Numerical Behavior Envelopes for Qualitative Models*

Herbert Kay and Benjamin Kuipers
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712
bert@cs.utexas.edu and kuipers@cs.utexas.edu

June 25, 1992

Abstract

Semiquantitative models combine both qualitative and quantitative knowl-
edge within a single semiquantitative qualitative differential equation (SQDE)
representation. With current simulation methods, the quantitative knowledge
is not exploited as fully as possible. This paper describes dynamic envelopes
- a method to exploit quantitative knowledge more fully by deriving and nu-
merically simulating an extremal system whose solution is guaranteed to bound
all solutions of the SQDE. It is shown that such systems can be determined
automatically given the SQDE and an initial condition. As model precision in-
creases, the dynamic envelope bounds become more precise than those derived
by other semiquantitative inference methods. We demonstrate the utility of
our method by showing how it improves the dynamic monitoring and diagnosis
of a vacuum pumpdown system.

*This work has taken place in the Qualitative Reasoning Group at the Artificial Intelligence
Laboratory, The University of Texas at Austin. Research of the Qualitative Reasoning Group is
supported in part by NSF grants IRI-8905494 and IRI-8904454, by NASA grant NAG 2-507, by

the Texas Advanced Research Program under grant no. 003658175, and by the Jet Propulsion
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1 Introduction

Many models of real systems are incompletely specified either because a precise
model of the system does not exist or because the parameters of the model span
some range of values. Qualitative simulation methods [de Kleer and Brown, 1984,
Forbus, 1984, Kuipers, 1984, Kuipers, 1986] permit such systems to be simulated
in the face of this incompleteness by transforming the system into a related sys-
tem in a more abstract space of qualitative values where model imprecision can be
dealt with by the rules of qualitative mathematics. Semiquantitative models reduce
model imprecision by adding numerical knowledge to the purely qualitative repre-
sentation. Predictions from semiquantitative models are more precise (i.e., more
tightly bounded), while still retaining the accuracy (i.e., all possible behaviors are
found) provided by purely qualitative methods.

This paper presents a new inferential method called dynamic envelopes that
more fully exploits the semiquantitative representation than existing methods. It
works by numerically simulating a set of (typically nonlinear) differential equations
whose solutions are guaranteed to bound all behaviors of the semiquantitative QDE.
This approach captures the benefits of both qualitative and quantitative reasoning
as all possible behaviors of the system are simulated [Kuipers, 1986], and tighter
numerical bounds are deduced yielding more precise predictions for each behavior.
These benefits are especially important in monitoring tasks where early detection
of deviations is vital.

We represent semiquantitative models as QSIM QDEs [Kuipers, 1986] augmented
with envelopes for all monotonic functions and numeric ranges for all model vari-
ables. We will call this representation an SQDE (for semiquantitative QDE). Our
technique generates a bounding ordinary differential equation (ODE) system de-
rived from the SQDE that is numerically simulated to yield bounds on all model
variables. Note that since the ODE system is in general a non-linear vector function
defined over a multidimensional state space, it has no closed-form solution and so
the integration must be performed numerically. The resulting bounds on the SQDE
as a function of ¢ are called the dynamic envelopes for the system.

The strength of this method is apparent when compared to other semiquan-
titative approaches such as FuSim [Shen and Leitch, 1991] and Q2 [Kuipers and
Berleant, 1988] which also use SQDEs as models, but produce behaviors that have
fixed bounds (i.e., are not time varying) over time intervals. To help understand this,
consider the Q2 system, an extension to QSIM [Kuipers, 1986] that also operates
on SQDEs. It produces predictions by applying an interval propagation algorithm
at each qualitative timepoint of the simulation. The propagation method uses the
Mean Value Theorem to constrain the ranges of a variable at adjacent time points.

253



This means that predictions over the interval between timepoints is simply the max-
imal range difference between the values at the timepoints.

As an example, consider the second order model of a two-tank cascade in Fig-
ure la. Assume that the partially known monotonic function f € M™* is bounded
by the functions as shown in Figure 1b. Figure 1c shows the Q2 plot of the amount
in tank B with the given static functional envelopes and an initial state with tank
A full and tank B empty. Over the time interval [to,12], B falls in the range [0,
100]. Figure 1d shows some possible trajectories that fall in [0, 100] and obey the
qualitative first derivative information provided by QSIM. Ranges are propagated
across time intervals by solving the equation

B(tnt1) = B(tn) + (tng1 = tn) B'(17) (1)

where B’(t*) is in the range [B'(t), B'(tn+1)]- Since this range is formed from the
values of B’ at the two surrounding timepoints, Q2 predicts that over the interval
B falls somewhere between the minimum and maximum range values of B(¢,) and
B(tn+1)- This forms a box in the B—t plane. The dynamic envelope method shrinks

this box by replacing the use of the mean value theorem with explicit integration
using the equation

z(tnt1) = z(tn) + /;"“ z'dt. (2)

2 Dynamic Enve'lop es

To numerically simulate the bounds of an SQDE, bounding equations for each state
variable must be generated. Qur method attempts to find a set of extremal equations
for a system. An extremal equation is 2 bound on the derivative of a state variable
(as opposed to a bound on the value of the state variable). It may be either minimal
or mazimal.

Let A : x' = f(x) be an ODE system with state vector x. For each z; € x, let
z: = fi(x;) be the equation for the derivative of z; where x; C x is the set of state
variables that f; depends upon. For each z;, let z; and T; denote the lower and
upper bounds on z;. We will use the term y; to refer to either z; or T;. We say that
y: = g¢; is a minimal equation for z; if y; = z; implies y/ < 2! and maximal if y; = z;
implies y! > z!. The function g; is called an extremal ezpression for f;.

A set of equations is an eztremal system for the system A if it consists of a
minimal and a maximal equation for each z; € x.

We can generate a set of extremal equations for any SQDE that is written as a
system of equations of the form z! = f(x;) where f is an expression composed of ad-
dition, subtraction, multiplication, division, unary minus, and arbitrary monotonic
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(e) Dynamic envelopes defining the lower bound B(t) and the upper bound B(t)
on B(t). The rectangular Q2 range prediction is superimposed. Note that the
dynamic envelopes are much tighter than the Q2 bound.

Figure 1: A second order cascaded tank system and its behaviors.
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e L(e) Ule)
z; L(z;) U(z;)

zi B(z:) B(z:)

A+B L(A)+L(B) U(A)+ U(B)
AxB L(A)x L(B) U(A)x U(B)
A-B L(A)-U(B) U(A) - L(B)
A+B L(A)=U(B) U(A)+ L(B)
—A ~U(A) ~L(A)
M*(4) M*(L(4)  MT(U(A)
M-(A) M (U) M (L(4)

Table 1: Translation table for extremal expressions. Let S(f;) be the desired bound
on z} (f = L or § = U). The table is applied recursively to the subexpressions of
fi. z; is the state variable whose derivative is f;, z; is any other state variable, ¢
is a constant, M+ and M~ are monotonic functions, ¢ and ¢ return the lower or
upper range values of ¢, M* and M return the lower or upper functional envelope
of the monotonic function. For state variables, L(z) returns the variable z and U(x)
returns the variable 7.

functions. The algorithm uses the functions L(e) and U(e) which take an expression
and return the corresponding minimal or maximal expression as defined in Table 1.

The extremal equations are generated by computing for each z; the expressions
L(f;) and U(f;) using Table 1 This yields a set of 2n equations which represent an
ODE of order 2n which is the extremal system for the SQDE.

Let the relation R; be < when y; = z; and > when y; = 7;. In [Kay, 1991], the
following theorem is proved :

Let A :x' = f(x) be an ODE system. Let a : y’ = g(y) be an extremal
system for A. Assume that for all ¢ y; R; z; at ¢ = 0. Then for all £,
yi(1) Ry (1)

This states that if the state of the extremal system starts on the “correct side” of

the SQDE, then it will remain on that side and hence bound the solution for all
time.

!The expressions for multiplication and division are for the case where 4 and B are positive. For

other cases, the expressions for L(e) and U(e) are computed differently, using information about
the signs of A and B.
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Once the extremal system has been found, it can be simulated by a standard
numerical simulation technique such as Runge-Kutta. The complete simulation
algorithm is thus :

1. For each initial state of the SQDE, generate its extremal system.

2. Using a numerical simulator, simulate the extremal system for all initial states.

2.1 A simple example

To demonstrate the method, we apply it to the second-order model in Figure la.
The qualitative equations of the system are

A = c—f(a)
B = f(4)-f(B)

where ¢ € (0,00) and f € M*. The semiquantitative model also includes numerical
bounds on ¢ such that ¢ < ¢ < T and static envelope functions f and f such that
< f< f. The corresponding extremal system is :

A = g—'f(Al
B = f(4)- f(B)
A = z-[(4)

— —— -
B = f(A)- f(B)

Note that in this case, the extremal system partitions into two separate systems,
one for A and B, the other for A and B. This is not the case in general. Figure le
shows the behavior produced by the dynamic envelope method that corresponds to

the Q2-produced behavior shown in Figure 1c. Note that the numerical bounds are
much tighter than those of Q2.

2.2 Using dynamic envelopes to infer behavior characteristics

The dynamic envelope method bases its prediction on the ability to bound the
first derivatives of the system. As a result, the extremal systems are not generally
members of the class of ODEs represented by the SQDE. Therefore, the dynamic
envelopes do not necessarily have the same shape as the behaviors of the SQDE. This
means that only “Oth order” bounds are predicted. The width of the bounds will
increase with increasing imprecision in the SQDE. A weakly constrained SQDE can
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in some cases generate an extremal system that is unstable, which limits the length of
simulation time over which results can be obtained. With a very weakly constrained
SQDE, the envelopes may even fall partially outside the bounds predicted by Q2.
This suggests that combining the inferences produced by dynamic envelopes and
Q2 can lead to better overall predictions. With this in mind, there are three ways
that dynamic envelope predictions can be used to infer SQDE behavior bounds :

e Intersect Q2 behavior predictions with the dynamic envelopes. This guaran-
tees that the dynamic envelopes will never increase the bound width predicted
by Q2.

e Combine the dynamic envelopes predictions with qualitative derivative pre-
dictions. Consider the case where the lower bound z of the dynamic envelope
for a variable z reaches a maximum gz,,,, at ¢, and then turns down. If QSIM
has predicted that z’ is always positive then we can infer that for all ¢ > ¢,
the lower bound on z should be z,,,..-

e Use the envelopes to provide new timepoint estimates to Q2. The dynamic
envelope prediction at some timepoint is used to create a new state where
the quantitative ranges for all model variables are taken from the simulation.
This state is then spliced into the behavior and Q2 is run on the augmented
behavior. Since the dynamic envelope method has provided new information
about the behavior (namely, its bounds at some specific timepoint), Q2 should
be able to further constrain its behavioral prediction. This technique of state

splicing is also a key component to the Q3 [Berleant and Kuipers, 1991] sys-
tem.

At the moment, we have implemented the first of these techniques.

3 The Vacuum Chamber

In this section we model a complex system, the vacuum chamber, and use the
dynamic envelope simulation method to improve the response time of a monitoring
system based on the MIMIC system [Dvorak and Kuipers, 1989, Dvorak, 1992].

The production of high vacuum is of great importance to semiconductor fabrica-
tion as many of the steps (such as sputtering and molecular beam epitaxy) cannot
be performed if there are foreign particles in the process chamber.

Unfortunately, creating such ultra-high vacua can be expensive and time-consuming.
To reach ultimate pressures of 107° Torr can take several hours? and something as

2 Atmospheric pressure is 760 Torr.
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innocuous as a fingerprint left on the chamber during servicing can cause a huge
performance loss.

Because of this risk, it is important to service vacuum equipment only when
there is a problem. This suggests a need for a monitoring system that can detect
when the system goes out of tolerance. The normal approach to monitoring is to
run the pumpdown process until the chamber reaches a steady-state pressure and
then to compare this pressure to the expected value. Unfortunately, it can take
several hours to reach a steady-state pressure. If the monitoring method could
detect failures before the chamber reaches a steady-state pressure, the time and
expense of unnecessarily running the pumpdown procedure could be avoided.

A model-based method that can track the state of the system while it is changing
is one way to solve this problem. In order to construct such a system, a model of
the pumpdown process must be constructed. The difficulty in modeling this process
numerically is that there is no practical theory for the sorption® of gases. Therefore,
any useful model must deal with uncertainties in the underlying modeling assump-
tions. Qualitative modeling permits reasoning with these types of uncertainties.

The pumpdown process is intuitively very simple. A chamber at atmospheric
pressure initially contains some amount of gas. A pump, which can displace a
certain amount of gas per unit time and pressure, removes gas from the chamber,
hence lowering the pressure. For a simple vacuum pump, this process will continue
until the pump reaches its cutoff pressure at which point the minimum pressure
within the pump is the same as the pressure within the chamber.

For pumps that operate in the high vacuum range (between 10~ and 10~°
Torr), there are additional effects to consider. The most significant of these is that
of “outgassing” — a process where gas initially present in the walls of the chamber
desorbs and thereby increases the chamber pressure.

Our model takes into account both the effects of the pump and outgassing. The
system is described by the following equations :

A" = —flowAB(A, B) — ptp(A) + leakrate( A) (3)

B' = flowAB(A, B) (4)
flowAB(A,B) = area-adsorbrate(A, B) — desorbrate(B) (5)
adsorbrate(A,B) = mi(pressure(A))-sf(B) (6)
ptp(A) = pressure(A)- speed(pressure(A)) (7)
leakrate(A) = Cleak - (Patm — pressure(A)) - ¢ (8)

3 Desorption is the process by which gases trapped on a substance are released. The reverse
process is called adsorption. Adsorption is different from absorption in that the gases do not
dissolve into the substance; they simply “stick” to its surface.
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Figure 2: The predicted behaviors of the vacuum chamber A variable as a function
of time for both a normal and a leaking model are shown using dynamic envelopes
(the dotted and short-dashed envelopes, respectively). The behaviors of the two
hypotheses are clearly distinguished after ¢ = 4 minutes. For comparison, the Q2
predictions for both hypotheses are also displayed, although since Q2 is unable to
disambiguate the behaviors quantitatively, the Q2 predictions collapse into a single
box (long-dashes).

where A is the amount of gas in the chamber and B is the amount of gas adsorbed
in the chamber walls (all other terms are defined in Table 2 in the Appendix).

For a working vacuum chamber, the leak rate is zero and hence Cieor = 0. For
model-based diagnosis, however, fault models of the system must also be created.
By setting Cleo to a positive value, the above system models a chamber with a leak.
The behavior of both the working and leaking models is for A to decrease until it

reaches a steady state. With Ciegr > 0 the steady state value of A will be higher
than when Cler = 0.

3.1 Simulation results

The two systems were augmented with envelopes for the functions speed(p),
desorbrate(B), mi(A), and sf(B) and then simulated with both Q2 and the dynamic
envelope method using the values described in Table 3. The resulting envelopes are
shown in Figure 2 together with the corresponding Q2 range predictions. First,
notice that Q2 predicts identical ranges for the normal and faulty model whereas
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the dynamic envelope method predicts no overlap between the two models after
t = 4 minutes. Second, notice that the dynamic envelope prediction for the lower
envelope of the normal system is less precise than Q2 prediction. This situation is
not a problem since the diagnostic algorithm uses the intersection of the Q2 and
dynamic envelope predictions.

Our diagnostic program is based on a simplified version of the MIMIC system
[Dvorak and Kuipers, 1989]. We provided our own predefined fault models and
used dynamic envelopes rather than Q2 to predict variable ranges. We then ran
our system against a stream of pressure measurements (taken every minute) that
simulated a gasket leak in our vacuum system. Our diagnostic system was able
to detect the leak after four measurements, whereas the diagnostic system using
only Q2 required nine measurements to detect the fault?. Further improvements are
possible by recomputing the envelopes of both models after every new measurement
is taken. Note that leak model envelopes are predicted based on an assumed leak size
range. Because of this, when MIMIC refutes the leak model, it is really partitioning
the space of possible leak sizes into three regions (those within the range, those
bigger, and those smaller) with the first two regions refuted. This provides a method
for converging on the precise leak size through successive partitions based on refining
the leak size hypothesis.

4 Related Work

There has been considerable interest in the combination of qualitative and quanti-
tative reasoning. This work includes the development of combined qualitative repre-
sentations (see [Williams, 1988, Kuipers and Berleant, 1988, Cheng and Stephanopou-
los, 1988, Karp and Friedland, 1989] ) and the use of numerical and qualitative
knowledge for process monitoring [Dvorak and Kuipers, 1989] and process planning
[Fusillo and Powers, 1988, Lakshmanan and Stephanopoulos, 1988, LeClair and
Abrams, 1988]. The methods and software described in [Kuipers and Berleant, 1988]
and [Dvorak and Kuipers, 1989] (Q2 and MIMIC) are integral parts of this research.
Recently Berleant and Kuipers have extended Q2 to provide a single representa-
tion for both qualitative and quantitative simulation [Berleant and Kuipers, 1991,
Berleant, 1989]. In their method, called Q3, the range of a qualitative parameter is
narrowed through an adaptive discretization technique that subdivides qualitative
intervals. As the intervals are further subdivided, the ranges shrink and the accu-
racy of the prediction increases. In contrast, dynamic envelopes use direct numerical

*Q2 detected the fault because of a difference in the qualitative behavior of the two models that
is detectable after the chamber pressure becomes constant.

261



simulation. In particular, for an accurate set of envelope functions, Q3 can provide
an arbitrary level of precision by subdividing to a fixed level of granularity. Reach-
ing a high level of precision may require many subdivisions. Dynamic envelopes will
provide a high level of precision with a fixed simulation cost, but only over fixed
period of time.

The problem of predicting behavioral bounds on uncertain systems is also ad-
dressed in control theory and ecological system simulation. Sensitivity analysis
[Deif, 1986] is used to investigate the effect of small-scale perturbations to a model.
Tolerance banding [Ashworth, 1982], [Lunze, 1989] is used to predict the effect of
larger-scale model uncertainties. Both methods are normally restricted to linear
models and hence permit uncertainty in parameter values or initial conditions only.
The dynamic envelope method is not restricted by linearity assumptions and so it
can also handle models with uncertain (and possibly nonlinear) functional relations.

This research also relates to the measurement interpretation theories ATMI
[Forbus, 1986] and DATMI [DeCoste, 1990]. Both of these methods abstract a
measurement stream into qualitative values and then select possible behaviors by
comparing measurement segments to states in the total envisionment graph. By
hypothesizing measurement errors, DATMI also manages to interpret noisy sensor
data. By contrast, the dynamic envelope method augments the qualitative behavior
with numerical envelopes that are guaranteed to bound any solution of the system
and then compares the measurement data directly. This approach has the advan-
tage that distinctions between models can be detected over intervals where their
qualitative behaviors are identical. Furthermore, by recomputing the envelopes as
new measurements are received, the bounding solutions can be further tightened.
Measurement faults can also be modeled by assuming that the measurement data
itself represents a range rather than a precise point.

The work on SIMGEN [Forbus and Falkenhainer, 1990] is also related to the
work described in this paper. It, too, generates a standard numerical simulation
by extracting the relevant information from a qualitative model. It differs in that
it generates an exact numerical model based on a library of predefined functions
rather than generating a bounded model expressing the inexactness of the qualitative
model. As such, it is not particularly suited to tasks such as process monitoring in
which an exact numerical model cannot be found.

5 Conclusions

The dynamic envelope method combines qualitative and quantitative simulation so
that both representations can be used in problem solving. It produces all behaviors
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associated with a particular model, and it provides detailed numerical ranges for each
behavior. Because the generation of extremal systems is guided by the qualitative
behaviors, the expense of needless numerical simulation is eliminated. Because the
envelope systems are automatically generated from the SQDEs used by Q2, the
method can be used with any existing Q2 model.

The precision of the dynamic envelope predictions depends on the precision of
the SQDE. As model precision increases, dynamic envelope predictions become more
precise than Q2 predictions. Even when model the model is very imprecise, com-
bining dynamic envelopes with other QSIM prediction techniques leads to improved
prediction precision.

In monitoring tasks, the dynamic envelope method improves the predictive power
of SQDEs both in accuracy (meaning that fault hypotheses can be more easily
eliminated) and failure detection time (meaning that there is more time to recover
from failures). In cases where measurement acquisition is expensive, the increased
accuracy of the predictions may allow fewer measurements to be made and errors
to be detected sooner.

The ultimate goal of this research is to develop a method whereby the predictive
capability of a simulation improves as more information about the underlying process
is gained. The dynamic envelope method is a step in that direction.
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A Vacuum system terms and SQDE quantitative knowl-

edge
Term Definition (units)
A amount of gas in the chamber (# molec)
B amount of gas dissolved in chamber walls (# molec)
area surface area of the chamber (¢cm?)
pressure(A) the pressure corresponding to A molecules (Torr)
[Assuming a fixed volume v for the chamber]
ptp(A) pump throughput (Torr-liters/min)
speed(p) pump speed (liters/min)
adsorbrate(A, B) rate : chamber gas — walls (# molec/cm?-min)
desorbrate( B) rate : chamber gas «— walls (# molec/cm?-min)
flow(A, B) net flow of gas out of the walls (# molec/min)
mi(A) # molecules incident on chamber walls (# molec/cm?-min)
sf(B) sticking factor : fraction of mi(A) that “stick” to walls
leakrate(A) rate : room air — chamber (# molec/min)
Cleak leak conductance (liters/min)
Patm atmospheric pressure (760 Torr)
¢ conversion constant : Torr-liters — # molecs
Table 2: Definition of terms used in equations 3 through 8.
Term Value or envelope description
A [2.34 x 10%4,2.34 x 10%%] molec
B [1.36 x 102!, 1.50 x 10%!] molec
area (13100, 14500] cm?
Cleak [0.01,0.001] liters/min
v 90 liters
speed(p) M piecewise linear with unequal envelopes
desorbrate(B) M linear with both envelopes equal
mi(p) M linear with both envelopes equal
sf(B) M~ exponential with unequal envelopes

Table 3: Initial ranges and functional envelopes for the vacuum chamber model.
These values are based on data from Duval [Duval, 1988].
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