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Abstract

Semiquantitativemodelscombineboth qualitativeandquantitativeknowl-
edgewithin asingle semiquantitativequalitativedifferentialequation(SQDE)
representation.With currentsimulationmethods,the quantitativeknowledge
is not exploited as fully as possible. This paperdescribesdynamicenvelopes
— amethodto exploit quantitativeknowledgemorefully by deriving and nu-
merically simulatingan exfremalsystemwhosesolution is guaranteedto bound
all solutions of the SQDE. It is shown that such systemscan be determined
automaticallygiven the SQDEandan initial condition. As modelprecisionin-
creases,the dynamicenvelopeboundsbecomemore precisethan thosederived
by other semiquantitativeinferencemethods. We demonstratethe utility of
our methodby showinghow it improvesthe dynamicmonitoring and diagnosis
of a vacuumpumpdown system.

“This work has taken placein the Qualitative ReasoningGroup at the Artificial Intelligence
Laboratory, The University of Texas at Austin. Researchof the Qualitative ReasoningGroupis
supportedin part by NSF grants IRI-8905494 andIRI-8904454, by NASA grant NAG 2-507, by
the Texas Advanced ResearchProgramunder grant no. 003658175,and by the Jet Propulsion
Laboratory.
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1 Introduction

Many modelsof real systemsare incompletely specifiedeither becausea precise
model of the systemdoesnot exist or becausethe parametersof the model span
somerangeof values. Qualitativesimulation methods[de Kleer andBrown, 1984,
Forbus,1984,Kuipers, 1984, Kuipers, 1986] permit such systemsto be simulated
in the face of this incompletenessby transformingthe systeminto a relatedsys-
tem in amoreabstractspaceof qualitativevalueswheremodel imprecisioncanbe
dealtwith by the rulesof qualitativemathematics.Semiquantitativemodelsreduce
model imprecisionby adding numericalknowledgeto the purely qualitative repre-
sentation. Predictionsfrom semiquantitativemodelsare more precise (i.e., more
tightly bounded),while still retainingthe accuracy(i.e., all possiblebehaviorsare
found) providedby purely qualitativemethods.

This paper presentsa new inferential method called dynamic envelopesthat
morefully exploits the semiquantitativerepresentationthan existing methods, It
worksby numericallysimulatinga setof (typically nonlinear)differentialequations
whosesolutionsareguaranteedto boundall behaviorsof thesemiquantitativeQDE.
This approachcapturesthe benefitsof both qualitativeandquantitativereasoning
as all possiblebehaviorsof the systemare simulated[Kuipers, 1986], andtighter
numericalboundsarededucedyielding more precisepredictionsfor eachbehavior.
Thesebenefitsare especiallyimportant in monitoring taskswhereearly detection
of deviationsis vital.

Werepresentsemiquantitative modelsasQSIM QDEs[Kuipers, 1986]augmented
with envelopesfor all monotonicfunctionsandnumeric rangesfor all modelvari-
ables, We will call this representation an SQDE (for semiquantitativeQDE). Our
techniquegeneratesa bounding ordinary differential equation(ODE) systemde-
rived from the SQDE that is numericallysimulatedto yield boundson all model
variables.Note that sincethe ODE systemis in generalanon-linearvectorfunction
definedovera multidimensionalstatespace,it has no closed-formsolutionand so
the integrationmustbe performednumerically. The resultingboundson the SQDE
asa function of t arecalled the dynamic envelopesfor the system.

The strength of this method is apparentwhen comparedto other semiquan-
titative approachessuch as FuSim [Shenand Leitch, 1991] and Q2 [Kuipers and
Berleant,1988] which also useSQDEs asmodels,but producebehaviorsthat have
ftxed bounds(i.e.,arenot timevarying) overtimeintervals. To helpunderstandthis,
considerthe Q2 system,an extensionto QSIM [Kuipers, 1986] that alsooperates
on SQDEs. It producespredictionsby applying an interval propagationalgorithm
at eachqualitative timepoint of the simulation. The propagationmethodusesthe
MeanValue Theoremto constrainthe rangesof avariableat adjacenttime points.
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This meansthat predictions over the interval betweentimepoints is simply the max-

imal rangedifferencebetweenthe valuesat the timepoints.
As an example,considerthe secondorder modelof a two-tank cascadein Fig-

ure la. Assumethat the partially known monotonicfunction f E M+ is bounded
by the functionsas shownin Figure lb. Figurelc showsthe Q2 plot of the amount
in tank B with the given static functional envelopesandan initial statewith tank
A lull and tank B empty. Over the time interval [to, t2], B falls in the range [0,
100]. Figure ld showssomepossibletrajectoriesthat fall in [0, 100] andobey the
qualitative first derivativeinformation provided by QSIM. Rangesare propagated
acrosstime intervalsby solvingthe equation

B(t~+1)= B(t~)+ (t~~1— t~)B~(t*) (1)

whereB~(t*) is in the range [B’(t~),B’(t~+1)].Sincethis rangeis formed from the
values of B’ at the two surroundingtimepoints, Q2 predictsthat over the interval
B falls somewherebetweenthe minimum andmaximumrangevaluesof B(t~)and
B(t~+1).This forms abox in the B—t plane. Thedynamicenvelopemethodshrinks
this box by replacingthe use of the meanvalue theoremwith explicit integration
usingthe equation

t”+
1x(t~~i)= x(t~)+ j x’dt. (2)

2 Dynamic Envelopes

To numerically simulatethe boundsof an SQDE,boundingequationsfor eachstate
variablemustbe generated.Ourmethodattemptsto find asetof extremalequations
for asystem.An extremalequationis aboundon the derivativeof astatevariable
(asopposedto aboundon the valueof thestatevariable).It maybe eitherminimal
or maximal.

Let A : x’ = 1(x) be an ODE systemwith statevectorx. For eachx~E x, let
f~(x~)be the equationfor the derivativeof x~where x~C x is the set of state

variablesthat f~dependsupon. For each x~,let ~ and ‘~j denote the lower and
upper bounds on x~.We will use the term y~to referto either ~.j or ~j. We say that

= g~is aminimal equationfor x~if yj = x~impliesy~<x~andmaximalif y~=
implies y~> x~.The functiongj is called an extremalexpressionfor f~.

A set of equationsis an extremalsystemfor the systemA if it consistsof a
minimal and amaximalequationfor eachx~E x.

We can generateaset of extremalequationsfor any SQDE that is written as a
systemof equationsof the form x~= f(x~)wheref is an expressioncomposedof ad-
dition, subtraction,multiplication,division, unaryminus, andarbitrary monotonic
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A ~ B
c 1(A) f(B)

A’ =c—f(A)

B’= f(A)—f(B)

(a) Systemdefinition (c is constant).
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Figure 1: A secondorder cascadedtanksystemand its behaviors.
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e L(e) U(e)
C

L(x~) U(x~)
/3(x~) /3(x~)

A+B L(A)+L(B) U(A)+U(B)
A x B L(A) x L(B) U(A) x U(B)1

A-B L(A)-U(B) U(A)-L(B)
A-i-B L(A)-i-U(B) U(A)÷L(B)
-A -U(A) -L(A)

M~(A) M~(L(A)) V~(U(A))
M(A) M(U(A)) L(A))

Table 1: Translationtablefor extremalexpressions.Let /3(f~)be the desiredbound
on x~(/3 = L or /3 = U). The table is applied recursivelyto the subexpressionsof
f~.x~is the statevariablewhosederivativeis f~,x,~is any other statevariable, c
is a constant,M+ and M are monotoriic functions, .~ and~ return the lower or
upper rangevaluesof c, ~f and~AT”return the lower or upper functionalenvelope
of the monotonicfunction. For statevariables,L(x) returnsthe variable~. andU(s)
returnsthe variable~.

functions.The algorithmusesthe functionsL(e) andU(e) whichtakean expression
andreturn the correspondingminimal or maximalexpressionas definedin Table 1.

The extremalequationsaregeneratedby computingfor eachx~the expressions
L(f~)and U(f1) using Table 1 This yields aset of 2n equationswhich representan
ODE of order 2n which is theextremalsystemfor the SQDE.

Let the relationR1 be < wheny~ ~ and� wheny~ ~j. In [Kay, 1991], the
following theoremis proved:

Let A : x’ = f(x) be an ODE system.Let a : y’ = g(y) be an extremal
systemfor A. Assumethat for all i y~R1 x~at t = 0. Then for all t,
y~(i)R1 x~(t).

This statesthat if the stateof the extremalsystemstartson the “correct side” of
the SQDE, then it will remainon that sideandhencebound the solution for all
time.

‘The expressionsfor multiplicationanddivision arefor thecasewhereA andB arepositive. For
other cases,theexpressionsfor L(e) and U(e) arecomputeddifferently, using information about
thesignsof A and B.
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Once the extremalsystemhasbeenfound, it can be simulatedby a standard
numerical simulation techniquesuch as Runge-Kutta. The complete simulation
algorithmis thus

1. For eachinitial stateof the SQDE, generateits extremaisystem.

2. Using anumericalsimulator,simulatetheextremalsystemfor all initial states.

2.1 A simple example

To demonstratethe method,we apply it to the second-ordermodel in Figure la.
The qualitativeequationsof the systemare

A’ = c—f(A)

B’ = f(A)—f(B)

wherec E (0,oo) andf E M+. The semiquantitativemodelalsoincludesnumerical
boundson c such that ~ c ~ andstatic envelopefunctionsJ andf such that
f < f <f. The correspondingextremalsystemis:

4’ = ~—7(4)

= L(4) —

=

= 7(~•)- 1cm
Notethat in this case,the extremalsystempartitionsinto two separatesystems,

onefor 4 and~, the other for A andB. This is not the casein general.Figure le
showsthe behaviorproducedby the dynamicenvelopemethodthat correspondsto
the Q2-producedbehaviorshownin Figure ic. Note that the numericalboundsare
much tighter thanthoseof Q2.

2,2 Using dynamic envelopesto infer behavior characteristics

The dynamic envelopemethod basesits prediction on the ability to bound the
first derivativesof the system. As a result, the extremalsystemsarenot generally
membersof the classof ODEs representedby the SQDE. Therefore, the dynamic
envelopesdo not necessarilyhavethesameshapeas the behaviorsof theSQDE. This

means that only “0th order” boundsare predicted. The width of the boundswill
increasewith increasingimprecisionin the SQDE.A weakly constrainedSQDE can
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in somecasesgenerateanextremalsystemthatis unstable,which limits thelengthof
simulationtimeover which resultscanbe obtained.With avery weaklyconstrained
SQDE, the envelopesmay evenfall partially outsidethe boundspredictedby Q2.

This suggeststhat combiningthe inferencesproducedby dynamicenvelopesand
Q2 canlead to better overall predictions. With this in mind, thereare threeways
that dynamicenvelopepredictionscanbe usedto infer SQDE behaviorbounds

• IntersectQ2 behaviorpredictionswith the dynamicenvelopes.This guaran-
teesthat the dynamicenvelopeswill neverincreasethe boundwidth predicted
by Q2.

• Combine the dynamicenvelopespredictionswith qualitativederivativepre-
dictions. Considerthe casewherethe lower bound~ of the dynamicenvelope
for avariablex reachesamaximumXmax at t,~,andthenturns down. If QSIM
has predictedthat x’ is alwayspositive thenwe caninfer that for all t > t,,

the lower boundon x should be Xmar.

• Use the envelopesto providenew timepoint estimatesto Q2. The dynamic
envelopeprediction at sometimepoint is used to createa new statewhere
the quantitativerangesfor all model variablesaretakenfrom the simulation.
This stateis thenspliced into the behaviorand Q2 is run on the augmented
behavior.Since the dynamicenvelopemethod hasprovidednew information
aboutthebehavior(namely,its boundsat somespecifictimepoint),Q2 should
be ableto furtherconstrainits behavioralprediction.This techniqueof state
splicing is alsoa key componentto the Q3 [BerleantandKuipers, 1991] sys-
tem.

At the moment,we haveimplementedthe first of thesetechniques.

3 The Vacuum Chamber

In this section we model a complex system, the vacuum chamber,and use the
dynamicenvelopesimulationmethodto improvethe responsetime of amonitoring
systembasedon the MIMIC system[Dvorak and Kuipers, 1989, Dvorak, 1992].

The productionof high vacuumis of greatimportanceto semiconductorfabrica-
tion as many of the steps(suchas sputteringandmolecularbeamepitaxy) cannot
be performedif thereareforeign particlesin the processchamber.

Unfortunately,creatingsuchultra-highvacuacanbe expensiveandtime-consuming.
To reachultimate pressuresof iO~ Torr cantakeseveralhours2and somethingas

2Atmosphericpressureis 760 Torr.
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innocuousas a fingerprint left on the chamberduring servicingcan causea huge
performanceloss.

Becauseof this risk, it is important to servicevacuumequipmentonly when
thereis a problem. This suggestsa needfor amonitoringsystemthat can detect
when the systemgoesout of tolerance. The normal approachto monitoringis to
run the pumpdownprocessuntil the chamberreachesa steady-statepressureand
then to comparethis pressureto the expectedvalue. Unfortunately,it can take
severalhours to reacha steady-statepressure. If the monitoring method could
detect failures before the chamberreachesa steady-statepressure,the time and
expenseof unnecessarilyrunning the pumpdownprocedurecould be avoided.

A model-basedmethodthat can trackthestateof the systemwhile it is changing
is oneway to solve this problem. In order to constructsuch asystem,amodel of
the pumpdownprocessmustbe constructed.The difficulty in modelingthis process
numericallyis that thereis no practicaltheoryfor the sorption3of gases.Therefore,
any usefulmodel must deal with uncertaintiesin the underlyingmodelingassump-
tions. Qualitativemodelingpermitsreasoningwith thesetypesof uncertainties.

The pumpdownprocessis intuitively very simple. A chamberat atmospheric
pressure initially contains some amount of gas. A pump, which can displace a
certain amount of gasper unit time and pressure, removesgas from the chamber,
hencelowering the pressure. For a simple vacuum pump, this processwill continue
until the pump reachesits cutoff pressure at which point the minimum pressure
within the pump is the sameas the pressurewithin the chamber.

For pumps that operate in the high vacuum range (between i03 and i0~
Torr), there are additional effects to consider. The most significant of theseis that
of “outgassing” — a processwhere gasinitially presentin the walls of the chamber
desorbs and thereby increasesthe chamber pressure.

Our model takes into accountboth the effectsof the pump and outgassing. The
system is describedby the following equations

A’ = —flowAB(A,B) — ptp(A) + leakrate(A) (3)

B’ = flowAB(A,B) (4)

flowAB(A,B) = area . adsorbrate(A,B) — desorbrate(B) (5)

adsorbrate(A,B) = mi(pressure(A)) sf(B) (6)

ptp(A) = pressure(A). speed(pressure(A)) (7)

leakraie(A) = Cleak (Patrn — pressure(A)) ci (8)

3
Desorptiori is the processby which gasestrappedon a substanceare released. The reverse

processis called adsorption. Adsorption is different from absorptionin that the gasesdo not
dissolveinto thesubstance;they simply “stick” to its surface.
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Figure2: The predictedbehaviorsof the vacuumchamberA variableas a function
of time for both anormalandaleaking model are shownusing dynamicenvelopes
(the dotted and short-dashedenvelopes,respectively). The behaviorsof the two
hypothesesare clearly distinguishedafter t = 4 minutes. For comparison,the Q2
predictionsfor both hypothesesare alsodisplayed,althoughsinceQ2 is unableto
disambiguatethe behaviorsquantitatively,the Q2 predictionscollapseinto asingle
box (long-dashes).

whereA is the amountof gas in the chamberandB is the amountof gasadsorbed
in the chamberwalls (all other termsaredefinedin Table2 in the Appendix).

For a working vacuumchamber,the leak rate is zeroandhenceCleak = 0. For
model-baseddiagnosis,however,fault modelsof the systemmust also be created.
By settingCleak to apositivevalue,the abovesystemmodelsachamberwith aleak.
The behaviorof both the working andleaking modelsis for A to decreaseuntil it
reachesa steadystate. With Clank > 0 the steadystatevalue of A will be higher

than when Cleak = 0.

3.1 Simulation results

The two systemswere augmentedwith envelopesfor the functions speed(p),
desorbrate(B),mi(A),and.sf(B) andthen simulatedwith both Q2 andthedynamic

envelopemethodusingthe valuesdescribedin Table3. The resultingenvelopesare
shown in Figure 2 together with the correspondingQ2 range predictions. First,

notice that Q2 predicts identical ranges for the normal and faulty model whereas
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time,sam
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the dynamic envelopemethod predictsno overlap betweenthe two modelsafter
t = 4 minutes. Second,notice that the dynamic envelopeprediction for the lower
envelopeof the normal systemis lessprecisethan Q2 prediction. This situationis
not aproblem sincethe diagnosticalgorithm usesthe intersectionof the Q2 and
dynamicenvelopepredictions.

Our diagnosticprogramis basedon asimplified versionof the MIMIC system
[Dvorak andKuipers, 1989]. We provided our own predefined fault models and
used dynamicenvelopesrather than Q2 to predict variable ranges. We then ran
our systemagainstastreamof pressuremeasurements(taken every minute) that
simulateda gasket leak in our vacuumsystem. Our diagnosticsystemwas able
to detect the leak after four measurements,whereasthe diagnosticsystemusing
only Q2 requiredninemeasurementsto detectthe fault4. Furtherimprovementsare
possibleby recomputingthe envelopesof bothmodelsafterevery new measurement
is taken. Note thatleakmodelenvelopesarepredictedbasedon an assumedleak size
range. Becauseof this, whenMIMIC refutesthe leakmodel, it is really partitioning
the spaceof possible leak sizes into threeregions (thosewithin the range, those
bigger,andthosesmaller)with the first two regionsrefuted. Thisprovidesamethod
for convergingon thepreciseleaksize throughsuccessivepartitionsbasedon refining
theleak sizehypothesis.

4 RelatedWork

There has been considerableinterest in the combination of qualitative and quanti-
tative reasoning.Thiswork includesthe developmentof combinedqualitativerepre-
sentations(see[Wiffiams, 1988,KuipersandBerleant,1988,ChengandStephanopou-
los, 1988, Karp and Friedland, 1989] ) and the use of numericaland qualitative
knowledgefor processmonitoring [Dvorak andKuipers, 1989]andprocessplanning
[Fusillo and Powers, 1988, Lakshmananand Stephanopoulos,1988, LeClair and
Abrams,1988]. The methodsandsoftwaredescribedin [Kuipers andBerleant,1988]
and[Dvorak andKuipers, 1989] (Q2 andMIMIC) areintegralpartsof this research.
Recently Berleant and Kuipers have extendedQ2 to provide a single representa-
tion for both qualitativeand quantitativesimulation [BerleantandKuipers, 1991,
Berleant,1989]. In their method,calledQ3, the rangeof aqualitativeparameteris
narrowedthroughan adaptivediscretizationtechniquethat subdividesqualitative
intervals. As the intervalsare further subdivided,the rangesshrink andthe accu-
racyof the predictionincreases,In contrast,dynamicenvelopesusedirectnumerical

4Q2 detectedthe fault becauseof adifferencein thequalitativebehaviorof the two modelsthat
is detectableafter the chamberpressurebecomesconstant.
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simulation. In particular,for an accurateset of envelopefunctions,Q3 can provide
an arbitrary level of precision by subdividingto a fixed level of granularity.Reach-
ing ahigh level of precisionmayrequiremanysubdivisions.Dynamicenvelopeswill
provide a high level of precisionwith a fixed simulationcost, but only over fixed
period of time.

The problemof predictingbehavioralboundson uncertainsystemsis alsoad-
dressedin control theory and ecological systemsimulation. Sensitivity analysis
[Deif, 1986] is usedto investigatethe effect of small-scaleperturbationsto amodel.
Tolerancebanding [Ashworth, 1982], [Lunze, 1989] is used to predict the effect of
larger-scalemodel uncertainties. Both methods are normally restrictedto linear
modelsandhencepermituncertaintyin parametervaluesor initial conditionsonly.
The dynamicenvelopemethod is not restrictedby linearity assumptionsandso it
canalsohandlemodelswith uncertain(andpossiblynonlinear)functionalrelations.

This researchalso relatesto the measurementinterpretationtheoriesATMI
[Forbus,1986] and DATMI [DeCoste,1990]. Both of thesemethods abstracta
measurementstreaminto qualitativevalues and then select possiblebehaviorsby
comparingmeasurementsegmentsto statesin the total envisionmentgraph. By
hypothesizingmeasurementerrors,DATMI also managesto interpret noisy sensor
data.By contrast,the dynamicenvelopemethodaugmentsthe qualitativebehavior
with numericalenvelopesthat areguaranteedto boundany solutionof the system
and thencomparesthe measurementdatadirectly. This approachhasthe advan-
tagethat distinctionsbetweenmodelscan be detectedover intervalswhere their
qualitativebehaviorsare identical, Furthermore,by recomputingthe envelopesas
new measurementsare received,the boundingsolutionscan be further tightened.
Measurementfaults can alsobe modeledby assumingthat the measurementdata
itself representsa rangeratherthanaprecisepoint.

The work on SIMGEN [Forbus andFalkenhainer,1990] is also relatedto the
work describedin this paper. It, too, generatesa standardnumericalsimulation
by extractingthe relevantinformation from aqualitativemodel. It differs in that
it generatesan exactnumericalmodel basedon a library of predefined functions
ratherthan generatingaboundedmodelexpressingtheinexactnessof the qualitative

model. As such, it is not particularly suited to tasks such as processmonitoring in
which an exact numericalmodel cannotbe found.

5 Conclusions

The dynamicenvelopemethodcombinesqualitativeand quantitativesimulationso
thatboth representationscan be usedin problemsolving. It producesall behaviors
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associatedwith aparticularmodel,andit providesdetailednumericalrangesfor each
behavior. Becausethe generationof extremalsystemsis guidedby the qualitative
behaviors,the expenseof needlessnumericalsimulation is eliminated.Becausethe
envelopesystemsare automaticallygeneratedfrom the SQDEs used by Q2, the
method canbe used with anyexisting Q2 model.

The precisionof the dynamicenvelopepredictionsdependson the precisionof
the SQDE. As modelprecisionincreases,dynamicenvelopepredictionsbecomemore
precisethan Q2 predictions. Even when model the model is very imprecise,com-
bining dynamicenvelopeswith other QSIM predictiontechniquesleadsto improved
predictionprecision.

In monitoringtasks,thedynamicenvelopemethodimprovesthe predictivepower
of SQDEs both in accuracy (meaningthat fault hypothesescan be more easily
eliminated)andfailure detectiontime (meaningthat thereis moretime to recover
from failures). In caseswheremeasurementacquisitionis expensive,the increased
accuracy of the predictions may allow fewer measurementsto be made and errors
to be detected sooner.

The ultimate goal of this research is to develop a method whereby the predictive
capability of a simulation improvesasmore information about the underlying process
is gained. The dynamic envelopemethod is a step in that direction.
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A Vacuumsystemterms andSQDEquantitative knowl-
edge

Term Definition (units)
A amountof gas in the chamber(# molec)
B amountof gas dissolvedin chamberwalls (# molec)
area surfaceareaof the chamber(cm2)

pressure(A) the pressurecorrespondingto A molecules(Torr)
[Assuminga fixed volume v for the chamber]

ptp(A) pump throughput(Torr-liters1mm)
speed(p) pump speed(liters/mm)
adsorbrate(A,B) rate : chambergas —* walls (# molec/cm2-min)
desorbraie(B) rate : chambergas ~— walls (# molec/cm2-min)
flow(A, B) net flow of gasout of the walls (# molec/min)
mi(A) # moleculesincident on chamberwalls (# molec/cm2-min)
sf(B) stickingfactor : fraction of mi(A) that “stick” to walls
leakrate(A) rate: room air —* chamber(# molec/min)
Cleak leak conductance(liters/mn)

Paim atmosphericpressure(‘760 Torr)
Cl conversionconstant: Torr-liters —* ~. molecs

Table2: Definition of termsusedin equations3 through 8.

Term Value or envelopedescription
A [2.34x 1024,2,34x 1024] molec
B [1.36 x 1021,1.50 x 1021] molec
area [13100,14500] cm2

Cloak [0.01,0.001]liters/ruin
v 90 liters
.speed(p) M+ piecewiselinear with unequalenvelopes

desorbrate(B) M+ linearwith both envelopesequal
mi(p) M~linear with both envelopesequal
sf(B) M exponentialwith unequalenvelopes

Table 3: Initial rangesand functional envelopesfor the vacuumchambermodel.
Thesevaluesare basedon datafrom Duvai [Duvai, 1988].
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