
Thought Experimentsas a Frameworkfor
Multi-level Reasoning

David Hibler
Dept. of ComputerScience

ChristopherNewport University
Newport News,VA 23606.
tele: (804)—594—7065

e—mail: dhibler@pcs. cnu.edu

GautamBiswas
Dept. of ComputerScience

Vanderbilt University

Nashville, Tennessee37235.
tele: (615) —343—6204

e—mail: biswas@vuse- vanderbilt . edu

June26, 1992

Abstract

This paperdiscussesrecentdevelopmentsin the thoughtexperimentmethodology
and their relationto multi-level reasoning.Thoughtexperimentsinvolve Simplification
of the original problem, Solving the simplified problem, Conjecturing an answer to
the original problem basedon the solution of the simplified problem, and Verifying
the results. First, we review the methodologybriefly. Next we relate simplification
methodsto hierarchicalmodeling and reasoningby analogy. We presenta catalog
of methods. We illustrate some of thesemethodswith a simple example. Next we
describeverification as we do it and relateit to work in hierarchicalmodeling.

Note:: This paperis basedon D. Hibler’s Ph.D. dissertation.
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1 Introduction

As modeling issuesandmethodologiesstabilize, qualitative reasoningis now being applied
to model largeand complexengineeringsystems. The amountof information capturedin
these models is orders of magnitudegreaterthan the simpler modelsdiscussedin earlier
papers. It is generally recognized[3,4,8,10,19]that analysisof complexmodelsrequiresthe
useof abstractionsandsimplifying assumptionsto managecomputationalcomplexity.

A commonthemein previousresearch[1,2,6,10,13]is the useof abstractionfor speedingup
reasoningtasksin computationallycomplexsituations. Korf[12] has shownby theoretical
analysisthat the useof ahierarchyof problemspacescan transforman exponentialproblem
into a linear one. In an attempt to generalizea numberof the previousresults,Weld and
Addanki[19] developaframeworkfor defininganumberof dimensionsalongwhichmodelscan
be abstracted:(i) parametervaluerepresentations,(ii) componentconstraints,(iii) temporal
abstraction,and (iv) aggregationand structural consolidation. Their goal is to generalize
on previouswork, andtake “first stepstowardeliminating the needfor prespecifiedabstract
models”[19]. This goal is also targetedby Falkenhainerand Forbus[4] in their work on
query-drivencompositional modeling. Weld and Addanki createa formal framework for
task-drivenabstractionbasedon a set of definitions: the upward-and downward-solution,
andtheupward- anddownward-failureproperties.

This paper discussesan alternativeapproachto reducing computationalcomplexity in
analyzingthe behaviorof complex systems— the thought experimentmethod. What is a
thought experiment? Imaginary, simplified situations are often analyzedby humanprob-
lem solvers in order to understandthe principles behind more realistic situations[14]. We
haveformalizedthis heuristicmethod,and developeda problemsolver calledTEPS[7,8] for
qualitative physicsproblemsolving.

2 TEPS: A Thought Experiment Problem Solver

The first stepin a thoughtexperimentinvolves simplification. The time evolutionof aphysi-
cal systemis describedin termsof the systemoccupiesdifferentqualitativestatesat different
times. Given a stateq which specifiesa physicalsystemat sometime, a simplification S(q)
producesa statep of a simplified versionof the original system. An exampleof a simplifi-
cationis Population Reduction.This consistsof reducingthe numberof identicalobjectsin
aproblem. Given a seriesof pendulumswith metallic bobs(say 25), anda chargec placed
on the first pendulum (all othershavezerocharge),PopulationReductionwould producea
simplified problemconsistingof two pendulumswith chargec on the first[7]. Simplification
functions,such asPopulationReductionaretransformationsprovidedto the problemsolver
by the systemdesigner.

Thenext stepin a thoughtexperimentinvolves “solving” thesimplified model. This means
that the thought experimentproblemsolvermust containa reasoningenginewhich takesa
qualitativestateq andreasonsabout it to producesomeresult R(q). The reasoningengine
employedfor problemsolvingand its correspondingresultsspaceis independentof the basic
thought experimentframework. TEPS, the thought experimentproblem solver which has
been implemented in Prolog usesa qualitative simulator that is based on Forbus’ QPT
modeling[5]. It producesa graph of qualitative states,all of which can be reachedfrom the
state q. Thus for TEPS, R(q) is the stategraph producedby qualitativesimulation.
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The input to TEPS is a set of statedescriptorsfor the initial state of the systemalong
with a query that describesthe solution sought. For the pendulumexample, the input to
TEPS is shownbelow:

problem(
state: [conductor(p), pendulum(p), mobile(p),

location(p(center(p)), charge(p(1),c),
number(p,N,25)],

query([final states,
descriptor(location(p(N) ,X), argd(2))],
pred,someall)

),
The state specification indicates that there are 25 pendulums,each is a conductor, is

mobile, and is located in the center (vertical) position. The chargeon pendulumone is c.
The query asksthat the final statesof the resultingstategraph be examined,andthat we
find the secondargumentof the descriptorsthat match location(p(N) ,X).

The problem is representedin the form of a problem frame and sent to the Thought
Experimentmodule. The first step that this module performs is to obtain all the active
processesfor this problem from the simulationmodule. It then performssimplification on
the initial stateby looking up a catalog of simplifications. Discussionabout the catalog
and its characteristicsis the primary focus of this paper. For control purposes,possible
simplifications arerankedby heuristicanalysis,andthenperformedin the order of ranking.
If configuredfor multiple simplificationsthe systemwill useas many as are applicable.The
simplified problem is given to the simulationmodule which returns a stategraph for the
systemwith the given initial state.

The thought experimentproblem solver is designedto answerspecific questionsabouta
physicalsystemgiven an initial statefor the system. For this reasonwe are not concerned
with R(q) directly becauseit usually doesnot constitutethe answerto a question. The de-
scriptionlanguageis specifiedby descriptionfunctions. Suchafunctionis calleda description
basis. A description basis, D, is a mapping from the set of state graphs to some adjective
spaceof labels. If we preferwe may think of adescriptionbasisas away of classifyingstate
graphswith the adjectivesbeing the labels for eachcategory. D(R(q)) is a descriptionof
the resultsof the reasoningprocessstarting with state q, and it constitutesan answerto
the specific questionasked. In the exampleabove,the initial stateconsistson anumberof
pendulumsin an initial configuration. R(q) is a stategraph representingtime evolution of
this system. The query providesthe label for a descriptionbasisD that the systemknows
about, in this case,center( ), right( ), and left( ). The resultsare classifiedusing
someall. A library of descriptionbasesand functions for constructingdescription bases
areprovidedas part of the TEPS implementation. In the above case, the final states are
examinedto determinethe location of the last pendulumin termsof the abovedescription.

A conjecture,C, is aguessaboutthe descriptionof the result of the original problembased
on the solution obtainedon a simplified versionof it, D(R(q)) = C(R(S(q))). The simplest
conjecture is that the descriptionbasis is generic enough to provide a cross description
i.e., D(R(q)) = D(R(S(q))). In the pendulumexample, the descriptionbasisspecifiesfinal
locations for the pendulums.For the two pendulumproblem, the location of the pendulum
is [all(right)]. The conjecture is that for the multiple pendulum situation the same
descriptionholds.
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q —+ R(q) —~D(R(q)) CorrectAnswer is D(R(q))
q —4 S(q) —* R(S(q)) —* D(R(S(q))) TentativeResult of T.E.
q —~ S’(q) —p R(S’(q)) —~ D(R(S’(q))) Attempt at confirmation

D(R(S’(q))) = D(R(S(q))) SuccessfulSingle Heuristic Verification

Table 1: THOUGHT EXPERIMENT METHOD

Verification can be rigorous or heuristic. It could even be empirical. Rigorous verifica-
tion consistsof establishingthat the conjectureis true. Empirical verification consistsof
comparingthe predictionswith what actually occursin the real world. This is not usually
practical. The most flexible typeof verification is heuristic. With this type of verification
other simplificationsaretried andthe conjecturescomparedwith the original conjecture.If
they agreewe accept the conjectureas a reasonablebelief. In the pendulum problemwe
might repeatthe procedurewith a threependulumsimplification insteadof two. The steps
of the Thought ExperimentProblemsolverillustrated abovearesummarizedin Table 1.

3 Simplifications and multi.-level reasoning

This section outlines how thought experimentsprovide a novel formalism for describing
multi-level reasoningin the form of approximationsandabstractions.We thendemonstrate
how this methodologyreducescomputationalcomplexity in query-drivenproblemsolving.
We first classify simplifications alongthreedimensions: (i) domain dependence,(ii) corre-
spondenceclassification,i.e., the relationshipbetweenthe original model andthe simplified
one, and (iii) simplification strategiesused. This providesa framework for comparingour
work with that of others. Next, we discussspecific examplesof simplifications of various
types,and build a catalogof simplifications.

3d Domain Dependence

The applicability of asimplification dependson variouscharacteristicsof theproblem. Some-
times the simplification can only beapplied to a specificphysical domain. We considerdo-
main independentsimplifications to be much more desirablethan domain dependentones.
A problemsolverwhich usesonly domain dependentsimplificationsmustbe givenadifferent
set for eachdomain with which it deals. Populationreductionis an exampleof a domain
independentsimplification, whereasstructural consolidation(i.e., replacinga set of compo-
nentsby a more abstractcomponentin a physicalsystemschematic)would be an example
of a simplification that is domain dependent.

3~2 CorrespondenceClassification

In terms of the correspondencebetweenthe original model and the simplified model we
may divide simplifications into three rough categories. Thesecategoriesare hierarchical
simplifications,similarity simplifications,and analogicalsirnplifications.

Hierarchical simplifications producemodelswhich are more abstractor which leave out
featuresof the situation which are irrelevant so far as the current problem is concerned.
Hierarchical modelshave been studiedby others( e.g., [2,6,10,13]). The main innovation
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the thought experimentmethod would provide is the emphasison simplification methods
as opposedto fixed models. A thought experimentproblemsolverwould construct its own
simplified models.This providesmoreflexibility in adaptingthe modelto thesituationandin
changingmodels. The needfor this flexibility hasbegunto be recognized.(Compare[3]with
[4].) The problemof verificationwith hierarchicalmodelsis often just aquestionof deciding
if the simplification is appropriate.Hierarchicalmodelsareusually domain dependent.

Similarity simplifications involve finding simpler models in the samedomain. Unlike hi-
erarchicalmodelsthesemodelsare clearly different and not merely more abstractversions
of the samemodel. In some sense,they incorporateboth approximationand abstraction.
Heuristic verification is often usedwith thesesimplifications. At least some simplifications
of this type are domain independent. PopulationReduction is an exampleof a similarity
simplification.

Analogical simplifications involve rules for specifyingan analogousproblemin a different
domain. We haveavoidedusing analogicalsimplifications in TEPS in order not to haveto
deal with difficulties arising from usingdifferent domains.

3.3 Simplification Strategies

Many different simplification strategiesmight be used. Most can probably be classified
as: constraint augmentation,increasedspecificity,and variable reduction. Constraintaug-
mentationmaps the problemto one with strongerconstraints. Increasedspecificity makes
constraint relationshipswhich alreadyexist more effective in determiningbehaviors. Vari-
able reduction reducesthe numberof variableswhich must be dealt with. The purposeof
eachof thesestrategiesis to reducethe averageoutdegreeof non terminal nodesof thestate
graph.

3.4 A Partial Catalog of Simplifications

A primary issuein the thought experimentframework is the use of appropriatesimplifica-
tions, We will, therefore,presenta brief discussionof variouspossiblesimplificationsorga-
nizedby the classificationschemedescribedabove. We do not claim this to be a complete
list of simplifications. However,we presenta nontrivial representativeset that brings out
necessarycharacteristicsthe problemsolver needsfor effective problemsolving. Thesesim-
plifications havebeenfound usefulandevennecessaryby the qualitativephysicscommunity
to addressthecomplexityproblem. This showsthatusefulandpracticalsimplificationsexist.
The simplificationswe havedevelopedfor abstraction[6,10]are basedon domain-dependent
hierarchies,however,anumberof the simplificationsthat correspondto approximationsare
domain-independent.

In orderto show that the thoughtexperimentmethodgeneralizesin ausefulway the tech-
niquesmentionedin the introduction it is desirableto includein our catalogsimplifications
of the similarity type which do not correspondto anything discussedin the introduction.
Domain independentsimplifications of thesimilarity type areparticularly important because
of their versatility.
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3.4.1 ConstraintAugmentationUsing SelectionMethods

Selectionmethodsinvolve simplifying the problemby selectingonly apart of thestategraph
generated by qualitative simulation. This can be considered constraintaugmentation.The
new constraint acts as a filter to eliminatestateswhich would otherwisebe generated.

A prime example of a domain independentsimplification which is of the selectiontype is
the Monte Carlo simplification. This simplification hasbeenimplementedin TEPS[8]. The
wide applicability of the Monte Carlo simplification makes it extremely important. Monte
Carlo techniques have been widely used in other areas of research but do not seem to have
been investigated by the qualitative physics community.

Monte Carlo is a term frequently used to refer to methods which generate probabilistic
solutions to mathematical or physicalproblemsusingstatisticalsamplingtechniques[9]What
we call Monte Carlo simplification works as follows. The children of the start state are
generated and one of the children is picked at randomwith equalprobability. Whenevera
state is picked its children are generated and one of them is picked at random with equal

probability. This process continues until one of three things happens: a state with no children
is picked, apreviouslypickedstateis picked,or a specifiedresourceboundon thesimulation
is reached.The resultantpath through the graph is called a Monte Carlo path.

Basically,a Monte Carlo simplification randomly samplesthe resultsof qualitative simu-
lation. The belief is that sucha result will tendto be a typical one. Any descriptionof the
result which doesnot explicitly involve the numberof final statesor the number of paths
through the graph is assumedto be the samefor the Monte Carlo simplification and the
wholegraph. Verification is heuristicandis obtainedby choosinga new Monte Carlo path
through the graph. In the very unlikely event that all randomchoiceswere the same,the
simplification would be repeateduntil a different path was chosen. If verification fails and
it is desiredto continuewith Monte Carlo simplification all currently known Monte Carlo
pathsarecombined,anew conjecturebasedon all knownpathsis made,andverification is
donewith yet anothernew path.

Monte Carlo simplification effectively ignoresirrelevantdistinctionssuchasirrelevanttim-
ing detailswhich causethe stategraph to have an extremelyhigh branchingfactor. The
simplification strategycanbeconsideredto beconstraintaugmentation.(Thenew constraint
randomly selectsstates.)It is domainindependentandit is almost universallyapplicable.

Another simplification which is similar to Monte Carlo is CombinedChangesimplification.
This has also beenimplemented in TEPS.Monte Carlo simplification randomly selectsa
singlechild stateto explore. This can excludesomechangesin variables. CombinedChange
simplification makessurethat all possiblevariablechangeshaveoccurredbut selectsamin-
imal set of child statesfor which this is true. The rationaleis that whenchangesmayoccur
both separatelyand in combinationtheir timing is probably irrelevant.

Unlike Monte Carlo, oneCombinedChangesimplification cannotbe verified with another
CombinedChangesimplification as the two would be identical. The bestmethod of veri-
fication for a CombinedChangesimplification is a Monte Carlo simplification. Like Monte
Carlo, CombinedChangeis a similarity simplification usingconstraintaugmentation.It is
domain independentand it is almost universallyapplicable.

Many domain dependentmethods could be developedwhich are similar to Monte Carlo
andCombinedChange.They would apply domaindependentheuristicsto selecta restricted
set of children to explorefrom any given state. Thesechildren would be selectedas typical
or becausethey were believed to be equivalentto ignored children. Verification for these
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methodsshouldprobably be doneby Monte Carlo simplification.

3.4.2 Other Methods of Constraint Augmentation

There are many other possibilitiesfor constraintaugmentation.Many of theseare domain
dependent.Onemethodwhich is fairly generalis DimensionalConstraint. This can be used
whenobjectsin the model havefreedomto changein threedimensions.Adding aconstraint
which allows changesonly along onedimensioneffectively reducesthe dimensionality of the
problemto one. DimensionalConstraintis aspecialcaseof the Variable Blockingsimplifica-
tion. This simplification addstheconstraintthat certainvariablesnot be allowedto change.
One set of variablesis blockedand the problemsolved. Verification is performedby doing
the samething but blocking different set of variables,lithe sameresult is obtainedin both
casesthen both setsof variableswere irrelevant to the problem. This acts almost like a
variable reductionmethod but may beeasierto implement in certaincases.

One techniquewhich may be useful in combination with Variable Blocking is complemen-
tary simplifications. Supposewe try VariableBlocking and verification fails. This means
that we havetwo setsof variables. One set was held constant(blocked) and the problem
solved. For verification a different set was held constantandthe problemsolved. The de-
scriptionsof the two resultsdo not agree. We may be able to constructa compositeof the
two resultsat least in terms of final states.

One method for forming conjecturesbasedon two different simplifications just combines
final statesusinga simple superpositionmethod. Physicallythis works when thereare two
non interacting systemsin the model. Any changein a variable comesfrom one of the
systemsbut not the other. We block the variablesfor onesystemandsimulate,then block
the variablesfor the other and simulate. The rule for combining final statesis: choose
the value for a variable in the combinedstate by always preferring a changedvalue over
an unchangedvalue. If the initial statehas variables(Xl,Y1,Z1) andthe two statesto be
superposedhave(X2,Y1,Z1) and (X1,Y2,Zl) the combinedstatehas (X2,Y2,Z1).

A more sophisticated version of superposition would involve heuristic methods for deter-
mining when two systemsinteract and when they do not. During any time when the systems
are believedto not be interacting they would be modeledseparatelyusingVariableBlocking.
When interactionstartsthe resultsof the separatesimulationswould besuperposedandthe
two systemswould be modeledtogether. When interaction ceasesvariable blocking would
be usedagain. Final stateswould be formed by superposition.This methodhassimilarities
to history basedreasoningtechniques[20].

Another method for makingconjecturesbasedon two different simplificationsusesinheri-
tanceand is givenin detailelsewhere[8].Basicallythemethodallowsprocessesandindividual
views to examinepreviousthought experimentsand incorporateinformationfrom them to
determine relationships. This inheritancemethodis oneway of implementingsuperposition
and is used in TEPS.

Temporal abstraction as discussed by Kuipers[11] is another type of constraint augmen-
tation. From our viewpoint temporal abstractionconsistsof rules which rank processesby
relative strength. Any changegeneratedby a higher rank (strongerprocess)will be al-
lowed to take place. Changesdue to weakerprocesseswill be suppresseduntil the stronger
processesgenerateno morechanges.
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3.4.3 IncreasedSpecificity

Increased specificity of the initial state causes constraints to be more effective in reducing
the numberof possibilities. An example is the spatial regionshierarchy given by (region,
connectedregion,convexregion,sphere),wheresphereis the simplest (most specific).

Increasedspecificity methods are domain specific, similarity simplifications. They can
easily be built into modulesdescribingindividual views or processes.This might be called
a SimpleStereotypemethod. For example,an individual view describingagenericbuilding
structuremay containdescriptorsfor a stereotypebuilding that could replacethosefor the
less specificbuilding structure.

3.4.4 Variable Reduction

Most alternatephysicalmodelsof a situation or object can be arrangedas a simplification
hierarchy. Thesemodelscomefrom the specific domain. For example,a solid object might
be modeledas a collection of molecules,an elastic solid, a rigid solid or a point particle.
These models usually achievesimplification by reducing the number of variables, Many
approximationsalso can be characterizedas variable reduction. Some of these types of
simplificationshavebeenmentionedin section1 in connectionwith currentresearch[3,4,1,19].
Thesesimplificationsarehierarchicalanddomainspecific. Verificationoften consistssimply
of checkingif the simplified modelis consistent,and if it containsthe necessaryvariablesto
answer the question.

Sometimesvariable reduction is achieved by eliminating certain classesof variables,all
of which are associatedwith a specific ontologicalperspective.For example,eliminating all
processes and variables which are tagged with the thermodynamic perspective. This can
be done if a query does not refer to anything taggedwith this perspective[4]. Structural
Consolidation[3,4,19]consistsof a systematicorganizationof modelssuch that the compo-
nentsof a mechanicalsystemat anygiven level maybeconsideredas “black-boxes”with no
internal structure.

It should be pointed out that the Simple Stereotypeapproachmentionedearlier can be
considereda variable reduction method if the original model is specific but complicated.
For example, replacinga building with many roomsby a building with only a few rooms
reducesthe numberof quantitiesassociatedwith each room. This, however,is a similarity
simplification andnot a hierarchicalsimplification as describedabove.

Sincedomainindependentmethodsareparticularly desired,the Aggregationsimplification
of Weld[16] is especiallyimportantalthoughit is only applicablein certaincases.Aggregation
is adomain independent,hierarchicalsimplification.

Another variablereductionmethodwhich is domainindependentis PopulationReduction.
This is anothermethod implementedin TEPS.Givenaset of identicalobjects(a population
of thoseobjects)we reducethenumberof objects.This methodis domainindependent,Like
aggregationit is applicableonly in certaincases.We haveapplied it in TEPSto electrostatic
problems. It is possiblethat this methodcouldbeextendedby first examiningaproblemfor
a collection of objectswhich are of the sametype eventhough they differ in details. These
objectswould be describedby the sameindividual view moduleandeachcould be replaced
by the stereotypeobtainedfrom that module. The result would be apopulation of identical
objectsto which PopulationSimplification could be applied.

Variables can often be essentiallyeliminated or at least their effects can be simplified
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NAME
SIMPLIFICATION
STRATEGY

NATURE OF
CORRESPONDENCE

DOMAIN
DEPENDENCE

Monte
Carlo

Constraint
Augmentation

Similarity Independent

Combined
Change

Constraint
Augmentation

Similarity Independent

Dimensional
Constraint

Constraint
Augmentation

Similarity Independent

Variable
Blocking

Constraint
Augmentation

Similarity Independent

Superposition Constraint
Augmentation

Similarity Independent

Simple
Stereotype

Increased
Specificity

Similarity Dependent

Simple
Stereotype

Variable
Reduction

Similarity Dependent

Ontological
Perspective

Variable
Reduction

Hierarchical Dependent

Structural
Consolidation

Variable
Reduction

Hierarchical Dependent

Aggregation Variable
Reduction

Hierarchical Independent

Population
Reduction

Variable
Reduction

Similarity Independent

Exaggeration Variable
Reduction

Similarity Independent

Table2: SOME BASIC SIMPLIFICATIONS

by assumingthey haveextremevalues such as zero, infinitesimal, and infinite. A system-
atic techniquewhich usesthis is the exaggerationmethodof Weld[18]. We summarizethe
simplifications we havediscussedin Table2.

4 The Pendulum Example

It is usefulillustrate the useof differentsimplifications by continuing the pendulumexample
describedin section2. Additional simplificationswhich are applicableinclude Monte Carlo
andCombinedChange.

First we run TEPS with just the Monte Carlo methodon this problem. This can be done
by giving Monte Carlo simplification the highestrankingof anyin the simplification library
andspecifying single simplifications in a configurationfile.

One advantageof trying a Monte Carlo methodfirst is that the outdegreeof nodesalong
a Monte Carlo path through the graph togetherwith the path’s length would enableTEPS
to estimatethe complexity of the graph. This estimatecould be used for control purposes.
This will be implementedin the nearfuture.
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Application of the Monte Carlo methodproducesa tentativeresult as follows. TEPSpicks
Monte Carlo as highestranked,calls the associatedapplicabilility test, discoversthat Monte
Carlo is applicableandusesthe Monte Carlo simplification. This simplification merely adds
the predicatemcarlo to the predicatesfor the initial state. This new predicateinforms the
simulation engineto randomly select children of new statesfor further exploration andto
stop whena leaf is reached,apreviouslyexploredstateis reached,or thegraph sizespecified
in the configuration file is exceeded.The descriptionbasis is applied to this graph anda
tentativeanswerto the query is obtained.

Monte Carlo performswell on the pendulumproblemgiven in section 2 althoughnot as
well as PopulationReduction. In this problem25 pendulumsare swinging simultaneously.
The timing turns out to be irrelevant. MonteCarlo effectively choosesaparticular orderfor
the swings andthis reducesthe complexity enormously.

When TEPS calls the verification routine associatedwith the Monte Carlo method the
samestate is sentto the simulatoragain. The simulatoralways checksto determineif the
stategraphfor an initial stateis alreadyknown beforeperforming anyenvisionment.When
it finds the old graphit takesoneof the unexaminedchildrenat randomandproceedswith
the Monte Carlo simulationon it. The verificationmethodchecksthat thenew, larger graph
has the samedescription.

The effect in our pendulumproblem is to checkwhetherthe assumption,that the order
of pendulumswings is irrelevant to the query, is true. Obviouslythis will not bea complete
check but it will show whether this assumptionis plausible. A more sophisticatedcontrol
structure(not employed)could continuecheckinguntil somereasonableresourceboundwas
reached.

Combined Change works in an almost identical mannerandfor similar reasons.It is faster
however. All three types of simplification producethe correctanswer.PopulationReduction,
Combined Change, and Monte Carlo is the order of efficiency of the three methods with
Population Reduction the most efficient.

The above results indicatea reasonablerankingfor thesesimplification methods.When all
three methods are includedin the simplification library andthemultiple simplification flag is
set we have Population Reduction chosen first because it is most highly ranked. Combined

Changeis then applied. Monte Carlo will never be used with this ranking as it is not
compatiblewith CombinedChange.The result usingmultiple simplifications is alsocorrect
andappreciablyfaster than anysingle simplification.

5 Comparisonwith Other Methods

Any form of multi-level reasoningthat involves abstractionsand approximationscan be
framed in a simplification terminology. The major differencebetweenthe similarity simpli-
fications which are implementedin TEPS and hierarchicalsimplifications which are com-
monly usedby othersis that verification seemstrivial for hierarchicalsimplifications. The
verification method can be termed verification by simplification type. Since this method is
important we needto discussit andto compareits strength’sand weaknesseswith heuristic
verification.
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5.1 Verification by Simplification Type

With somesimplifications weare “guaranteed”that if the simplermodelproducesany answer
at all it is a correct answer. Thus the only way a thought experiment based on sucha
simplification can fail is by descriptionfailure. The basic idea is that the simplification
producesa model which is less detailed than the original model, and, therefore, may not
be capableof answeringcertainquestions. However, the model is just as valid andjust as
applicableto the original situation. This meansthat either the model gives no answerto
our question(descriptionfailure) or it givesthe correct answer.

An exampleof verification by simplification type is given by Falkenhainerand Forbus[4].
They mention both empirical andheuristic verification as possibilities (without using this
terminology). The method they employ, however, is consistencyof the model. They feel
that this is the only method that is neededfor the simplifications they use. Consistencyis
detectedby envisionment. If a null envisionmentis producedthen a new model must be
constructed.If asuccessful(non empty)envisionmentcan beperformedthesimplified model
is verified. In our terminologywe would say that a null envisionmentproduceddescription
failure. FalkenhainerandForbusdo not haveto worry about descriptionfailure in anyother
casethan this sincethey construct their modelsbasedon the query itself.

Since verification by simplification type is important let us formalize it in our systemin
order to make sure our notions are precise. We adaptsome terminology from Weld and
Addanki[19] who in turn adaptedit from someideasof Tenenberg[15].

A simplification, S, will havethe UPWARD-SOLUTION PROPERTYrelative
to a set of descriptionbases,L, if for any descriptionbasis,D, in L andany
state,q, it must be true that either (a) D(R(q)) = D(R(S(q))) or (b) D fails on
R(S(q)).

The upwardsolutionproperty is just the propertyin which we areinterested.If a thought
experimentproblemsolverhassimplifications which aretaggedas having this property and
the descriptionis in theappropriateset,L, thenverificationconsistsof no morethannoticing
the tagsandthat therewasno descriptionfailure. This is verificationby simplification type.

5.2 Problemswith Verification by Simplification Type

Hierarchical modeling is popular at presentin qualitative physics. All such systemsuse
(at least implicitly) verification by simplification type. Thought experimentsinclude this
method but are more general. It is our feeling that such generality is needed so we would
like to point out some problems with this method. Despite the problems,verification by
simplification type is an important and useful method simply becausethe verification is
rigorous.

An important point is that the upwardsolution property of a simplification can only be
definedrelativeto afixed setof descriptionbases,L. If queriesarenot limited in thisway then
it is always possible to makea model dependentdescriptionor a model dependentquery.
There has to be somedifference betweenthe models andwe can always make the query
dependenton this unlessit is forbidden to ask such questions.For example,we can always
ask for the numberof variablesor the numberof parts. Theseusually vary in hierarchical
simplifications.
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Ideally, L should be as largea setas possibleandshould include all descriptionsneededto
answer intuitively natural questions.The obviouschoicefor L is to formulateall description
basesin termsof somesort of first order modeling language.Sucha languagewould prevent
meta level queriesand yet would provide reasonable tools for constructing descriptions.

One difficulty with using a first order language for L involves models which already exist
in the physicalsciences.Most simplified modelswhich are traditionally usedin the physical
sciencescannot be consideredas simplifications with the upward solution property with
respectto descriptionsin anyreasonablefirst order language.Consideraglassfull of water.
At one level it may be modeledas a collection of molecules. At anotherlevel it may be
modeledas acontinuousfluid. Do we havetheupwardsolution propertyfor everyreasonable
description? Most emphaticallynot. Certainly if we mention the position of a moleculein
the fluid model we get descriptionfailure. This is to be expected.What about the density
of the water at any location in the glass? At the fluid level it is uniform and neverzero.
At the molecularlevel it is exactly zeroat oneplaceandenormousat another.Thereis no
simple logical languagewhich determineswhetherthe result at the higher level is the same
as that at the other. The criteria as to whether the descriptionsmust be the same,even
qualitatively,are complicatedandoftennumerical. For this reason,specifyingL can present
aproblemfor verification by simplification type.

Another problemis that evenif we can specifyL easily,andevenif L turnsout to be based
on anicefirst order language,manyintuitively interestingqueriescouldnot be formulatedin
termsof L. Questionssuch as: “Is the systemin equilibrium?” and“Is the behaviorcyclic?”
implicitly quantify over all variablesand are not first order queries. Let us considerthe
question: “Is the systemin equilibrium?”. In physics terminology we would say that this
questionaskswhetherall variableshave constantvalues. Thus it implicitly quantifies over
all variables. A variableis not an object but a way of describingobjectsandso this query
is not a first order query. In order to be sure that we are being preciselet us translate
this argument into the terminology of predicatecalculus. In physics it is commonto refer
to variablesand to suppressthe role of predicatesby using them in the “definition of the
variable”. For example,if we sayTi hasvaluet our definitionof Ti maymakethis statement
about Ti equivalentto saying temperature(objecti,t)is true. If we introducethe defining
predicatesfor the variables, the questionof equilibrium can be formulated by sayingthat
the set of all predicatesneededto characterizethe stateof the systemat any instant does
not change.This set is determinedpartly by the objects in the systembut alsoby the types
of predicateswhich are neededto characterizethe system. We arequantifying overkindsof
predicatesas well as objects anddo not havea first order theory.

If we allow querieswhich quantify over types of predicateswe may get different results
from hierarchicalmodelswhich reducethe typesof predicates.For example,if the model is
simplified by not consideringtemperaturethen it might be in equilibrium whereasa more
detailedmodel may not becausetemperatureis not constant.

If structural consolidationor any similar techniquewhich reducesthe number of objects
is usedthen ordinary first order quantificationover objects might producedifferent results
in different models, A questionsuch as “What is the warmesttemperaturein this house?”
might havevariousanswersdependingon how detailedour modelof ahouseis. Do we model
at the room level? Do we model in terms of componentsof roomssuch as the water heater
in the utility room? Do we model the water heaterin terms of componentsincluding the
flame of a gasheatingelement? Do we model this flame in terms of its constituentparts?
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(Someof which are hotter thanothers.)
Another problem with verification by simplification type is that it seriously limits the

applicablesimplifications. In fact, it appearsto rule out most domain independentsimpli-
fications. i,From the thought experimentpoint of view, this verification techniqueis useful
only in special cases.

5.3 Heuristic Verification

The third methodof verification is heuristic. Heuristic verification consistsof trying other
simplifications and comparingthe descriptionsfor consistency. The details of this are tied
to the simplification originally used. This is enormouslyflexible. We can use virtually
anything for a simplification. Simplification doesnot haveto be as complicateda process.
Implicitly metalevel questionsaboutsuch things asequilibrium can be askedandanswered.
Explanation of reasoningwould be clear to humanswho deal with analogiesquite well.
Of course, we payfor the flexibility in that the conclusionis no longer certain. Heuristic
verification is analyzedin termsof aprobability model elsewhere[8].

6 Conclusions

We havepresentedsomeof the current work on the thought experimentmethodology. We
haveincluded currently implementedsimplifications as well as proposednew methods. A
unifying framework has been presentedwhich allows a comparisonof the strengthsand
weaknessesof this methodologywith othertechniquesfor multi-level reasoning.This includes
a classificationof simplifications anda comparisonandanalysisof verificationmethods.
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