that have incorrect values for derivatives
(table 3) and/or incorrect combinations of derivatives (table 4).

] Derivative || Consistent constraints | Inconsistent constraints |
- f1vs i 2v3vid
0 [1v2v3 4V5
+ [| 2v4 1v3V5

Table 3: Derivatives and related constraints

Generating a set of constraints is not self-evident, because there may be multiple
(independent) causes responsible for the generation of an incorrect state of behaviour.
The problem is to determine which constraints between which parameters should remove
which states of behaviour. There is, for example, no way to decide whether the first
incorrect state of behaviour (see table 2) is caused by lack of knowledge about order of
magnitude (amount of substance in condensor always increases or stays constant, but
never decreases) or by a lack of knowledge about conservation of quantities (the changes
in the amount of substance in the condensor and in the evaporator should equal zero).

The process is even more complicated when the behaviour prediction is partial, which is
usually the case. Although the reliability of the information stemming from the incorrect
states becomes greater when more states of behaviour have been predicted, it is very
likely that not all faults manifest themselves in a certain partial behaviour prediction. In
other words, constraints which first seemed to represent a discriminating factor between
correct and incorrect states may turn out to be inappropriate. The problem is not to
select a constraint that will rule out a correct state of behaviour that was not predicted
yet. Specifying, for example, that the derivative of the temperature of the substance in the
condensor is always greater than the derivative of the temperature of the substance in the
evaporator erroneously excludes future states of behaviour in which the two are equal.

In order to cope with the two problems described above we can focus primarily on the
information that can be derived from the correct states of behaviour. The constraints that

243

| Derivative pairs | Consistent constraints | Inconsistent constraints

- 1v2v3 4V5V6
-0 1v5 2V3VAV6
T 1V5V6 2v3v4
0, 2v4 IV3V5V6
0,0 1V2V3veé iv5

0.+ 1V5 2V3VAV6
. 2V4V6 1V3V5
+,0 2V 4 1V3V5V6
++ 1vav3 4V5V6

Table 4: Derivative combinations and related constraints

exclude incorrect states of behaviour should be consistent with the information captured
in the correct states of behaviour. In other words:

e the constraints that exclude incorrect states of behaviour should be in the set of all
the constraints that are consistent with the derivatives in the known correct states of
behaviour.

There are two potential problems to this approach. Firstly, the set of parameters describ-
ing a state of behaviour should not be too large, in order for the set of possible constraints
to explode, and secondly, there is a danger of proposing dependencies between parame-
ters which are false, because these parameters are essentially unrelated. The problem of
proposing relations between unrelated parameters could lead to exclusion of correct states
of behaviour. However, the selection procedure, discussed below, is based on the causal-
ity between parameters and therefore automatically prevents the selection of constraints
between unrelated parameters.

The generation of constraints consists of the identification of three types of constraints:

1. The derivative of a certain parameter may only have specific values.
2. The derivatives of two parameters must have corresponding values.

3. The derivatives of certain parameters may be limited, because of comservation of
guantities.

The constraints for single derivatives are generated according to table 3. For each param-
eter all constraints are found that are consistent with all derivatives of this parameter in
all the correct states of behaviour. If, for example, a parameter has derivatives + or 0 in
the correct states of behaviour then constraints 2vV4 and 1V 2V 3 are consistent with these
derivatives. Constraint 2 is consistent with both derivatives and is therefore a candidate
for disambiguating the behaviour prediction. In our example (see table 2) there is one cor-
rect state of behaviour (state 11) and 14 parameters (2 with unknown derivatives, which
therefore may not be used). Using table 3 this initially results in 30 candidate constraints
for disambiguation of the prediction.

The constraints for related derivatives are generated according to table 4. For each
pair of parameters all constraints are found that are consistent with all the derivatives of

244

parameters in the correct states of behaviour. If, for example, a pair of parameters has the
derivatives (4, 4+) or (=, 0) in the correct states of behaviour, then the constraints 1vV2Vv 3
and 1V 5 are consistent with these derivatives. Constraint 1 is consistent with both pairs
of derivatives. In the refrigerator example, the correct state of behaviour facilitates 140
candidate constraints between pairs of parameter derivatives.

Generating constraints for conservation of quantities can be guided by knowledge about
the causal relations between parameters in order to limit the number of constraints that
will be found. The idea is that dependencies between parameters can be factored into
clusters that influence each other, but are independent of other parameters.* We shall call
these clusters causal units. A causal unit starts with a parameter that is being influenced
(by an influence relation), traverses via the proportionally related parameters, and ends
with a parameter that has no causal effect on any other parameter by means of a propor-
tionality. A causal unit is essentially a graph that may have recursive loops, more than
one starting point and more than one terminal node (notice that a causal unit can consist
of one or more causal paths).® In our example of the refrigerator (see figure 3) there are
6 causal units. Two of those are:

Heat (Con. Sub.) — Press (Con. Sub.) — Temp (Con. Sub.)
Amount (Con. Sub.}) — Press (Con. Sub.) — Temp (Con. Sub.)

Constraints for conservation of quantities may be defined between parameters that: (1)
belong to different causal units, (2) model the same type of quantity, and (3) are influenced
by the same influence. Usually an influence (c.q. a flow rate) consists of two parts, one
that decreases a quantity and one that increases a quantity. Both are required before
a conservation constraint may be defined. In the case of the refrigerator conservation
constraints are generated between the parameters:

Amount (Con. Sub.) & Amount (Evap. Sub.)
Heat (Con. Sub.) & Heat (World)
Heat (Evap. Sub.) & Heat (C. Area)

The model does not allow a heat flow between the cooling area and the world, otherwise
the conservation constraint for heat(s) would have included the four heat parameters in a
single conservation constraint.

5.2 Selection of Appropriate Constraints

The generation of constraints as described above results in 173 candidate constraints for
disambiguation of the prediction model. A number of rules can be defined to discriminate
between these constraints.

Remove non-discriminative constraints Constraints that do not discriminate be-
tween correct and incorrect states of behaviour can be disregarded. This rule applies
for each of the three types of constraints discussed above. Usually, non discrimina-
tive constraints result from equal derivatives in both correct and incorrect states of

“This corresponds to the idea of ‘factoring’, see [6].
5We differ from Forbus [5] who does not allow a parameter to be influenced both directly and indirectly.
However, the specific choice in this respect has no effect on the technique presented in this paper.

245

behaviour. For example, specifying that the heat of the world equals zero does not
discriminate between correct and incorrect states of behaviour.

Prefer weaker constraints above stronger constraints d_greater_or_equal is
a weaker constraint (allowing more values) than either greater or equal. In gen-
eral, combinations are weaker, and should be preferred. Therefore, if a parameter
(or a pair of parameters) has both the stronger and the weaker constraint then the
former must be removed. This rule prohibits that on the basis of incomplete infor-
mation a too restrictive constraint is selected. The more restrictive constraints will
only be selected after the weaker constraints fail to exclude incorrect states of be-
haviour. This corresponds to a search strategy in the search for specialisations from
general to specific. The prefer weaker rule does not effect conservation constraints
because they are always of type equal.

These two rules remove a large number of the constraints that were proposed during the
generation step. In fact only 54 constraints remain after applying these two rules: 6 on
specific derivatives, 47 concerned with pairs of derivatives, and 1 conservation constraint.

It should not come as a surprise that most of the removed constraints are concerned
with specific derivatives and with pairs of derivatives. In contrast to the generation of
conservation constraints the generation of these constraints is not guided by any specific
knowledge. For efficiency reasons we may of course decide to make the generation more
knowledge intensive by including the above two rules in the generation step and directly
limit the number of constraints being generated.

The next set of rules, that can be used to select among competing candidates, is based
on the notion of causal units in the domain model (see also figure 3). In general we want
to (1) remove constraints between causally independent parameters, (2) define constraints
on parameters that directly effect each other (i.e. adjacent in the causal unit), and (3)
constrain parameters ‘early’ in the causal unit.

Remove causally independent constraints Remove all constraints proposing rela-
tions between parameters that are not part of a single causal unit. Ambiguity always
results from multiple influences (proportionalities and /or influences) on a certain pa-
rameter, therefore, the disambiguation has to effect the parameters that are related
in this way. For example, a constraint between the temperature of the substance in
the evaporator and the pressure of the substance in the condensor is not allowed.
This rule effects the constraints between pairs of parameter derivatives and has an
important impact. It removes 41 of the candidate constraints between pairs.

Prefer adjacent constraints above intermediated constraints Prefer constraints
between adjacent parameters in a causal unit above constraints that are related
via one or more intermediate parameters. If, for example, a constraint is proposed
both between the amount & the pressure and between the amount & the tempera-
ture of the substance in the condensor, then the former should be preferred (see also
figure 3). The rationale behind this rule is that the disambiguation should propose
constraints that follow the causal dependencies in a causal unit. This rule only ef-
fects constraints between pairs of parameter derivatives. In the example it removes 3
of the 6 remaining constraints, as for instance, preferring the constraint between the

246

amount & the pressure above the constraint between the amount & the temperature
of the substance in the evaporator.

Prefer constraints on early parameters in the causal unit This rule applies to all

three types of constraints. The rationale behind this rule is that the disambigua-
tion should start at the beginning of the causal dependencies. In the case of pairs
of derivatives it should prefer constraints between adjacent parameters that appear
early in the causal units above constraints between adjacent parameters that are po-
sitioned later in this unit. If, for example, a constraint is proposed both between the
amount & the pressure and between the pressure & the temperature of the substance
in the condensor, then the former should be preferred.

This rule can also be used for constraints on a single parameter derivative. A con-
straint on the derivative of the amount, for example, should be preferred above
a constraint on the temperature. In the refrigerator example, this rule removes 4
constraints on specific parameters by preferring constraints on the amount above
constraints on the pressure and the temperature for both the substance in the con-
densor and in the evaporator.

In addition to pairs and single parameter derivatives this rule can also be applied
for conservation constraints: if there exists more than one conservation of quantity
constraint between quantities belonging to different causal units and the causal path
is similar for these units (within the range of these constraints) then the constraint
between the parameters earlier in the causal path should be preferred. However, we
could not think of an example for the refrigerator fitting this rule. It seems that this
case is impossible by definition.

The set of constraints that remains after all the above rules have been applied is
shown in table 5. The set can be divided into two parts, one concerned with conservation
of quantities and one with order of magnitudes (or assembly specific behaviour). The
constraints on specific derivatives and between pairs of derivatives belong to the latter.

Constraints

[| Eliminated states

Constraint for conservation

d_equal(zero, plus(Amount-ConSub, Amount-EvapSub))

1,2,6,8,09, 10, 12, 13, 14, 15

Constraints on derivative pairs

|
|
|
|

d.greater.or_equal(Press-EvapSub, Amount-EvapSub)

2,3,4,17,8,9, 12, 13, 14

d-smaller_or_equal(Pressure-EvapSub, Heat-EvapSub)

5, 10, 15

d_smaller_or_equal(Heat-ConSub, Press-ConSub) 1,2,3,4,5

[Constraints on specific derivatives |
d-greater.or_equal(Amount-ConSub, zero) 1,2,3,4,5
dsmaller_or_equal(Amount-EvapSub, zero) 3,4,5,8,9, 10, 13, 14, 15

Table 5: Remaining constraints with the states that are eliminated.

Thus far, we have not been concerned with the number of incorrect states that is being
excluded. The rules are only based on the causality that has been represented in prediction
model. The constraints that remain after applying the above described rules cannot be

247

discriminated any further in this respect. For deciding upon which constraints must be
added to the knowledge in the library, the following aspects are important:

Independent constraints Constraints that only exclude states of behaviour that are not
excluded by any other constraints are necessary for the disambiguation of the model
and must be added to the library knowledge. However, there are no independent
constraints in table 5.

Overlapping constraints Overlapping constraints cannot be discriminated any further,
except for the notion that the ‘super’ constraint excludes the most states of incorrect
behaviour. It seems reasonable to prefer this constraint. In table 5 this would imply
that the constraints between the pressure and the heat (both for the substance in
the condensor and for the substance in the evaporator should be removed in favour
of the constraints on the derivatives of the amounts

Partially overlapping constraints Partially overlapping constraints that exclude some
states of behaviour that are not excluded by any other constraints, but they also
exclude similar states of behaviour. These constraints are necessary for the disam-
biguation of the model and must be added to the library knowledge. In table 5
the conservation constraint, the two constraints on the derivatives of the amount of
substance in the condensor and the amount of substance in the evaporator, and the
constraint between the pressure and the amount of substance in the evaporator, are
partially overlapping. All four constraints propose constraints that remove states of
behaviour that are not removed by the other constraints.

A possible heuristic for dealing with partially overlapping constraints is the following;:

¢ Prefer conservation constraints above constraints between pairs of parameter deriva-
tives and constraints on a single parameter derivative.

e Prefer constraints between pairs of parameter derivatives above constraints on a
single parameter derivative.

The order introduced by this heuristic is based on the idea that more complex constraints
are more likely to be correct than less complex constraints. However, in the case of a
partial behaviour prediction the only safe way is to have the knowledge engineer decide
among the final set of competing constraints.

In the case of a full behaviour prediction overlapping constraints introduce no problem
because all correct states of behaviour are facilitated by the constraints and they can
thus simply be added to the model. Still it is impressive to discover how even a small
set of correct states (in our example just 1) provides sufficient information for the above
described technique to generate exactly those constraints that fully disambiguated the
prediction model (see table 6).

6 Localise Partial Behaviour Model

After the constraints for disambiguation on the behaviour prediction have been deter-
mined, the next step is to determine the place in the library where each of the constraints

248

| Constraints [| Eliminated states |

d_equal(zero, plus(Amount-ConSub, Amount-EvapSub)) || 1, 2, 6, 8,9, 10, 12, 13, 14, 15
d_greater.or.equal(Press-EvapSub, Amount-EvapSub) 2,3,4,7,8,9,12,13, 14
d_greater.or.equal(Amount-ConSub, zero) 1,2,3,4,5
d_smaller_or_equal(Amount-EvapSub, zero) 3,4,5,8,9,10,13, 14, 15

Table 6: Resulting set of constraints that fully disambiguates the prediction model

should be added. Essentially two ways of augmenting the library are possible: either the
constraints are added to an already existing partial behaviour model, or the constraints
have to be represented in a new behaviour model. The method for localising the partial
behaviour model is similar in both cases.

Firstly, the dependencies that the parameters in the proposed constraint have with
existing influence relations and proportionality relations have to be determined. Each of
these relations contributes to the ambiguity that has to be removed by the constraint. The
behaviour models that introduce these relations are therefore conditional for the behaviour
model to which the new constraint has to be added. If, for example, a constraint has to
be added between the amount and the pressure of the substance in the condensor then
(1) the influence of the compression rate, (2) the influence of the ezpansion rate, (3) the
proportional relation with the heat and consequently (4) the influence of the flow rate (from
the heat flow) are contributors to the ambiguity that will be reduced by this constraint
(see also figure 3). The notion of causal units is again important, in the sense that the set
of contributing relations is a subset of the causal units to which the parameters belong. In
particular, this subset starts with the influencing relations, moves on via proportionalities
up to the place where the parameters themselves are located. The relations located higher
in the causal unit do not contribute to the ambiguity.

Having found the set of relations that contributes to the ambiguity the second step
is to find the set of behaviour models that introduced these relations. In the example
mentioned above these models are: (1) the heat flow process, (2) the model of the active
compressor, (3) the model of the active throttle valve, and (4) the behaviour model for
the closed contained substance (=the condensor). In order to place the new constraint
there must be either a partial behaviour model that has this list of behaviour models
as a condition or a new assembly has to be created. In the latter case, which is more
likely, the conditional partial behaviour models constitute the aggregate that introduces
the disambiguating constraint. In the above example this assembly could be referred to
as the ‘condensing assembly’ of the refrigerator.

7 Further Specification

Instead of immediately adding all constraints that have been proposed by the technique
discussed above to the library, the behaviour prediction can be enlarged in order to create
more discriminative power for grounding the constraints. In our example we could have
added one transformation step which would have created an initial set of 38 states of
behaviour.

However, also if one or more of the candidate constraints has been added to the library

250

it may still be necessary to further specify the knowledge in the library. There are in fact
three reasons why this may be the case: (1) stronger constraints for already constraint
parameter(s), (2) constraints for parameter(s) that did not behave incorrectly yet, and (3)
constraints for newly introduced parameter(s).

It is very likely that weak constraints added to the library knowledge eventually must
be replaced by stronger ones. Also it is to be expected that parameters that appeared
to be correct, start behaving in ways that are incorrect and/or undesired. So further
prediction is required to find these parameters. Finally, it may be the case that some
behaviour model introduces parameters that were not in the behaviour prediction yet.
Required constraints on these parameters must also be found.

8 Concluding Remarks

In this paper we have presented a technique for automated generation of the constraints
that are needed for disambiguation of a behaviour prediction. Starting with a behaviour
prediction using an initial library containing general domain knowledge the technique
employs feedback about correct and incorrect states of behaviour and knowledge about
the causal dependencies between the parameters in the model in order to determine the
constraints that remove the incorrect or undesired states of behaviour that result from
ambiguity. In addition, the technique points out the assembly of physical objects to which
the constraints apply.

The work that is most similar to this is by Mozetic (e.g. [7]). By representing models
in a logical language the refinement problem becomes similar to refinement of logic pro-
grams. To our knowledge there has been no previous work on refining knowledge that is
represented as qualitative constraints. DeJong’s work ([4]) focuses on explanation-based
learning in the context of plausible reasoning rather than refinement.

The refinement algorithm presented in this paper is similar to general incremental
learning techniques. It is special in the representation and inference engine, an important
addition is the use of factoring into causal units and the learning bias based on the causal
structure and the global conservation constraints.

The scope of our technique is limited in that only deals with derivatives. Incorrect
states of behaviour resulting from parameter values and relations between these values
cannot be dealt with (although it seems likely that parts of the technique can be used
for this purpose as well). Also the technique requires that the knowledge present in the
initial library is correct and sufficient, i.e. it should at least predict all possible states of
behaviour.

However, these problems are not limitations of the technique. Instead, they refer to
different aspects of the modelling process that must be dealt with in order to further
automate the process of qualitative model construction. The technique for generating the
disambiguating constraints for parameter derivatives presents an important step in this
direction.

References

[1] D.G. Bobrow, editor. Qualitative Reasoning about Physical Systems. Elseviers Science

250

Publishers B.V., Amsterdam, 1984.

[2] B. Bredeweg. Ezpertise in qualitative prediction of behaviour. PhD thesis, University
of Amsterdam, Amsterdam, March 1992.

[3] J. de Kleer and J.S. Brown. A qualitative physics based on confluences. Artificial
Intelligence, 24:7-83, 1984.

[4] G.DeJong. Explanation-based learning with plausible inferencing. In K. Morik, editor,
Proceedings European Working Session on Learning EWSL-89, pages 1-10. Pitman,
1989.

[5] K.D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85-168, 1984.

[6] M.R. Genesereth and N.J. Nilsson. Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, Los Altos, California, 1987.

[7] I. Mozeti¢. The role of abstractions in learning qualitative models. In Proceedings
of the 4th International Workshop on Machine Learning, pages 242-255, Irvine, 1987.
University of California.

[8] O.Raiman. Order of magnitude reasoning. In Proceedings of the AAAI pages 100104,
San Mateo, California, 1986. Morgan Kaufmann.

[9] D.S. Weld and J. De Kleer. Readings in Qualitative Reasoning about Physical Systems.
Morgan Kaufmann Publishers Inc., 1990.
Acknowledgements

This research was supported by the Foundation for Computer Science in the Netherlands
(SION) with financial support from the Netherlands Organisation for Scientific Research
(NWO) (project number: 612-322-016).

251

