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Abstract

The ability to choose an appropriate manner in which to model a given device is
crucial in making a compositional modeling [3] approach successful. In compositional
modeling, a system is provided with a library of composible pieces of knowledge about
the physical world, called model fragments, each representing a conceptually distinct
phenomenon such as a physical process or one aspect of a component behavior. Given
a specific query about a device, the system chooses among those model fragments to
compose a model of the device that is most adequate to answer the query. Selection of
appropriate model fragments can be viewed as a special case of a more general problem
of reasoning about relevance of knowledge to a given goal. In this paper we pursue this
view by applying a general framework for reasoning about relevance to the problem of
model fragment selection. We show that heuristics for model selection can be userully
stated as irrelevance claims.

Employing such a framework allows one to state both general and domain-specific
heuristics about relevance declaratively, as opposed to building them into the control
structure of the system. Given relevance heuristics stated in the language, our relevance
reasoning system can immediately make use of them to control the model formulation
process, enabling us to experiment easily with different heuristics.



1 Introduction

The ability to choose an appropriate manner in which to model a given device is crucial in
making a compositional modeling [3] approach successful in a complex domain. In composi-
tional modeling, a system is provided with a library of composible pieces of knowledge about
the physical world, called model fragments. Each model fragment represents a conceptually
distinct phenomenon such as a physical process or one aspect of a component behavior. A
knowledge base of a large complex domain can contain many model fragments represent-
ing alternative ways to model each phenomenon. Choosing the appropriate set of model
fragments for a given problem is one of the most difficult tasks in compositional modeling.
An appropriate choice of model fragments can lead to a correct answer efficiently, while an
inappropriate choice can result in an ineflicient, incorrect or no solution at all.

Selection of appropriate model fragments is a special case of a more general problem of
reasoning about relevance of knowledge to a given goal. Subramanian & Genesereth [13]
and Levy [9] have proposed general frameworks for reasoning about relevance of knowledge.
This paper presents an application of Levy’s framework to the problem of model fragment
selection. The problem addressed is as follows: given a description of a physical system, and a
specific question about some aspect of its behavior, how can a program select relevant model
fragments to best answer the query. The selection must be sufficient to produce a correct
answer to the question with the desired amount of detail. Choosing an appropriate model for
a device involves deciding which abstractions of the domain should be made. The framework
provides a set of formally defined primitive irrelevance claims, and shows how they serve as
justifications for creating certain kinds of abstractions. We show that heuristics for model
selection involving abstractions, including the heuristics underlying compositional modeling
approaches proposed by Falkenhainer [3] and Nayak [11], can be stated using irrelevance
claims.

There are important advantages to employing a general framework for relevance reasoning
in model fragment selection. The framework allows one to state both general and domain-
specific heuristics about relevance declaratively. In contrast, the model formulation programs
developed so far have such heuristics built into their control structure. Given relevance
heuristics stated in the language, our relevance reasoning system can immediately make use
of them to control the model formulation process, enabling us to experiment easily with
different heuristics.

In reasoning about physical system behavior, the works that have had most influences on
our own are Qualitative Process Theory (QPT) by Forbus [4] and compositional modeling
by Falkenhainer and Forbus [3]. Our representation of physical phenomena in the form of
model fragments is based on the representation of processes and individual views in QPT.
We will try to use the same terminology as used in [3] in this paper.



1.1 Model Fragments

In our system, knowledge about the physical world is organized into model fragments. Each
model fragment represents a class of conceptually distinct physical phenomenon, such as a
physical process, an object, or a component function, in terms of the conditions under which
it takes place and the constraints and changes it will impose on the state of the world. In
this scheme, the behavior of a device is modeled by a collection of model fragment instances,
where each instance represents the different aspect of its behavior.

Formally, a model fragment is a predicate whose arguments are the formal parameters
of the model fragment. If a4, ..., a, are bindings for the formal parameters of a model frag-
ment M, then M(ay,...,a,) means that the tuple a,,...,a, can be considered to be an
instance of M. The model fragment will be activated only if its conditions are satisfied, and
only then its content facts, Bas, are included in the compositional model used to solve the
query. Some model fragments describe continuous phenomena while other describe discontin-
uous phenomena. Bjs of a continuous phenomenon specifies the functional relations among
quantities that hold while it is taking place and the influences (increase, decrease) of the
phenomenon on quantities. That of a discontinuous phenomenon specifies its consequences
as assertions about the new state of the world, which we will call Action.

In order for a model fragment M to be activated, three types of conditions must be
satisfied: instantiation conditions, Zy, activation conditions, Oy and relevance conditions
Apr. Iy are conditions on the formal parameters of the model fragment. They identify
the set of objects in the representation and relations between them that must exist in order
for there to be an instance of the model fragment. Oy are conditions about the current
scenario that must be satisfied for the model to be applicable, usually conditions on ranges of
parameters in the model fragment. Zjs and Ops only assure that the model fragment correctly
describes the behavior of the mechanism modeled. Deciding to include the model fragment
in the compositional model also hinges on its relevance to the query and appropriateness in
the present problem solving context. For example, we may have several models of a battery,
each describing a different aspect of its behavior, such as electrical, thermal and gassing
properties, but not all being relevant to the current goal.

We use Aps to state heuristics for determining when the model fragment is relevant to a
goal. They are meta-level statements about the representation of the device and the specific
problem solving task. They concern the choice of objects that we need to represent for the
specific problem and the distinctions that should be made in the representation in terms
of granularity. In this document we concentrate on relevance conditions that state which
abstractions are to be made during the search for the solution of the goal.

The key distinction between relevance conditions and the other conditions is that Ay
are meta-level conditions that must hold in order for the model to be useful; i.e., conditions
about the representation and about the problem solving task. Zjs and Oy are base-level



conditions.

2 Relevance Reasoning

Often, representations contain too much detail for a specific goal, either in the form of
irrelevant facts in the theory of the domain or by containing irrelevant granularity distinctions
in the domain. A powerful method to control search in such cases is by providing the problem
solver with meta-level control advice about what is irrelevant to a given goal, (e.g., Lenat
[7], Subramanian [14], Levy [9]). In simple cases, this advice might be to ignore a certain
fact or set of facts, thereby pruning the solutions paths containing it. In other cases, we
might advise the problem solver that certain granularity distinctions are irrelevant to the
given goal, and therefore the represenation can be abstracted (e.g., for a certain goal it is not
necessary to represent the subparts of a certain component, and it will suffice to represent
the component by a single object).

Levy [9] describes a framework in which various notions of irrelevance are defined and
analysed. The definitions of irrelevance differ along several axes, such as the kind of element
being deemed irrelevant (e.g., single fact, object, predicate) and strength of the justification
for the irrelevance claim. For example, a fact f can be defined to be strongly irrelevant to a
goal g if it appears in no proof of g, or, weakly irrelevant if there is a proof of g that doesn’t
use f. Alternatively, we can define f to be irrelevant if it appears in no minimal proof of
g.! In[9] we describe several such definitions and analize their properties. Irrelevance claims
can either be automatically deduced by the system by examining the knowledge base (as in
[10]) or they can be given to the system by the user, either as knowledge that the user has or
as heuristics the user wishes the system to employ. In this paper we focus on stating model
selection heuristics as relevance claims.

An irrelevance claim is a statement of the form Ir(a,g,A), where a is the subject of
irrelevance, ¢ is a problem solving goal and A is the knowledge base (which we usually
omit). «, as we describe below, can denote either a single fact, a predicate-symbol, object-
constant, distinction between predicates, etc. To emphasize the different subjects we use
specific predicate names (e.g., ItObject, It Predicate, etc.).

In this paper, we are mostly interested in stating what is relevant, rather than what is
not. We do so by stating Rel(a, g). We make the closed-world assumption on the predicate
Rel, i.e., if we cannot conclude Rel(q,g) then we assume Ir(a, g)?. The following property
connects the relevance of a formula to the relevance of terms mentioned in it:

1Given some definition of minimum derivation [10].
2The closed world assumption was chosen for simplicity of exposition. More sophisticated non-monotonic

reasoning methods can be employed. However, the closed world assumption has sufficed for our purposes
thus far.
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Wi f(w) A Mentions(w, «) A Rel(w, g) = Rel(a,g),? (1)

i.e., if w is a relevant well formed-formula, and « (a formula or a term) appears in w, it is
also relevant.

Irrelevance claims are justifications for the problem solver to modify the representation
(and its search algorithm) such that it won’t contain a. Using them, we define the meaning
of the relevance conditions, Ay as follows:

AM(xl,...,x") = Rel(M(ml,...,xn),g) (2)
Rel(M(&), 9) = Rel(Tpe) N Omz = By A M(Z),9). (3)

It follows that if all Zas, Opr and Aps hold, then M (Z) will be relevant as will its behavior
constraints, Bys. The problem solver will therefore include the instantiated model fragment in
the compositional model. In what follows, we briefly present the different relevance subjects
defined in the framework.

In the first set, the subjects of relevance are the basic elements of the representation.
RelFact(f,g) means that the fact f might be part of a deduction of the goal ¢, and therefore
should not be ignored in search of a solution. RelObject(o,g), RelParameter(f,o,g) and
RelPredicate(P, g) say the same about an object-constant o, term f(o0) and predicate-symbol
P, respectively. These claims are best understood as negations of their Ir counterparts, i.e.,
it is not justified to ignore f, o, f(o) or P*.

The following set of claims denote relevance of more abstract choices in the representation:
The claim RelObjDetail(o, R, g) denotes that the representation should contain the set of
objects O = {z| R(o,z)}, as opposed to only containing o. For example, in the case where
R = SubParts, it states that both o and its subparts should be represented. The following
is a simple consequent of the statement:

RelObj Detail(o, R, g) N R(o,z) A Rel(o,g) = RelObject(z, g). (4)

However, RelObjDetail implies more than the relevance of the finer level objects. Since
some of the properties of o are defined by properties of elements of O, these values are
constrained by the values of properties of 0. For example, the weight of an object is the sum
of the weights of its subparts. The statement IT A(R, F,0,0;,c)® denotes that the property
F(o0) depends on some property of 0, € O. The fifth argument gives the relation between

3Here, o must be either a subexpression, predicate symbol or term.

4RelFact, RelObject, Rel Parameter, and RelPredicate are all specializations of Rel. Therefore,
RelFact(f,g) = Rel(f,q), RelObject{o,9) = Rel(o,g), RelParameter(f,0,9) = Rel(f(0),g), and
RelPredicate( P, g) = Rel(P,g). We will use the more specific predicates when we want to emphasize the
type of the argument of Rel or when it is not clear from the context.

SITA stands for Inherited Through Aggregate
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F(o0) and a property of o,. If it is omitted, we assume F(o) = F'(0;). The following is a
consequence of the formal definition:

ITA(R, F,o0,0,) A RelObj Detail(o, R, g) A Rel(F(0)) = Rel(F(o0y)). (5)

A common case of such object aggregation is one where o denotes the set of objects in O. For
example, when reasoning about a chemical substance, only the sets of molecules of each type
are relevant, not the specific molecules involved. RelSetElements(S,g) (IrSetElements)
denotes that the individual elements of the set S are (not) relevant to the goal ¢°.

The claim Ir PredDistinction(P, P, g) where P is a set of predicates and P is a predicate
denotes that the representation should not contain the predicates in the set P, but rather only
contain a predicate P which is interpreted as the union of the interpretations of predicates
in P. For example, for many reasoning tasks it is not necessary to distinguish between
properties such as Rechargeable Battery and non Rechargeable Battery. Instead, a predicate
Battery will suffice. This type of claim is a justification for predicate abstraction (Plaisted

[12], Tenenberg [15]).

The claim RelOnlySet Representative(S, g) denotes that the only properties relevant to
the goal are those that are common to all elements of S, therefore it is enough to represent the
set S by a representative member that has only these properties. RelOnlyHomogenousSet
denotes that the elements of the set S should be represented, but only as a homogeneous set,
1.e., properties that distinguish between its elements should be ignored. IrArgument(P,n, g)
denotes that the nth argument of the predicate P is irrelevant to g.

Note that in general, using these relevance claims might require us to change the rep-
resentation. For example, if RelOnlySet Representative(S, g) is asserted, we need to add a
new object that has all the properties which are common to all elements of S. The precise
change of representation required for each relevance-predicate is described in [8]. However,
in this document, we assume that the model fragments already contain the abstracted repre-
sentation; therefore, we are using relevance claims as describers of abstractions rather than
abstraction generators.

2.1 Relevance Heuristics

Using the above irrelevance claims, we can express heuristics for model selection, some of
which are listed below. A term mentioned in the goal is relevant to it (this is the query-
expansion heuristic used by Falkenhainer and Forbus [3]):

Goal(g) A Mentions(g,0) = Rel(o,g) (6)

Another example of this aggregation is in the missionaries and cannibals problem (Amarel [2]), where
only the sets of missionaries and cannibals are relevant to the problem and not their specific names.
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The following two heuristics enable us to deduce relevance of components from the relevance
of others by exploiting the structural hierarchies. They are similar to the object-ezpansion
heuristic used in [3]. According to their heuristic, if s; and s; are both descendents of
component s in the hierarchy, and their least common ancestor in the hierarchy is ¢, then
any component that is either in between t and sy (s2) or a child of such a component will be
considered relevant. Our heuristic is more refined in that it only makes this inference across
one level in the hierarchy. Stating the heuristic declaratively enables us to consider other
refinements such as delimiting it to specific structural links, or to a certain class of objects.
It can also be generalized to be equivalent to their heuristic.

Structural HierarchySlot(P) A Rel(z,g) A RelObj Detail(x, P,g) A P(z,y) = Rel(y,g) (7)
Structural HierarchySlot(P) A P(z,y) A Rel(z,g) A Rel(y,g) = RelObjDetail(z, P) (8)

An action of a discontinuous model fragment is the fact that is asserted in the subsequent
state of the simulation as the consequence of it becoming active. We say that the model
fragment causes that proposition, i.e.,

Action(M, ¢) = Causes(M, ). (9)

A query of the form Ezplain(¢) might be given in a case where the simulation predicts
that ¢ will hold, but the model used is not detailed enough.” We adopt the following simple
axioms to establish a connection between Fxplain and Rel.

Rel(¢, Explain(¢)) (10)

Ezplain(¢) AN InKB(y = ¢) = Explain(y) (11)
Ezplain(¢ A ) = Ezxplain(¢) A Explain(y) (12)
Model(M) A Causes(M, $) A Ezplain(¢) = Rel(M, g) (13)

When two terms refer to the same object in the domain, the relevance of one of them
implies the relevance of the other. We use corefer intuitively to state that two different terms
actually refer to the same thing. For example, PressureO f(g;) refers to the same thing as
Pressureln(c,) when g; is the gas contained in the sealed container, ¢;. Such coreference
statements are given explicitly in our knowledge base.

Rel(01,9) N Corefer(o:,02) = Rel(og,g). (14)
Certain unary predicates are identified as Type predicates.

Type(z, P) = P(z) (15)

“Sophisticated reasoning about explanation or about coreference is outside the scope of this paper, though
there is considerable body of work on these topics in Al and philosophy.
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The following heuristic says that if an attribute of an object is of a certain type, then the
fact that it is of that type is relevant:®

Type(f(z), P) A Rel(f(z),9) = Rel(P(f(z)),9) (16)

The following heuristic says that if we are trying to explain a certain quantity that is inher-
ited through an aggregate, the decomposition along that aggregate is relevant:

Ezplain(F(o)) A ITA(R, F,0,01,¢) A Rel(o,g) = RelObjDetail(o, R, g). (17)

3 Model Fragment Selection Example

In this section, we present an example in which the relevance heuristics presented in Section
2.1 are used to select appropriate model fragments to be considered by a modeling program.
The particular modeling program that we use is Device Modeling Environment (DME) [6],
developed at Stanford. Given the topological description of a device and initial conditions,
DME formulates a mathematical model and simulates its behavior. DME has a knowledge
base of model fragments. DME takes an input description of the initial state, including the
topological model of the device, and searches the knowledge base for model fragments that
are applicable to the given situation. Equations to describe the behavior of the device are
formulated from the set of model fragments thus found. The equations are used to predict
the behavior of the device. During prediction, if there are any changes in the set of applicable
model fragments, the set of equations is updated accordingly and prediction continues with
the new equation model.

The problem domain is a rechargeable, nickel-cadmium battery. The battery is a constant
voltage source when the charge level is in its normal range. Otherwise, the voltage generated
by the battery increases or decreases as it is charged or discharged. When the battery is
over-charged beyond a certain point, a pressure increase in the battery causes the cell to
explode. This pressure increase is caused by the hydrogen gas generated in the battery.

In DME’s knowledge base, there are a number of model fragments describing different
behavioral aspects of a nickel-cadmium battery, such as the electrical, chemical or thermo-
dynamic properties. Table 1 shows some model fragments in the DME knowledge base.
Depending on the question posed by the user about the battery, the system must choose an
appropriate set of model fragments to consider in formulating a model. We show how this
is done through reasoning about relevance of model fragments to the problem in hand.

The following are domain facts needed for the exposition of the problem solving scenarios:

ElectricProperty(ChargeLevel) (18)

8Notice this is one exceptional case in which relevance of an expression is implied by the relevance of a
subexpression.
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GasParts(z,GasIn(z)) (19)

Type(ChassisO f(z), Container) (20)

Structural HierarchySlot(GasParts) (21)
GasParts(z,ChassisO f(z)) (22)
Type(GasIn(z),Gas) (23)

Constituents(z, HydrogenIn(z)) (24)
Constituents(z, OzygenIn(z)) (25)

Battery(z) A ~Sealed(ChassisOf(z)) = Damaged(zx) (26)
Action(SealedC ontainer Rupture Model(z), —~Sealed(z)) (27)
Corefer(pressureln(ChassisOf(z)),pressureO f(GasIn(x))) (28)

Constituents(z,y) A Gas(z) =
IT A(Constituents, MassOf,z,y, MassOf(z) =

ZyEConstitucnts(r,y) MaSSOf(y)) (29)

Suppose we are given an instance of an EPS system that includes Bat00I and a query
g = ChargeLevel(Bat001,1),
where t is the number of cycles (i.e., days) for which the battery is operating. This will lead
us to conclude relevance of BatteryNormalOperatingModel and BatteryQOverchargeOperating-
Model. Therefore, they will be activated depending on their activation conditions, i.e., the
StoredCharge of the battery. The proof tree for their relevance is shown in Figure 2.

g

6 ——3 30 —>»31 —»32
18 /
Figure 1: Proof tree for Axiom 32

The numbers refer to the axioms presented so far and those following:
Rel(ChargeLevel(Bat001,t)) (30)

Rel(BatteryChargingDischarging M odel( Bat001)) (31)
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Rel(Battery NormalOperating M odel( Bat001))A
Rel(BatteryOverchargeOperating M odel( Bat001)) (32)

Now, suppose the battery is overcharged and becomes damaged. In this case, we might
ask the system to explain why the battery is damaged by posing the goal

g1 = Ezplain(Damaged(Bat001)).
This leads us to conclude relevance of BatteryGassingHydrogenModel, PressureAspectFlu-
idContainerModel, GasPressureldealModel, and SealedContainer RuptureModel through the

proof tree shown in Figure 3. The intermediate axioms are as follows:

26 3\33
; / ™), —-)»35% %‘*2 ‘\;

Figure 2: Proof tree for Axioms 43 through 46

Ezplain(Battery(Bat001) A ~Sealed(ChassisO f(Bat001))) (33)
Ezplain(—Sealed(ChassisO f(Bat001))) (34)
Rel(SealedContainer Rupture Model(ChassisO f(Bat001))) (35)
Rel( Pressureln(ChassisOf (Bat001))) (36)
Rel(ChassisO f(Bat001)) (37)

Rel(PressureQ f(GasIn(Bat001))) (38)

RelObj Detarl( Bat001, GasParts). (39)
Rel(GasIn(Bat001)) (40)
Rel(Gas(GasIn(Bat001))) (41)
Rel(Container(ChassisO f(Bat001))) (42)
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Rel(BatteryGassing Hydrogen M odel( Bat001)) (

Rel(PressureAspect FluidContainer Model(ChassisO f(Bat001))) (
Rel(GasPressureldeal Model(GasIn(Bat001))) (45

Rel(SealedContainer Rupture Model(C hassisO f(Bat001))) (

4 Discussion

We have presented a framework in which a problem solver can reason about the choice of
relevant parts of the knowledge base that are to be used to solve a given query. We demon-
strated the use of this general framework for the task of model fragments selection. The
language we have presented enables us to express naturally and declaratively the heuristics
about model selection in compositional modeling.

There are related works on model formulation [3, 11, 1] and relevance reasoning [13].
Space limitation allows us to discuss only one of them. Falkenhainer and Forbus’ procedure
for selecting model fragment consists of four steps: (1) query analysis, (2) object expansion,
(3) candidate completion, and (4) candidate evaluation and selection. Step (1) identifies from
the query the set of relevant objects and terms. Step (2) uses part-of hierarchy of objects to
include all the components of relevant objects. Step (3) generates all the internally consistent
and complete sets of model fragments. Step (4) chooses one among the sets based on their
simplicity and estimated cost.

The heuristics (7) and (8) in Section 2.1 demonstrated that the strategy behind query
analysis and object expansion can be formalized as relevance heuristics. Our relevance
framework enables one to formulate any such heuristics and make use of them immediately
in problem solving. Falkenhainer and Forbus’ concept of an assumption class, which is a
set of assumptions about how an object is to be modeled such that the assumptions are
mutually exclusive but one of them must be made, can be formalized in our framework
simply by the exclusive-or of the relevance of the elements of an assumption class. Where
their system produces several consistent models, our framework would yield a disjunction of
sets of relevance claims, each representing (or entailing) a consistent model.

This document has focussed only on relevance claims that result in abstractions. Ab-
stractions have traditionally been divided into two kinds, truth preserving (TD abstractions
[5]) and completeness preserving (T1). The irrelevance claims we presented here only account
for the former kind. The reason is that an irrelevance claim can only justify ignoring some
of the knowledge available and therefore, (when dealing with a monotonic representation
language), should not enable us to draw new conclusions that wouldn’t follow in the orig-
inal theory. However, our framework also allows us to state other meta-level claims about
the problem solving scenario, such as approximation-claims concerning the accuracy of the
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desired solution or the time period of the simulation. These in turn enable us to state other
types of assumptions made by model fragments.

The fact that we can explicitly state the representational choices being made allows us
to state heuristic rules that connect between choices. For example sometimes, a decision to
consider a finer level of granularity in one subtree of a structural hierarchy implies that we
should do the same in a sibling subtree. This heuristic can be formalized as follows.

R(cy,c2) A Rel(R, g) A Rel(cy, g) A Rel(ea, g) A RelObj Detail(cq, P, g) A P(cy, z1)A
ITA(P,R,c;, 1, constrainty) A P(cy,z3) A ITA(P, R, c3, x4, constraints) A
DefinedBy(R, R') = RelObjDetail(cs, P, g)

i.e., if a relation R’ on the parts of ¢; explains the relation R on ¢;, and R is relevant
and the distinction between ¢; and its subparts is relevant, then the distinction between
¢y and its subparts should be relevant, too. In our example, this would mean that we
should explore the constituents of the liquid in the battery when we decide to explore the
constituents of the gas. The simple object expansion heuristic of Falkenhainer and Forbus
[3] does not capture that dependency, but our language allows us to state it. Identifying
these primitive relevance claims also helps us in guiding the search for additional heuristics.
Stating those heuristics declaratively, as opposed to wiring them into a model formulation
procedure, allows the user to inspect them and modify them easily (for example, by adding
qualifications as needed). Finally, since the framework allows the abstractions made in a
model fragment to be explicitly stated, the problem solver is able to reason with them and
to choose abstractions tailored for the specific task at hand, as opposed to being constrained
by predefined abstraction hierarchies.

The most important source of relevance heuristics has been ourselves. We try to articulate
the heuristics we seem to be using when formulating models. We consider their utility and
generalize/specialize them to make them more useful or accurate. We have also gleaned
some heuristics from other works on model formulation in qualitative physics. Learning
heuristics automatically from problem solving experience is another possibility we plan to
investigate. Since relevance claims provide crisp criteria for when abstractions should be
done, this problem is now better formulated.
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t>TO

Model Fragment |Instantiation Condition | Relevance Condition Description*
BCDM** RechargeableBattery(®)| Rel(p(b)) A Charging and discharging behavior of a bam?ryA
. Stored-charge of the battery changes dependin
A ~Damaged(b) ElectricProperty(p) on the curre%n through therglus tegminal?e )
|Battery-normal-operating- | BCDM(b) Rel(BCDM(b)) Voltage is constant when Stored-charge is
model between 6.0 and 30.0 amp-hours.
Battery-overcharge- BCDM(b) Rel(BCDM(b)) Voliage i’mcregses with Stored-charge when
operating-model Stored-charge is over 30.0 amp-hours.
Battery-damaged-during- BCDM(b) Rel(BCDM(b)) The battery is damaged if Stored-charge reaches
overcharge-model 34.0 amp-hours.
Aging-model BCDM(b) Rel(BCDM(b)) A TPOG(g, t) A |The battery capacity decreases if the maximum

depth of discharge is less than 20% over a long

pericdof time
?

Rel(Temperature-of(Gasln(c))) v
Rel(Mass-of(GasIn(c))) v
Rel(Gas-constant-of(GasIn(c)))}

Battery-gassing-hydrogen- BCDM(b) Rel(BCDM(b)) A The hydrogen in the battery increases when
model Rel(Gasln(b)) Stored-charge keeps increasing over a threshold.
PASFCM*** Container(c) A Rel(Pressureln(c)) A The model of the pressure aspect of
Sealed(c) Rel(Container(c)) a sealed fluid container. Active when the
amount of fluid is non-zero,
- Rel(Gas(GasIn(c)) A . ;
Gas-pressure-ideal-model | as(GasIn(c)) A Rel(PASFCM(c)g)A The fnodtel of deal gas in a sealed container.
PASFCM(c) The ideal gas law holds.
{Rel(Pressure-of(GaslIn(c))) v

Sealed-container-rupture-

Container(c) A

Rel(Pressure-in(c)) v
Rel(Sealed{(c))

A container ruptures and becomes un-sealed
when the pressure reaches a threshold.

model Sealed(c) .
A Container(c)
Hydrogen-production- Battery-overcharge- Rel(HydrogenIn((GasIn(b))) v When an over-charged battery continues to be
by-overcharge-model | operating-model(b) |Rel(HydroxillonIn(b)) v charged, the water decreases, the hydrogen
Rel(Waterin(b)) increases, and the hydroxil ion increases in the

{battery.

* For lack of space, the activation condition and the behavior of each model is briefly described.
** Battery-charging-discharging-model
*** Pressure-aspect-fluid-container-model

Table 1: Modei Fragment Examples
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