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Dimensionalanalysishasbeenusedfor qualitativereasoningaboutsimple
physicalsystemssuchasthe spring andfor complexphysicalsystemssuchas
stars,heatexchangersandnuclearreactors[1, 2, 11]. The techniqueappears
promisingbecauseits centralrepresentationis fundamentalto the language
of physics; nevertheless,its use has beenconsideredproblematicor even
mysterious.

Most researchin qualitativereasoningstartsout with modelingconstructs
e.g. qualitative differential equations[10] and confluences[5]. Thesemod-
eling constructs are then used to specify the particular problem that one
wishes to solve, The dimensional approach usesas its modeling constructs,
physical variables and their dimensionalrepresentations. At the surface, this
approach to modeling might appear to be impoverished or knowledge-free;
however,dimensional representationsprovide a compact and qualitative en-
coding of physical knowledge that has been captured by numericallaws.
There are philosophical questions that have troubled physicists and others
for better part of this century is there something intrinsic and magical
about dimensions? To put it another way, are there any physical laws or
phenomenathat do not require dimensional homogeneity?Thesearenot the
questions that havebeenthe focusof our research. Instead we haveused the
technique, widely usedas a numericalaid in engineering,to provide a tool for
qualitative reasoning. In this paper we focus on a rich class of enablersfor
the technique viz, differential equations that characterize physical systems
and phenomena;there will be somediscussionof other enablersas well.

We also report, albeit briefly, on an exciting discoveryabout differential
equations. Consider an abstract differential equation i.e. the symbols oc-
curring in it have no physical dimensions; even in such a case dimensional
analysis can be used to extract someinformation from the equation. This
analysisbecomesrelevant anduseful, if we are able to rewrite a physical dif-
ferential equation in termsof dimensionlessvariables and parameters. Some
of thesepoints will be illustratedby example;moreformal analysesandre-

sultsare beingpreparedfor submissionto the mathematicscommunity. The
main reasonfor including this material here is that it provides mechanisms

for inferring gross behavioral characteristics(e.g. oscillation) and associated

variables (e.g. time-period). Another reasonis that the approachprovides

a weakmethod for analyzing differential equations,a subject of significant

interest in our community.

This paperis organizedas follows: in Section1 we presentabrief review
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of the horizontalspring discussingsomeproblemsthat arisein this context
but that are quite generalto dimensionalanalysisapproachto qualitative

physics. We then proceedto describehow knowledgecontainedin differen-

tial equationscan beusedto enablethe dimensionalanalysisapproach,in
Section2. Here we alsopresenttheessentialinsightson dimensionalanalysis
of differential equations;somemoredetailsare includedin theAppendix. In

Section3 we rework the springexample,startingwith thedifferential equa-
tion andassociatedboundaryconditionsratherthanwith a set of variables,
andusethis to discussthe dimensionalmethodas presentedby us in [1]. Fi-
nally, we provideamoregeneraldiscussionof theissuesandconcernsrelating
to the dimensionalanalysisapproach.

1 Review: The Simple Horizontal Spring

Buckingham’su-theoremdefinesthenumberof dimensionlessproductsthat
arepossiblein a givensituation. If a physicalsystemcan be definedby the
equation

f(x1,x2,...x~)=0

thenit can also describedby a function F of n — r dimensionlessproducts

F(7rj,1r2,...1rn_r)~0

where r is the rank of the dimensionalmatrix of the variablesx~(that is a
matrix with one rowcorrespondingto everyx~andonecolumncorresponding
to every dimension, suchas M, L, T, etc.; the matrix element (i, i) is

the exponent of the j~”dimension in dimensionalrepresentationof the i~’~
variable). Theirs arealso referredto as regimes.

The analysis of the simple horizontal spring described in [1] proceeds

along the following steps:

1. Given: the systemis characterizedby the threevariables— the time-
period T, the mass m and the spring stiffness k whose dimensional
representationsare [T), [M], and [MT2] respectively.

2. Buckingham‘~s Theorem:for this description n = 3 and r = 2, r be-
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ing the rank of thedimensionalmatrix.1 The basismust contain two
variables(r = 2) and the systemcanbe characterizedby a single it

or regime (n ‘— r = 1), and henceF(iri) = 0 will describethe system.
Using (m, k) asthebasis2,weobtain it

1
as3

it
1

= Tk~2m”2.

3. Reasoningfrom Regimes: from the constancyof it1, it is concluded
that (~)is positive, and that (~)is negative. Although this was
not mentionedin [1], constancyof in can also beusedto reasonabout

proportionalchangee.g.

L~T1L~rn 1~k

T2m 2k’

Onecan now answerquestionsof the form how does time-period
change if m increasesby 1% and k increasesby 3%?

Suchanalysishasusuallyraisedthefollowing four questions(italics below
indicatethegeneralquestion):

1. Why include exactly T, m and k? Why not include the amplitude
Xmas or the position x in the function f? How would an Al system
using dimensionalreasoningdeterminewhich variablesare relevantfor
modeling a given physicalsituation?

2. Why arethemassandthespringstiffnesschosenasthebasisvariables?
Why not, for exampleincludetime-periodT in thebasis? Given that
the variablesfor describinga systemare known, how would one select
the basisfor the problemsoasto satisfy the constraintsofBuckingham~s
‘in-theorem?

/1 o\
‘The dimensionalmatrix is ( 1 —2 where the rows correspond to variablesm, k

\o 1/
andT.

2The basisselectionheuristicsare discussedin [1] and will be revisited later in the
paper.

3Theprocessof calculating ~s consistsof solvinga system of linear equationsto obtain
the valuesof exponentsthat will rendereachit dimensionless.
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3. Why is it = Tk”2m~’2 assumedto be constant? Extracting qualita-

tive information requires that the irs be assumedconstant. How is this
assumptionjustified?

4. What is the effect of excludingthe amplitudeor including (say)g the
accelerationdueto gravity? What is the effect on the analysis if irrel-
evantvariablesare includedor relevant variables are left out?

The last questionis in fact subsumedin the first question,and we will
not discussit separately. In order to answerthesequestionswe will use
informationin the underlyingdifferentialequations.

2 Differential Equations

Differential equationsare a ubiquitous meansfor codifying knowledgein
physical as well as non-physicaldomains. For example,in artificial intel-
ligence, differential equationshave beenusedin conjunction with logic to
model real-worldsystems[13]. Two widely usedrepresentationsin qualita-
tive physicsresearch,qualitativedifferential equations[10] and confluences
[5], havedifferentialequationsastheir underpinning.Moreover,someof the
leading attemptsat qualitativereasoningare baseddirectly on innovative
qualitativeanalysisof differentialequations[12, 16]. In this sectionwe will
discusshow theknowledgeencodedin ordinarydifferentialequationscanbe
usedto justify and enablethedimensionalanalysisapproachto qualitative
reasoning.

A differentialequationand theassociatedboundaryand/orinitial condi-
tions, codify thephysicalknowledgeunderlyinga deviceor a phenomenon,
and thus providethe pertinentvariables.They also allow us to organizethe
variablesinto thefollowing classes— dependentvariable, independentvari-

able, and parameters.We useparameterasthecollectivetermsfor physical

coefficients, and symbols that occur in the boundary and/or initial condi-

tions. This information can be usedto constructa basisselectionheuristic
as we shall demonstratein the next section. Once the basis has beense-

lected, Buckingham’sprocedureprovides a characterizationof the equation

(andhencethe system)in terms of dimensionlessproductsfor thedependent

variable, the independentvariableandfor all the parametersthat are not in
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the basis. In other wordsthereis somefunction G such that

~~p~4~ntVar = G(lr*ndepen&ntvar,wsfor nonbasisparameters). (1)

This equationcapturestwo kinds of information viz, the intrinsic behaviorof
thesystemandtherole of parametersin influencingor causingthis behavior.
In qualitativephysicsresearchterminology,thelatterhasbeenreferredto as
comparativeanalysis[15].

The solution of the equationi.e. the form of G determineshow the
dependentvariablebehaveswith respectto theindependentvariableor what
we havetermedasintrinsic behavior. Any changesin the parametersthat
leavethe parameterits unchanged,do not alter theintrinsic behaviorof the
systeme.g. the systemstill oscillatesbut with a different time-period. Such
reasoningis quite popularin similitudestudiesof engineeringsystemse.g [6J.
In this paperwe will mostly concentrateon comparativeanalysis; however,
webelievethat suchanalysisis crucial in providingan understandingof the
how a deviceworks. In circuit designthereis a wholemethodologythat rests
on suchan approachviz, tolerancedesign[14].Thusthedifferentialequation
interpretation,as capturedin (1), providesthe clueas to which ins are held
constant.~

In somecasesa differential equationmay provide informationon con-
structing compositevariables. Considera phenomenon(e.g. natural con-
vection) whereboth the densityof a fluid (p) and the accelerationdue to
gravity (g) arepertinentphysicalvariables.The differential equationmight
indicatethat all occurrencesof thesevariablesareastheproductpg; now the
dimensionalanalysisprocedurecantreatpg asa compositevariable,thereby
reducingthenumberof its by one.

Our explorationhasalso led to the exciting discoverythat dimensional
analysisis applicableto certainclassesof abstractdifferential equations;by
abstractwe meanthat the variablesdo not haveany physicaldimensions.
Often dimensionalreasoningcanbe usedto extractaspectsof qualitative
behaviori.e. theform of G in Equation(1), above;we shall seean example
of suchusein thenext section.

The essentialideaturns out to bevery simple:

If a differential equation is dimensionallyhomogeneousunder a

41n [1] the its correspondto theparameterits in the differentialequationinterpretation.
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certain dimensionalassignment,then its solution is also dimen-
sionally homogeneousunderthe sameassignment.

The key phraseaboveis “under a certain dimensionalassignment”.For the
rest of this section we askour readersto abandonthe familiar notion of
dimensions(as inspiredby units in the physicalworld) and to think of them
as abstractentities. Through a simple exampleof a two term differential
equation,wewill giveaflavorof theapproach;somemoredetailsareprovided
in theAppendix.

Considerthe differentialequation

= s
tm

y’~ (2)

wherethe variableshaveno physicalinterpretation.To thevariablesx and
y we assignthe dimensionalrepresentations[X] and [Y] respectively;from
the definition of dy/dx its dimensionalrepresentationis [YX’]. Requiring
(2) to be dimensionallyhomogeneousleadsto

[XmY’~]= [YX1]

and hencetherelationship

[Y] = [X](m+l)/(l_n) (3)

This relationshipbewteenthe dimensions[Y] and [X] is referredto as the
dimensionalsignatureof theequationand canbeusedto infer someaspects
of thesolution.

Even for the simple equation(2), dimensionalsignaturesdo not always
turn out to have a simple power law form. Let us considerthe following
cases;thedimensionalsignaturesareobtainedby substitutingspecificvalues
for m and/orn in (3):

I (m = —1, n ~ 1) [Y] = [X]°

{Y] = ~ (m ~ —1, n = 1) [Y] = [X]00 (4)

I (m = —1, n = 1) [Y] = [X](°/°)

Thesecasescorrespondto [X}, [Y], and both [X] and [Y] cancelling out

whendimensionalhomogeneityis enforced. The intuition is that dimensional
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signaturescanbeusedto organizetheknowledgeabout differential equations;

someresultsaresummarizedin theAppendix.
Thistheoryreliesin parton ararelysold objectin themathematicalhard-

warestore,transfiniteordinals,whichweuseto assigndimensionalrepresen-
tations to exponentialfunctions; the previousapproachhasbeento require
that the argumentsof all transcendentalfunctions be dimensionless,and
henceno dimensionalrepresentationhasbeenassignedto suchfunctions.5

3 The Spring using the Differential Equa~
tion

Wenow returnto thefrictionlesshorizontalspring,describedby thefollowing
differential equation:

d2x
m~’j’+kx=0. (5)

This equation is usually written with any two of the following three
boundaryconditions:

1: x(0) = z,~, 2: a(T) = x,,~, 3: ~(0) = 0.

We chooseconditions1 and2, andrewrite (5) asfollows:6

f(m, k, t, x, x,,~,T) = 0. (6)

Now we applyBuckingham’sit-theorem.Thenumberofvariablesn is 6, and
the rank of the dimensionalmatrix is 3,7 As n — r = 3, the basis should
contain threevariables. We assignvariables to the basis in the following
heuristicorder:

5Although this use is a meredetail, from the point of view of qualitativephysics,we

mention it herebecausewe suspectit may be the first engineeringapplicationof the
Cantornumbers. Informationaboutother applicationsof thesenumberswill be much
appreciated.

6Theanalysiswill also hold if we chooseconditions2 and 3. However,choosingcondi-
tions 1 and3 leadsto the problemof having to discoverthe parameterT; this casewill
be discussedbriefly laterin this section.

7Now thedimensionalmatrix will havesix rows, correspondingto the variablesin (6).

Since variablesa andx,~ havedimensionalrepresentation[L], the dimensionalmatrix
will havean additionalcolumn for the dimension[L].
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1. Assign all coefficientsto the basis.

2. Assign all non-zeroboundaryconditionsto the basis.

3. If the dimensionalmatrix is singular, removevariablesfrom it starting
with variables dimensionally identically to the independentvariable,
the dependentvariable, and the parametersstarting with the term
dimensionallyidentical to the lowest-orderderivative.

In the caseof the spring, Step1 addsthe variablesm and k to the basis,
Step2 addsXma~ andT to thebasisand Step3 removesthevariableT from
the basis. Thus (6) can be reducedto

F(7r~,1rt,irT)= 0 (7)

where
x tk112 Tk”2= = 1’2’ and lrT = 1 2’

Xmax m ‘ m
The functional relation (7) canalsobe rewrittenas8

= G(1r~,7rT). (8)

Now holding ir~constant,sinceT is aparameter,provides1r~as a function
of itt which is theessentialbehaviorof the springsinceit is asolution of the
underlyingdifferential equation. Alternately, considerthe boundarycondi-
tion x = Xmas, whent = T; in termsof the irs, ir~= 1 whenITt = ITT. Under
this condition the relation (8) reducesto9

1 = G(lrT,IIT)

from which we concludethat ira’ is constant.10

8Such rewriting of cour8e will not hold for all possible functions F. The intuitive
justification is that we are dealingwith physicalvariablesthat are in principle measurable
andhencereal,

9We now have one equation with one unknown viz. ~‘. Again appealingto the
physical (and measurable)origin of the variables,we are concludingthat this equation
must haveat leastonereal-valuedsolution. For purposesof reasoning,the precisevalue
is not important.

101n the generalcasetheremight be multiple parameterse.g. v~= G(ir~,s,,.
rather than asingle parameter. If the parameters are independent of eachother, then the
valid assumptionis that ir~ . . . , ~ areall constant,However, if the parametershave
dependencies then then aweakerassumption, h(v~~,. . . , = ü is needed.
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We now return to the casewhere the boundaryconditions specifiedare
x(0) = x~ and d~(0)= 0. Most of the previous analysiscarriesthrough
but there is no parameterT and henceno ITT. The clue to discovering
the missingparameterT is to somehowestablishthat there is oscillation.
This can be accomplishedin a numberof ways; the traditional approach
hasbeento draw the inferencefrom qualitativeor quantitativesimulation
of theequation.We will now demonstratehow thedimensionalapproachto
analyzingtheequation,discussedearlier,maybeusedto establishoscillation.

Theoriginal differentialequation,(5), caneasilybe rewritten in termsof
theirs as

.!~+ir~=0, (9)

Since ir~and Irt haveno physicaldimensionsassociatedwith them, we can
assignto themthe abstractdimensions[fl~]and [il’] respectively.Now using
[ll~Jand [lie] asthebasicdimensions,andrequiring(9) to be dimensionally
homogeneous,leadsto thedimensionalrelation

[fl~][llt]_2 = [flJ

Note that the dimension[ll~]cancelsout. We havean inferenceprocedure
to concludethat thecancellingout of [ll~]impliesa solutionof theform12

~.‘

which we dub aspossible-oscillation. Symbolic substitutionof this form in
(9), revealsthat A is imaginaryand hencethe oscillation is real and hasa
time-period. ‘~

Let us now considerthe spring and massoscillator wherefriction is not
negligible. This introducesa damping term (b~)in the original equa-
tion where the dampingcoefficient b has the dimensions[MT-1]. Using

‘1There is aremarkablysimple rewrite rule — variables andparametersare replacedby
correspondingi’s e.g. n is replaced by i’m. The basis variablese.g. m do not occur in the
equationsincetheir contributionis absorbedin the i’s.

‘2More formally, the form p q meansthat the relationholds within a dimensionless
constanti.e p = Kq whereK is dimensionlesswithin the currentinterpretation.

‘31f A turned out to be real, then the behavior would be monoionic-increaseor
monoionic-decreasedependingon the signof A. Of coursethis is mathematicallyequiva-
lent to sayingthatmonotonicincreaseis oscillationwith an imaginarytime-period.
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the samebasis as before we now havean additional dimensionlessproduct,
= b/k1/~m1/2.We now havetwo parameterirs andholding them constant

amountsto having
g(Ir~,7rT) = 0

which can bewritten as
ItT = H(lrb).

Of course,we cannotdeterminethe sign of 8T/3b sincewe do not know the
form of the function H.’4 Holding both ITT and lrb constant leads to two
dimensionallyhomogeneousrelations

T’~m/b, and T~b/k

dependingon whether /c or m is eliminated. Eachof theserelationsrespects
the intra-regimepartialsobtainedfor theundampedcasei.e. (~)is positive

and (~)is negative. However, they yield different signs for (v). The
dampedspring examplebrings out a limitation of dimensionalreasoning;in
such casesadditional information would be neededto resolvethe difficulty
e.g. knowing whether ITT is directly or inverselyproportional to lrb.

Considertwo variantsof the basicoscillatorwith two springs,of stiffnesses
k, andk2, connectedeitherin seriesor in parallel. The dimensionalapproach
cannot distinguishbetweenthesecases;it will now producetwo regimes

ItT = m112 ~ =

usingk, asa basisvariable. Theeffect of changingk, and k2 will be character-

ized by theintra-regimepartial (f.) and the inter-regimepartial
both of which are negative. Henceboth the springsexert similar effects on
the time-periodof oscillation.’5

‘41n the terminologyof [1], this is equivalent to saying that the inter-regimepartial

linking T to b is ambiguousi.e. [~]k is positive and [~T.}mis negative.
15There is a configurationwherethe springs can exert opposinginfluences on the time-

period — the massis situatedbetween the two springs each of which is connectedto a
rigid support. Now while onespring is being compressed,theother one is being stretched,
This casewould be capturedby introducinga negative sign in the regime x~andnow the
intra-regime partial would still benegativebut the inter-regimepartial would be positive.
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4 Discussion

Themain objectiveof this paperwas to demonstratethat differential equa-
tion knowledgecan be useful in justifying the dimensionalanalysisproce-
dure proposedin [1]; we havedemonstratedthis at somelength in context
of thespring andmassoscillator. In general,a differentialequationand the
associatedboundary / initial conditions, codifying the physicalknowledge
underlyinga deviceor a phenomenon,provide the pertinentvariablesand
parameters.Theclassificationof variables(dependent,independent,param-
eters,etc.) assistsin basisselection.Moreover,theclassificationprovidesan
argumentasto which irs maybe heldconstant:

• If all the irs, except those correspondingto the dependentand the
independentvariables,are held constant,then the Buckinghamroot
function e.g. (6) yields an unspecifiedfunctionalrelationshipbetween
the dependentandtheindependentirs

• Any changesto the parametersand/or coefficientsthat respectthis
constancy,will yield similar behavioraspredictedearlier

The spring examplewas chosenfor its simplicity and versatility since
in principleit embodiesmanyoscillatoryprocesses.Moregeneralcasesare
characterizedby a systemof differential e.g. stellar interior equationsin
astrophysicsand the Lotka-Volterraequationsin ecology. Both thesecases
havebeenanalyzedusing thesameapproach.Oneobservationis that aswe
dealwith morecomplexsystemsi.e. moreparameterirs, thereis greaterneed
for analysisof the differential equationsthemsieves.Towardsthis end, our
work on dimensionalanalysisof differentialequationshasprovedparticularly
useful.

The argumentsprovidedso far might may haveled the readerto believe
that differential equationsare in fact the sole enablersof the dimensional
approach.In the rest of this paperwe will dispel this notion by broadening
the discussion.The overall argumentis that dimensionalreasoningprovides
a framework to integrateinformation from manydifferent sources(or en-
ablers)to bring it to bearon the questionsof interest. Broadly speaking,
the dimensionalreasoningtaskrequiresthreekinds of knowledge— knowl-
edgeof pertinentvariables,knowledgeneededto partition thesevariables
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into basisandnon-basisvariables,andknowledgeof what regimesmaybe
held constant.

Knowledgeof pertinentvariablesmaycomefrom manyothersourcessuch
asexpertknowledge,a library of designedcomponentsandfrom analogiesto
or conceptualperturbationsof known designs,just to namea few. Similarly,
the basis selection task usesinformation such as — is this an exogenous
variable, is this an output variable for my analysis, is this a well-known
constant(e.g. Newton’sgravitationalconstantC) etc. Somemoredetailsare
includedin the discussionon heuristicsfor basisselectionin [1]. Both these
tasksin fact benefitfromthe dimensionalconstraintsplacedby Buckingham’s
theoreme.g. all dimensionsthat occurin the dimensionalrepresentationsof
the systemvariablesmust also occur in the dimensionalrepresentationsof
the basis variables. Even the task of acquiringpertinent variablescan use
dimensionalinformation e.g. if a certaindimension(say [U) occurs in the
dimensionalrepresentationof only onevariable theneither this variable is
irrelevant or someotherrelevantvariablehasbeenmissed.

Holding all parameterregimesconstantis a useful but initial heuristic.
Often the processmight result in ambiguities,aswesawin thecaseof damped
spring example.The important part is that regimesprovide a usefulmech-
anism for focusing the expert’s knowledgee.g. casting the systemin the
form of regimesmight allow us to index into expert knowledge about the
functionalrelationshipbetweensomesubsetof the regimes.

Finally, the dimensionalanalysis approachshould not be viewed as a
standalonetechnique;instead,as mentionedabove, it providesa simpleyet
powerful mechanismfor organizing and focusing knowledge. The system
that we arebuilding emphasizesflexibility; it hasbeenarchitectedto accept
different kinds of knowledgethat can bebrought to bearon the problem.
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Appendix: A Dimensional Approach to Dif~
ferential Equations

Dimensional Representation
An importanttask is to obtain the dimensionalrepresentationsof termsin
the equationin termsof theabstractprimarydimensions[Y} and [X]. The
intuitive argumentis that dimensionalrepresentationconstitutesa vector
spaceand both differentiationand integrationare linear operatorsin this
vector space. Henceif y and x are both membersof a vectorspace,then
80 are y’, y”, f ydx and so on. Therefore they each have a dimensional
representationin a systemwhere the primary dimensionsare [X] and [Y].

Therules for generatingdimensionalrepresentationsof expressionsareas
follows :16

‘6Somenotation: the symbol ~ denotesthat the expressionon the right-handside is
the dimensional representationof the expressionon the left-handside. it is importantto

note that the mapping from a dimensionalrelationshipis many-to-one;thus is not an
equalityrelation,but shorthand notationfor themapping~(). If n (~(say) andy ~
then it doesnot follow that x = y.
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Dimensionlessquantity ll~ ~ [1].

Monomials = [X]

Multinomials xczy~ ~ [X~Y~]

GeneralMultinomial fl~x~ ~ [X~. . . X~.. . X”]

Polynomials ~ x~ ~

Differentiation (~) ~ [YX’]

(~) ~ [YX~2]

(~) ~ [YX~]

Integration f f(x)dx ~ [ti.(f(x))X]

Most of theserules areconventionaland obvious. Theyfollow from the
definition of any polynomialof degreen as an elementin a vectorspaceof
dimensionn whosebasis is the set of monomialsof degreen or lower. In
the languageof real analysis,the spaceof orthogonalvectorsx’ describes
an orthonormalbasis.’7.This assumption,of thepolynomialsof degreen or
lower forming a basis(i.ethecoefficientsare linearly independent),is in fact
madefrequently,andfor example,lies at theheartof thetechniqueof partial
fractions.18

We now add onerule that greatly increasesthegeneralityof the dimen-
sional analysis. So far, expressionsthat areexponentialare assumedto be
either dimensionlessor undimensioned. We assumeinsteadthe following
rule:

~ 8
Exponentials e = [X

Heretheexponentw is thefirst transfiniteordinal. Thealgebrawe usefor
thesenumbersis theConwayarithmeticfor numbers[4, 8]. BecauseConway
numbersform a field, our assumptionof the vector spacecontinuesto be
valid.

Considerthedimensionalinterpretationof a polynomial,asshownabove,

17Seefor example, [9, p. 143]
181n partial fractions, thetechniqueis sobasicthat evenotherwisedetailedandthorough

booksrarelycarry an explanationof the theory, e.g. [7].
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viz.

EakxIc ~ [X]’~. (10)

If we now assumethat the polynomial is not restricted to be finite-
dimensional,i.e. n ~ cc, we see that the dimensionalrepresentationof a
polynomial of infinite degreeis [XJ°° which is encodedas [X]~. Now con-
sidersuch an infinite-degreepolynomial in x, viz, the definition of e~.

= Eakxk, ak = (k!)1
k

where0 ~ k ~ cc. Thus, when thedimensionalrepresentationof a mathe-
maticalexpressionis Y = [X~’],the mathematicalexpressionis of the form
y = eZ. The transition is valid becausethe basictheoremsapplicableto any
orthonormalbasissmoothlyextendto the infinite-dimensionalHilbert space
of polynomialsxk

Reasoningfrom DimensionalSignatures

The dimensionalsignatureprovidesimportant cluesto theform of thesolu-
tion. For eachof thefour classesmentionedabove,wesummarizethe rules
of inference,and providesomenoteson coverage.Thenotationy ‘—‘ ~m that
y is a polynomialof degreen in x; otherwisey f(x), where f is a tran-
scendentalfunction, meansthat y = Kf(x) and K is dimensionlessin the
([X], [Y]) systemof dimensions.
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Class Dimensional1
Signature ~

Inference
Rules

Yields [Y] = [X]m

Relationship
[Y] = [X]m

m ~ 0
y xm ~
y (x~+ XP)m/P

[Y] CancelsOut [Y]° = [X]m

m ~ 0
f(y’,y,x) = 0 ~ y e~m~~l

f(y(k),.. . ,y”,y’,y) = 0 ~ y

[X] CancelsOut [y]m = [X]°
in ~ 0

f(y’,y,x) = 0 ~ ~A lnx
f(y(k),. . , y”, y~’,x) = 0 ~ y hi x

Both [X] and [Y]
CancelOut

[Y]° = [X)° y xA ~
y ‘~ (x~+ XP)’~/P

• For theclass Yields[Y] = [X]m Relationshiptheequationbe reducedto
thelowestpossibleorderprior to computingthedimensionalsignature.
For exampletheequationy” = (y’)2/x mustbereducedto a first order
equationz’ = z2/x wherez = y’, prior to computingthe dimensional
signature.

• For the classes[X] CancelsOut and [Y] Cancels Outequationsof the
form

f(y(k),. ,y”,y’,y,x) = 0

for example:y” = zyor y” = y3/x2arenot covered.

• Therulesof inferencecontainparametersp andA which canbecrucial
to determiningtheform of thesolutionandhenceits qualitativechar-
acteristics. The inferenceprocedureconsistsof symbolic substitution
of the form in the actualequationin order to determinethe valueof
the parameters. Often just the sign of the valueor its type (real or
imaginary) will suffice for purposesof qualitative behavior.
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