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Abstract

This paper discusses recent developments in the thought experiment methodology
and their relation to multi-level reasoning. Thought experiments involve Simplification
of the original problem, Solving the simplified problem, Conjecturing an answer to
the original problem based on the solution of the simplified problem, and Verifying
the results. First, we review the methodology briefly. Next we relate simplification
methods to hierarchical modeling and reasoning by analogy. We present a catalog
of methods. We illustrate some of these methods with a simple example. Next we

describe verification as we do it and relate it to work in hierarchical modeling.

Note:: This paper is based on D. Hibler’s Ph.D. dissertation.
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1 Introduction

As modeling issues and methodologies stabilize, qualitative reasoning is now being applied
to model large and complex engineering systems. The amount of information captured in
these models is orders of magnitude greater than the simpler models discussed in earlier
papers. It is generally recognized[3,4,8,10,19] that analysis of complex models requires the
use of abstractions and simplifying assumptions to manage computational complexity.

A common theme in previous research[1,2,6,10,13] is the use of abstraction for speeding up
reasoning tasks in computationally complex situations. Korf[12] has shown by theoretical
analysis that the use of a hierarchy of problem spaces can transform an exponential problem
into a linear one. In an attempt to generalize a number of the previous results, Weld and
Addanki[19] develop a framework for defining a number of dimensions along which models can
be abstracted: (i) parameter value representations, (i) component constraints, (iii) temporal
abstraction, and (iv) aggregation and structural consolidation. Their goal is to generalize
on previous work, and take “first steps toward eliminating the need for prespecified abstract
models”[19]. This goal is also targeted by Falkenhainer and Forbus[4] in their work on
query-driven compositional modeling. Weld and Addanki create a formal framework for
task-driven abstraction based on a set of definitions: the upward- and downward-solution,
and the upward- and downward-failure properties.

This paper discusses an alternative approach to reducing computational complexity in
analyzing the behavior of complex systems — the thought experiment method. What 1s a
thought experiment? Imaginary, simplified situations are often analyzed by human prob-
lem solvers in order to understand the principles behind more realistic situations{14]. We
have formalized this heuristic method, and developed a problem solver called TEPS[7,8] for
qualitative physics problem solving.

2 TEPS: A Thought Experiment Problem Solver

The first step in a thought experiment involves simplification. The time evolution of a physi-
cal system is described in terms of the system occupies different qualitative states at different
times. Given a state q which specifies a physical system at some time, a simplification S(q)
produces a state p of a simplified version of the original system. An example of a simplifi-
cation is Population Reduction. This consists of reducing the number of identical objects in
a problem. Given a series of pendulums with metallic bobs (say 25), and a charge c placed
on the first pendulum (all others have zero charge), Population Reduction would produce a
simplified problem consisting of two pendulums with charge ¢ on the first[7]. Simplification
functions, such as Population Reduction are transformations provided to the problem solver
by the system designer.

The next step in a thought experiment involves “solving” the simplified model. This means
that the thought experiment problem solver must contain a reasoning engine which takes a
qualitative state q and reasons about it to produce some result R(q). The reasoning engine
employed for problem solving and its corresponding results space is independent of the basic
thought experiment framework. TEPS, the thought experiment problem solver which has
been implemented in Prolog uses a qualitative simulator that is based on Forbus® QPT
modeling[5]. It produces a graph of qualitative states, all of which can be reached from the
state q. Thus for TEPS, R(q) is the state graph produced by qualitative simulation.
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The input to TEPS is a set of state descriptors for the initial state of the system along
with a query that describes the solution sought. For the pendulum example, the input to

TEPS 1s shown below:

problem(
state: [conductor(p), pendulum(p), mobile(p),
location(p(center(p)), charge(p(1),c),
number (p,N,25)],
query([final states,
descriptor(location(p(N),X), argd(2))],
pred,someall)

).

The state specification indicates that there are 25 pendulums, each is a conductor, is
mobile, and is located in the center (vertical) position. The charge on pendulum one is c.
The query asks that the final states of the resulting state graph be examined, and that we
find the second argument of the descriptors that match location(p(N),X).

The problem is represented in the form of a problem frame and sent to the Thought
Experiment module. The first step that this module performs is to obtain all the active
processes for this problem from the simulation module. It then performs simplification on
the initial state by looking up a catalog of simplifications. Discussion about the catalog
and its characteristics is the primary focus of this paper. For control purposes, possible
simplifications are ranked by heuristic analysis, and then performed in the order of ranking.
If configured for multiple simplifications the system will use as many as are applicable. The
simplified problem is given to the simulation module which returns a state graph for the
system with the given initial state.

The thought experiment problem solver is designed to answer specific questions about a
physical system given an initial state for the system. For this reason we are not concerned
with R(q) directly because it usually does not constitute the answer to a question. The de-
scription language is specified by description functions. Such a function is called a description
basis. A description basis, D, is a mapping from the set of state graphs to some adjective
space of labels. If we prefer we may think of a description basis as a way of classifying state
graphs with the adjectives being the labels for each category. D(R(q)) is a description of
the results of the reasoning process starting with state q, and it constitutes an answer to
the specific question asked. In the example above, the initial state consists on a number of
pendulums in an initial configuration. R(q) is a state graph representing time evolution of
this system. The query provides the label for a description basis D that the system knows
about, in this case, center( ), right( ), and left( ). The results are classified using
someall. A library of description bases and functions for constructing description bases
are provided as part of the TEPS implementation. In the above case, the final states are
examined to determine the location of the last pendulum in terms of the above description.

A conjecture, C, is a guess about the description of the result of the original problem based
on the solution obtained on a simplified version of it, D(R(q)) = C(R(S(q))). The simplest
conjecture is that the description basis is generic enough to provide a cross description
i.e., D(R(q)) = D(R(S(q))). In the pendulum example, the description basis specifies final
locations for the pendulums. For the two pendulum problem, the location of the pendulum
is [all(right)]. The conjecture is that for the multiple pendulum situation the same
description holds.
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q — R(q) — D(R(q)) Correct Answer is D(R(q))
) (a))) | Tentative Result of T.E.
q — S’(q) — R(S’(q)) — D(R(S’(q))) | Attempt at confirmation
D(R(S’(q))) = D(R(S(q))) Successful Single Heuristic Verification

Table 1: THOUGHT EXPERIMENT METHOD

Verification can be rigorous or heuristic. It could even be empirical. Rigorous verifica-
tion consists of establishing that the conjecture is true. Empirical verification consists of
comparing the predictions with what actually occurs in the real world. This is not usually
practical. The most flexible type of verification is heuristic. With this type of verification
other simplifications are tried and the conjectures compared with the original conjecture. If
they agree we accept the conjecture as a reasonable belief. In the pendulum problem we
might repeat the procedure with a three pendulum simplification instead of two. The steps
of the Thought Experiment Problem solver illustrated above are summarized in Table 1.

3 Simplifications and multi-level reasoning

This section outlines how thought experiments provide a novel formalism for describing
multi-level reasoning in the form of approximations and abstractions. We then demonstrate
how this methodology reduces computational complexity in query-driven problem solving.
We first classify simplifications along three dimensions: (i) domain dependence, (ii) corre-
spondence classification, i.e., the relationship between the original model and the simplified
one, and (iii) simplification strategies used. This provides a framework for comparing our
work with that of others. Next, we discuss specific examples of simplifications of various
types, and build a catalog of simplifications.

3.1 Domain Dependence

The applicability of a simplification depends on various characteristics of the problem. Some-
times the simplification can only be applied to a specific physical domain. We consider do-
main independent simplifications to be much more desirable than domain dependent ones.
A problem solver which uses only domain dependent simplifications must be given a different
set for each domain with which it deals. Population reduction is an example of a domain
independent simplification, whereas structural consolidation (i.e., replacing a set of compo-
nents by a more abstract component in a physical system schematic) would be an example
of a simplification that is domain dependent.

3.2 Correspondence Classification

In terms of the correspondence between the original model and the simplified model we
may divide simplifications into three rough categories. These categories are hierarchical
simplifications, similarity simplifications, and analogical simplifications.

Hierarchical simplifications produce models which are more abstract or which leave out
features of the situation which are irrelevant so far as the current problem is concerned.
Hierarchical models have been studied by others( e.g., [2,6,10,13]). The main innovation
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the thought experiment method would provide is the emphasis on simplification methods
as opposed to fixed models. A thought experiment problem solver would construct its own
simplified models. This provides more flexibility in adapting the model to the situation and in
changing models. The need for this flexibility has begun to be recognized. (Compare[3] with
[4].) The problem of verification with hierarchical models is often just a question of deciding
if the simplification is appropriate. Hierarchical models are usually domain dependent.

Similarity simplifications involve finding simpler models in the same domain. Unlike hi-
erarchical models these models are clearly different and not merely more abstract versions
of the same model. In some sense, they incorporate both approximation and abstraction.
Heuristic verification is often used with these simplifications. At least some simplifications
of this type are domain independent. Population Reduction is an example of a similarity
simplification.

Analogical simplifications involve rules for specifying an analogous problem in a different
domain. We have avoided using analogical simplifications in TEPS in order not to have to
deal with difficulties arising from using different domains.

3.3 Simplification Strategies

Many different simplification strategies might be used. Most can probably be classified
as: constraint augmentation, increased specificity, and variable reduction. Constraint aug-
mentation maps the problem to one with stronger constraints. Increased specificity makes
constraint relationships which already exist more effective in determining behaviors. Vari-
able reduction reduces the number of variables which must be dealt with. The purpose of
each of these strategies is to reduce the average outdegree of non terminal nodes of the state
graph.

3.4 A Partial Catalog of Simplifications

A primary issue in the thought experiment framework is the use of appropriate simplifica-
tions. We will, therefore, present a brief discussion of various possible simplifications orga-
nized by the classification scheme described above. We do not claim this to be a complete
list of simplifications. However, we present a nontrivial representative set that brings out
necessary characteristics the problem solver needs for effective problem solving. These sim-
plifications have been found useful and even necessary by the qualitative physics community
to address the complexity problem. This shows that useful and practical simplifications exist.
The simplifications we have developed for abstraction[6,10] are based on domain-dependent
hierarchies, however, a number of the simplifications that correspond to approximations are
domain-independent.

In order to show that the thought experiment method generalizes in a useful way the tech-
niques mentioned in the introduction it is desirable to include in our catalog simplifications
of the similarity type which do not correspond to anything discussed in the introduction.
Domain independent simplifications of the similarity type are particularly important because
of their versatility.
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3.4.1 Constraint Augmentation Using Selection Methods

Selection methods involve simplifying the problem by selecting only a part of the state graph
generated by qualitative simulation. This can be considered constraint augmentation. The
new constraint acts as a filter to eliminate states which would otherwise be generated.

A prime example of a domain independent simplification which is of the selection type is
the Monte Carlo simplification. This simplification has been implemented in TEPS[8]. The
wide applicability of the Monte Carlo simplification makes it extremely important. Monte
Carlo techniques have been widely used in other areas of research but do not seem to have
been investigated by the qualitative physics community.

Monte Carlo is a term frequently used to refer to methods which generate probabilistic
solutions to mathematical or physical problems using statistical sampling techniques[9] What
we call Monte Carlo simplification works as follows. The children of the start state are
generated and one of the children is picked at random with equal probability. Whenever a
state is picked its children are generated and one of them is picked at random with equal
probability. This process continues until one of three things happens: a state with no children
is picked, a previously picked state is picked, or a specified resource bound on the simulation
is reached. The resultant path through the graph is called a Monte Carlo path.

Basically, a Monte Carlo simplification randomly samples the results of qualitative simu-
lation. The belief is that such a result will tend to be a typical one. Any description of the
result which does not explicitly involve the number of final states or the number of paths
through the graph is assumed to be the same for the Monte Carlo simplification and the
whole graph. Verification is heuristic and is obtained by choosing a new Monte Carlo path
through the graph. In the very unlikely event that all random choices were the same, the
simplification would be repeated until a different path was chosen. If verification fails and
it 1s desired to continue with Monte Carlo simplification all currently known Monte Carlo
paths are combined, a new conjecture based on all known paths is made, and verification is
done with yet another new path.

Monte Carlo simplification effectively ignores irrelevant distinctions such as irrelevant tim-
ing details which cause the state graph to have an extremely high branching factor. The
simplification strategy can be considered to be constraint augmentation. (The new constraint
randomly selects states.) It is domain independent and it is almost universally applicable.

Another simplification which is similar to Monte Carlo is Combined Change simplification.
This has also been implemented in TEPS. Monte Carlo simplification randomly selects a
single child state to explore. This can exclude some changes in variables. Combined Change
simplification makes sure that all possible variable changes have occurred but selects a min-
imal set of child states for which this is true. The rationale is that when changes may occur
both separately and in combination their timing is probably irrelevant.

Unlike Monte Carlo, one Combined Change simplification cannot be verified with another
Combined Change simplification as the two would be identical. The best method of veri-
fication for a Combined Change simplification is a Monte Carlo simplification. Like Monte
Carlo, Combined Change is a similarity simplification using constraint augmentation. It is
domain independent and it is almost universally applicable.

Many domain dependent methods could be developed which are similar to Monte Carlo
and Combined Change. They would apply domain dependent heuristics to select a restricted -
set of children to explore from any given state. These children would be selected as typical
or because they were believed to be equivalent to ignored children. Verification for these
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methods should probably be done by Monte Carlo simplification.

3.4.2 Other Methods of Constraint Augmentation

There are many other possibilities for constraint augmentation. Many of these are domain
dependent. One method which is fairly general is Dimensional Constraint. This can be used
when objects in the model have freedom to change in three dimensions. Adding a constraint
which allows changes only along one dimension effectively reduces the dimensionality of the
problem to one. Dimensional Constraint is a special case of the Variable Blocking simplifica-
tion. This simplification adds the constraint that certain variables not be allowed to change.
One set of variables is blocked and the problem solved. Verification is performed by doing
the same thing but blocking different set of variables. If the same result is obtained in both
cases then both sets of variables were irrelevant to the problem. This acts almost like a
variable reduction method but may be easier to implement in certain cases.

One technique which may be useful in combination with Variable Blocking is complemen-
tary simplifications. Suppose we try Variable Blocking and verification fails. This means
that we have two sets of variables. One set was held constant (blocked) and the problem
solved. For verification a different set was held constant and the problem solved. The de-
scriptions of the two results do not agree. We may be able to construct a composite of the
two results at least in terms of final states.

One method for forming conjectures based on two different simplifications just combines
final states using a simple superposition method. Physically this works when there are two
non interacting systems in the model. Any change in a variable comes from one of the
systems but not the other. We block the variables for one system and simulate, then block
the variables for the other and simulate. The rule for combining final states is: choose
the value for a variable in the combined state by always preferring a changed value over
an unchanged value. If the initial state has variables (X1,Y1,Z1) and the two states to be
superposed have (X2,Y1,Z1) and (X1,Y2,Z1) the combined state has (X2,Y2,21).

A more sophisticated version of superposition would involve heuristic methods for deter-
mining when two systems interact and when they do not. During any time when the systems
are believed to not be interacting they would be modeled separately using Variable Blocking.
When interaction starts the results of the separate simulations would be superposed and the
two systems would be modeled together. When interaction ceases variable blocking would
be used again. Final states would be formed by superposition. This method has similarities
to history based reasoning techniques|[20].

Another method for making conjectures based on two different simplifications uses inheri-
tance and is given in detail elsewhere[8]. Basically the method allows processes and individual
views to examine previous thought experiments and incorporate information from them to
determine relationships. This inheritance method is one way of implementing superposition
and 1s used in TEPS.

Temporal abstraction as discussed by Kuipers[11] is another type of constraint augmen-
tation. From our viewpoint temporal abstraction consists of rules which rank processes by
relative strength. Any change generated by a higher rank (stronger process) will be al-
lowed to take place. Changes due to weaker processes will be suppressed until the stronger
processes generate no more changes. '
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3.4.3 Increased Specificity

Increased specificity of the initial state causes constraints to be more effective in reducing
the number of possibilities. An example is the spatial regions hierarchy given by (region,
connected region, convex region, sphere), where sphere is the simplest (most specific).

Increased specificity methods are domain specific, similarity simplifications. They can
easily be built into modules describing individual views or processes. This might be called
a Simple Stereotype method. For example, an individual view describing a generic building
structure may contain descriptors for a stereotype building that could replace those for the
less specific building structure.

3.4.4 Variable Reduction

Most alternate physical models of a situation or object can be arranged as a simplification
hierarchy. These models come from the specific domain. For example, a solid object might
be modeled as a collection of molecules, an elastic solid, a rigid solid or a point particle.
These models usually achieve simplification by reducing the number of variables. Many
approximations also can be characterized as variable reduction. Some of these types of
simplifications have been mentioned in section 1 in connection with current research(3,4,1,19].
These simplifications are hierarchical and domain specific. Verification often consists simply
of checking if the simplified model is consistent, and if it contains the necessary variables to
answer the question.

Sometimes variable reduction is achieved by eliminating certain classes of variables, all
of which are associated with a specific ontological perspective. For example, eliminating all
processes and variables which are tagged with the thermodynamic perspective. This can
be done if a query does not refer to anything tagged with this perspective[4]. Structural
Consolidation[3,4,19] consists of a systematic organization of models such that the compo-
nents of a mechanical system at any given level may be considered as ”black-boxes” with no
internal structure.

It should be pointed out that the Simple Stereotype approach mentioned earlier can be
considered a variable reduction method if the original model is specific but complicated.
For example, replacing a building with many rooms by a building with only a few rooms
reduces the number of quantities associated with each room. This, however, is a similarity
simplification and not a hierarchical simplification as described above.

Since domain independent methods are particularly desired, the Aggregation simplification
of Weld[16] is especially important although it is only applicable in certain cases. Aggregation
is a domain independent, hierarchical simplification.

Another variable reduction method which is domain independent is Population Reduction.
This is another method implemented in TEPS. Given a set of identical objects (a population
of those objects) we reduce the number of objects. This method is domain independent. Like
aggregation it is applicable only in certain cases. We have applied it in TEPS to electrostatic
problems. It is possible that this method could be extended by first examining a problem for
a collection of objects which are of the same type even though they differ in details. These
objects would be described by the same individual view module and each could be replaced
by the stereotype obtained from that module. The result would be a population of identical -
objects to which Population Simplification could be applied.

Variables can often be essentially eliminated or at least their effects can be simplified
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SIMPLIFICATION | NATURE OF DOMAIN
NAME STRATEGY CORRESPONDENCE | DEPENDENCE
Monte Constraint Similarity Independent
Carlo Augmentation
Combined Constraint Similarity Independent
Change Augmentation
Dimensional | Constraint Similarity Independent
Constraint Augmentation
Variable Constraint Similarity - Independent
Blocking Augmentation
Superposition | Constraint Similarity Independent
Augmentation
Simple Increased Similarity Dependent
Stereotype Specificity
Simple Variable Similarity Dependent
Stereotype Reduction
Ontological Variable Hierarchical Dependent
Perspective Reduction
Structural Variable Hierarchical Dependent
Consolidation | Reduction
Aggregation | Variable Hierarchical Independent
Reduction
Population Variable Similarity Independent
Reduction Reduction
Exaggeration | Variable Similarity Independent
Reduction

Table 2: SOME BASIC SIMPLIFICATIONS

by assuming they have extreme values such as zero, infinitesimal, and infinite. A system-
atic technique which uses this is the ezaggeration method of Weld[18]. We summarize the
simplifications we have discussed in Table 2.

4 The Pendulum Example

It is useful illustrate the use of different simplifications by continuing the pendulum example
described in section 2. Additional simplifications which are applicable include Monte Carlo
and Combined Change.

First we run TEPS with just the Monte Carlo method on this problem. This can be done
by giving Monte Carlo simplification the highest ranking of any in the simplification library
and specifying single simplifications in a configuration file.

One advantage of trying a Monte Carlo method first is that the outdegree of nodes along
a Monte Carlo path through the graph together with the path’s length would enable TEPS"
to estimate the complexity of the graph. This estimate could be used for control purposes.
This will be implemented in the near future.
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Application of the Monte Carlo method produces a tentative result as follows. TEPS picks
Monte Carlo as highest ranked, calls the associated applicabilility test, discovers that Monte
Carlo is applicable and uses the Monte Carlo simplification. This simplification merely adds
the predicate mcarlo to the predicates for the initial state. This new predicate informs the
simulation engine to randomly select children of new states for further exploration and to
stop when a leaf is reached, a previously explored state is reached, or the graph size specified
in the configuration file is exceeded. The description basis is applied to this graph and a
tentative answer to the query is obtained.

Monte Carlo performs well on the pendulum problem given in section 2 although not as
well as Population Reduction. In this problem 25 pendulums are swinging simultaneously.
The timing turns out to be irrelevant. Monte Carlo effectively chooses a particular order for
the swings and this reduces the complexity enormously.

When TEPS calls the verification routine associated with the Monte Carlo method the
same state is sent to the simulator again. The simulator always checks to determine if the
state graph for an initial state is already known before performing any envisionment. When
it finds the old graph it takes one of the unexamined children at random and proceeds with
the Monte Carlo simulation on it. The verification method checks that the new, larger graph
has the same description.

The effect in our pendulum problem is to check whether the assumption, that the order
of pendulum swings is irrelevant to the query, is true. Obviously this will not be a complete
check but it will show whether this assumption is plausible. A more sophisticated control
structure (not employed) could continue checking until some reasonable resource bound was
reached.

Combined Change works in an almost identical manner and for similar reasons. It is faster
however. All three types of simplification produce the correct answer. Population Reduction,
Combined Change, and Monte Carlo is the order of efficiency of the three methods with
Population Reduction the most efficient.

The above results indicate a reasonable ranking for these simplification methods. When all
three methods are included in the simplification library and the multiple simplification flag is
set we have Population Reduction chosen first because it is most highly ranked. Combined
Change is then applied. Monte Carlo will never be used with this ranking as it is not
compatible with Combined Change. The result using multiple simplifications is also correct
and appreciably faster than any single simplification.

5 Comparison with Other Methods

Any form of multi-level reasoning that involves abstractions and approximations can be
framed in a simplification terminology. The major difference between the similarity simpli-
fications which are implemented in TEPS and hierarchical simplifications which are com-
monly used by others is that verification seems trivial for hierarchical simplifications. The
verification method can be termed verification by simplification type. Since this method is
important we need to discuss it and to compare its strength’s and weaknesses with heuristic
verification.
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5.1 Verification by Simplification Type

With some simplifications we are “guaranteed” that if the simpler model produces any answer
at all it is a correct answer. Thus the only way a thought experiment based on such a
simplification can fail is by description failure. The basic idea is that the simplification
produces a model which is less detailed than the original model, and, therefore, may not
be capable of answering certain questions. However, the model is just as valid and just as
applicable to the original situation. This means that either the model gives no answer to
our question (description failure) or it gives the correct answer.

An example of verification by simplification type is given by Falkenhainer and Forbus[4].
They mention both empirical and heuristic verification as possibilities (without using this
terminology). The method they employ, however, is consistency of the model. They feel
that this is the only method that is needed for the simplifications they use. Consistency is
detected by envisionment. If a null envisionment is produced then a new model must be
constructed. If a successful (non empty) envisionment can be performed the simplified model
is verified. In our terminology we would say that a null envisionment produced description
failure. Falkenhainer and Forbus do not have to worry about description failure in any other
case than this since they construct their models based on the query itself.

Since verification by simplification type is important let us formalize it in our system in
order to make sure our notions are precise. We adapt some terminology from Weld and
Addanki[19] who in turn adapted it from some ideas of Tenenberg[15].

A simplification, S, will have the UPWARD-SOLUTION PROPERTY relative
to a set of description bases, L, iff for any description basis, D, in L and any
state, q, it must be true that either (a) D(R(q)) = D(R(S(q))) or (b) D fails on
R(S(q)).

The upward solution property is just the property in which we are interested. If a thought
experiment problem solver has simplifications which are tagged as having this property and
the description is in the appropriate set, L, then verification consists of no more than noticing
the tags and that there was no description failure. This is verification by simplification type.

5.2 Problems with Verification by Simplification Type

Hierarchical modeling is popular at present in qualitative physics. All such systems use
(at least implicitly) verification by simplification type. Thought experiments include this
method but are more general. It is our feeling that such generality is needed so we would
like to point out some problems with this method. Despite the problems, verification by
simplification type is an important and useful method simply because the verification is
rigorous.

An important point is that the upward solution property of a simplification can only be
defined relative to a fixed set of description bases, L. If queries are not limited in this way then
it is always possible to make a model dependent description or a model dependent query.
There has to be some difference between the models and we can always make the query
dependent on this unless it is forbidden to ask such questions. For example, we can always
ask for the number of variables or the number of parts. These usually vary in hierarchical -
simplifications.
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Ideally, L should be as large a set as possible and should include all descriptions needed to
answer intuitively natural questions. The obvious choice for L is to formulate all description
bases in terms of some sort of first order modeling language. Such a language would prevent
meta level queries and yet would provide reasonable tools for constructing descriptions.

One difficulty with using a first order language for L involves models which already exist
in the physical sciences. Most simplified models which are traditionally used in the physical
sciences cannot be considered as simplifications with the upward solution property with
respect to descriptions in any reasonable first order language. Consider a glass full of water.
At one level it may be modeled as a collection of molecules. At another level it may be
modeled as a continuous fluid. Do we have the upward solution property for every reasonable
description? Most emphatically not. Certainly if we mention the position of a molecule in
the fluid model we get description failure. This is to be expected. What about the density
of the water at any location in the glass? At the fluid level it is uniform and never zero.
At the molecular level it is exactly zero at one place and enormous at another. There is no
simple logical language which determines whether the result at the higher level is the same
as that at the other. The criteria as to whether the descriptions must be the same, even
qualitatively, are complicated and often numerical. For this reason, specifying L can present
a problem for verification by simplification type.

Another problem is that even if we can specify L easily, and even if L turns out to be based
on a nice first order language, many intuitively interesting queries could not be formulated in
terms of L. Questions such as: “Is the system in equilibrium?” and “Is the behavior cyclic?”
implicitly quantify over all variables and are not first order queries. Let us consider the
question: “Is the system in equilibrium?”. In physics terminology we would say that this
question asks whether all variables have constant values. Thus it implicitly quantifies over
all variables. A variable is not an object but a way of describing objects and so this query
1s not a first order query. In order to be sure that we are being precise let us translate
this argument into the terminology of predicate calculus. In physics it is common to refer
to variables and to suppress the role of predicates by using them in the “definition of the
variable”. For example, if we say T1 has value t our definition of T1 may make this statement
about T1 equivalent to saying temperature(objectl,t) is true. If we introduce the defining
predicates for the variables, the question of equilibrium can be formulated by saying that
the set of all predicates needed to characterize the state of the system at any instant does
not change. This set is determined partly by the objects in the system but also by the types
of predicates which are needed to characterize the system. We are quantifying over kinds of
predicates as well as objects and do not have a first order theory.

If we allow queries which quantify over types of predicates we may get different results
from hierarchical models which reduce the types of predicates. For example, if the model is
simplified by not considering temperature then it might be in equilibrium whereas a more
detailed model may not because temperature is not constant.

If structural consolidation or any similar technique which reduces the number of objects
is used then ordinary first order quantification over objects might produce different results
in different models. A question such as “What is the warmest temperature in this house?”
might have various answers depending on how detailed our model of a house is. Do we model
at the room level? Do we model in terms of components of rooms such as the water heater
in the utility room? Do we model the water heater in terms of components including the
flame of a gas heating element? Do we model this flame in terms of its constituent parts?
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(Some of which are hotter than others.)

Another problem with verification by simplification type is that it seriously limits the
applicable simplifications. In fact, it appears to rule out most domain independent simpli-
fications. ;From the thought experiment point of view, this verification technique is useful
only in special cases.

5.3 Heuristic Verification

The third method of verification is heuristic. Heuristic verification consists of trying other
simplifications and comparing the descriptions for consistency. The details of this are tied
to the simplification originally used. This is enormously flexible. We can use virtually
anything for a simplification. Simplification does not have to be as complicated a process.
Implicitly meta level questions about such things as equilibrium can be asked and answered.
Explanation of reasoning would be clear to humans who deal with analogies quite well.
Of course, we pay for the flexibility in that the conclusion is no longer certain. Heuristic
verification is analyzed in terms of a probability model elsewhere[8].

6 Conclusions

We have presented some of the current work on the thought experiment methodology. We
have included currently implemented simplifications as well as proposed new methods. A
unifying framework has been presented which allows a comparison of the strengths and
weaknesses of this methodology with other techniques for multi-level reasoning. This includes
a classification of simplifications and a comparison and analysis of verification methods.
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