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Dimensional analysis has been used for qualitative reasoning about simple
physical systems such as the spring and for complex physical systems such as
stars, heat exchangers and nuclear reactors [1, 2, 11]. The technique appears
promising because its central representation is fundamental to the language
of physics; nevertheless, its use has been considered problematic or even
mysterious.

Most research in qualitative reasoning starts out with modeling constructs
e.g. qualitative differential equations [10] and confluences [5]. These mod-
eling constructs are then used to specify the particular problem that one
wishes to solve. The dimensional approach uses as its modeling constructs,
physical variables and their dimensional representations. At the surface, this
approach to modeling might appear to be impoverished or knowledge-free;
however, dimensional representations provide a compact and qualitative en-
coding of physical knowledge that has been captured by numerical laws.
There are philosophical questions that have troubled physicists and others
for better part of this century — is there something intrinsic and magical
about dimensions? To put it another way, are there any physical laws or
phenomena that do not require dimensional homogeneity? These are not the
questions that have been the focus of our research. Instead we have used the
technique, widely used as a numerical aid in engineering, to provide a tool for
qualitative reasoning. In this paper we focus on a rich class of enablers for
the technique viz. differential equations that characterize physical systems
and phenomena; there will be some discussion of other enablers as well.

We also report, albeit briefly, on an exciting discovery about differential
equations. Consider an abstract differential equation i.e. the symbols oc-
curring in it have no physical dimensions; even in such a case dimensional
analysis can be used to extract some information from the equation. This
analysis becomes relevant and useful, if we are able to rewrite a physical dif-
ferential equation in terms of dimensionless variables and parameters. Some
of these points will be illustrated by example; more formal analyses and re-
sults are being prepared for submission to the mathematics community. The
main reason for including this material here is that it provides mechanisms
for inferring gross behavioral characteristics (e.g. oscillation) and associated
variables (e.g. time-period). Another reason is that the approach provides
a weak method for analyzing differential equations, a subject of significant
interest in our community.

This paper is organized as follows: in Section 1 we present a brief review
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of the horizontal spring discussing some problems that arise in this context
but that are quite general to dimensional analysis approach to qualitative
physics. We then proceed to describe how knowledge contained in differen-
tial equations can be used to enable the dimensional analysis approach, in
Section 2. Here we also present the essential insights on dimensional analysis
of differential equations; some more details are included in the Appendix. In
Section 3 we rework the spring example, starting with the differential equa-
tion and associated boundary conditions rather than with a set of variables,
and use this to discuss the dimensional method as presented by us in [1]. Fi-
nally, we provide a more general discussion of the issues and concerns relating
to the dimensional analysis approach.

1 Review: The Simple Horizontal Spring

Buckingham’s m-theorem defines the number of dimensionless products that
are possible in a given situation. If a physical system can be defined by the
equation

f(z1,22,...24) =0

then it can also described by a function F of n — r dimensionless products
F(ﬂ'l,ﬂ’g, .o .7!',,,...,) =0

where r is the rank of the dimensional matrix of the variables z; (that is a
matrix with one row corresponding to every z; and one column corresponding
to every dimension, such as M, L, T, etc.; the matrix element (7,j) is
the exponent of the j** dimension in dimensional representation of the 3tk
variable). The s are also referred to as regimes.

The analysis of the simple horizontal spring described in [1] proceeds
along the following steps:

1. Giwen: the system is characterized by the three variables — the time-
period T, the mass m and the spring stiffness k whose dimensional
representations are [T'], [M], and [MT~?] respectively.

2. Buckingham’s Theorem: for this description n = 3 and r = 2, r be-
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ing the rank of the dimensional matrix.! The basis must contain two
variables (r = 2) and the system can be characterized by a single =
or regime (n — r = 1), and hence F(;) = 0 will describe the system.
Using (m, k) as the basis?, we obtain 7; as®

7 = TkY?m~1/2,

3. Reasoning from Regimes: from the constancy of y, it is concluded
that (?36%5 is positive, and that (%%) is negative. Although this was

not mentioned in [1], constancy of m; can also be used to reason about
proportional change e.g.

AT _1Am 1Ak

T " 2m 2k
One can now answer questions of the form — how does time-period
change if m increases by 1% and k increases by 3% ?

Such analysis has usually raised the following four questions (italics below
indicate the general question):

1. Why include exactly T,m and k? Why not include the amplitude
ZTemar OF the position z in the function f? How would an Al system
using dimensional reasoning determine which variables are relevant for
modeling e given physical situation?

2. Why are the mass and the spring stiffness chosen as the basis variables?
Why not, for example include time-period T in the basis? Given that
the variables for describing a system are known, how would one select

the basis for the problem so as to satisfy the constraints of Buckingham’s
w-theorem?

1 0
The dimensional matrix is ( 1 -2 ) where the rows correspond to variables m, k
g 1

and T.

3The basis selection heuristics are discussed in [1] and will be revisited later in the
paper.

3The process of calculating %s consists of solving a system of linear equations to obtain
the values of exponents that will render each # dimensionless.
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3. Why is 7 = TkY?>m~1/? assumed to be constant? Eztracting qualita-
tive information requires that the ws be assumed constant. How is this
assumption justified?

4. What is the effect of excluding the amplitude or including (say) g the
acceleration due to gravity? What is the effect on the analysis if irrel-
evant variables are included or relevant variables are left out?

The last question is in fact subsumed in the first question, and we will
not discuss it separately. In order to answer these questions we will use
information in the underlying differential equations.

2 Differential Equations

Differential equations are a ubiquitous means for codifying knowledge in
physical as well as non-physical domains. For example, in artificial intel-
ligence, differential equations have been used in conjunction with logic to
model real-world systems [13]. Two widely used representations in qualita-
tive physics research, qualitative differential equations [10] and confluences
[5], have differential equations as their underpinning. Moreover, some of the
leading attempts at qualitative reasoning are based directly on innovative
qualitative analysis of differential equations [12, 16]. In this section we will
discuss how the knowledge encoded in ordinary differential equations can be
used to justify and enable the dimensional analysis approach to qualitative
reasoning.

A differential equation and the associated boundary and/or initial condi-
tions, codify the physical knowledge underlying a device or a phenomenon,
and thus provide the pertinent variables. They also allow us to organize the
variables into the following classes — dependent variable, independent vari-
able, and parameters. We use parameter as the collective terms for physical
coefficients, and symbols that occur in the boundary and/or initial condi-
tions. This information can be used to construct a basis selection heuristic
as we shall demonstrate in the next section. Once the basis has been se-
lected, Buckingham’s procedure provides a characterization of the equation
(and hence the system) in terms of dimensionless products for the dependent
variable, the independent variable and for all the parameters that are not in
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the basis. In other words there is some function G such that

TdependentVar = G(TindependentVar, ¥ for nonbasis parameters). (1)

This equation captures two kinds of information viz. the intrinsic behavior of
the system and the role of parameters in influencing or causing this behavior.
In qualitative physics research terminology, the latter has been referred to as
comparative analysis[15].

The solution of the equation i.e. the form of G determines how the
dependent variable behaves with respect to the independent variable or what
we have termed as intrinsic behavior. Any changes in the parameters that
leave the parameter ms unchanged, do not alter the intrinsic behavior of the
system e.g. the system still oscillates but with a different time-period. Such
reasoning is quite popular in similitude studies of engineering systems e.g [6].
In this paper we will mostly concentrate on comparative analysis; however,
we believe that such analysis is crucial in providing an understanding of the
how a device works. In circuit design there is a whole methodology that rests
on such an approach viz. tolerance design [14].Thus the differential equation
interpretation, as captured in (1), provides the clue as to which s are held
constant.?

In some cases a differential equation may provide information on con-
structing composite variables. Consider a phenomenon (e.g. natural con-
vection) where both the density of a fluid (p) and the acceleration due to
gravity (g) are pertinent physical variables. The differential equation might
indicate that all occurrences of these variables are as the product pg; now the
dimensional analysis procedure can treat pg as a composite variable, thereby
reducing the number of 7s by one.

Our exploration has also led to the exciting discovery that dimensional
analysis is applicable to certain classes of abstract differential equations; by
abstract we mean that the variables do not have any physical dimensions.
Often dimensional reasoning can be used to extract aspects of qualitative
behavior i.e. the form of G in Equation (1), above; we shall see an example
of such use in the next section.

The essential 1dea turns out to be very simple:

If a differential equation is dimensionally homogeneous under a

*In [1] the xs correspond to the parameter #s in the differential equation interpretation.
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certain dimensional assignment, then its solution is also dimen-
sionally homogeneous under the same assignment.

The key phrase above is “under a certain dimensional assignment”. For the
rest of this section we ask our readers to abandon the familiar notion of
dimensions (as inspired by units in the physical world) and to think of them
as abstract entities. Through a simple example of a two term differential
equation, we will give a flavor of the approach; some more details are provided
in the Appendix.

Consider the differential equation

dy
29 am,n 2

dz Y )
where the variables have no physical interpretation. To the variables = and
y we assign the dimensional representations [X] and [Y] respectively; from
the definition of dy/dz its dimensional representation is [Y' X~1]. Requiring
(2) to be dimensionally homogeneous leads to

[X™Y") = [Y X7
and hence the relationship
[¥] = [x](m+1/Gm), (3)

This relationship bewteen the dimensions [Y] and [X] is referred to as the
dimensional signature of the equation and can be used to infer some aspects
of the solution.

Even for the simple equation (2), dimensional signatures do not always
turn out to have a simple power law form. Let us consider the following
cases; the dimensional signatures are obtained by substituting specific values
for m and/or n in (3):

L n# 1)  [Y]=[X)
-1, n=1) [Y]=[X]® (4)
Lon=1) [¥]= X0

These cases correspond to [X], [Y], and both [X] and [Y] cancelling out
when dimensional homogeneity is enforced. The intuition is that dimensional

E
I
3
(IS
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signatures can be used to organize the knowledge about differential equations;
some results are summarized in the Appendix.

This theory relies in part on a rarely sold object in the mathematical hard-
ware store, transfinite ordinals, which we use to assign dimensional represen-
tations to exponential functions; the previous approach has been to require
that the arguments of all transcendental functions be dimensionless, and
hence no dimensional representation has been assigned to such functions.®

3 The Spring using the Differential Equa-
tion

We now return to the frictionless horizontal spring, described by the following

differential equation:

This equation is usually written with any two of the following three
boundary conditions:

1: 2(0) = Tymaz, 2: 2(T) = Tyaz, 3: 2(0) =0.
We choose conditions 1 and 2, and rewrite (5) as follows:5
f(m, k,t, 2, Tmaz, T) = 0. 6)

Now we apply Buckingham’s #-theorem. The number of variables n is 6, and
the rank of the dimensional matrix is 3.” As n — r = 3, the basis should
contain three variables. We assign variables to the basis in the following
heuristic order:

8 Although this use is a mere detail, from the point of view of qualitative physics, we
mention it here because we suspect it may be the first engineering application of the
Cantor numbers. Information about other applications of these numbers will be much
appreciated.

8The analysis will also hold if we choose conditions 2 and 3. However, choosing condi-
tions 1 and 3 leads to the problem of having to discover the parameter T'; this case will
be discussed briefly later in this section.

"Now the dimensional matrix will have six rows, corresponding to the variables in (6).
Since variables z and z,,,. have dimensional representation [L], the dimensional matrix
will have an additional column for the dimension [L].
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1. Assign all coefficients to the basis.
2. Assign all non-zero boundary conditions to the basis.

3. If the dimensional matrix is singular, remove variables from it starting
with variables dimensionally identically to the independent variable,
the dependent variable, and the parameters starting with the term
dimensionally identical to the lowest-order derivative.

In the case of the spring, Step 1 adds the variables m and k to the basis,
Step 2 adds Zmar and T to the basis and Step 3 removes the variable T' from
the basis. Thus (6) can be reduced to

F(mg, 7, 77) =0 (7)
where
T tk1/2 Tk/?
T e’ T i TS
The functional relation (7) can also be rewritten as8
7y = G(mg,7T). (8)

Now holding 71 constant, since T is a parameter, provides ., as a function
of 7, which is the essential behavior of the spring since it is a solution of the
underlying differential equation. Alternately, consider the boundary condi-
tion T = ZTynez when t = T'; in terms of the #s, 7, = 1 when n; = w7. Under
this condition the relation (8) reduces to°

1= G(?(T,WT)

from which we conclude that 7 is constant.!®

8Such rewriting of course will not hold for all possible functions F. The intuitive
justification is that we are dealing with physical variables that are in principle measurable
and hence real.

®We now have one equation with one unknown viz. =xr. Again appealing to the
physical (and measurable) origin of the variables, we are concluding that this equation
must have at least one real-valued solution. For purposes of reasoning, the precise value
is not important.

0In the general case there might be multiple parameters e.g. %, = G(7¢, %p,, ..., %y, )
rather than a single parameter. If the parameters are independent of each other, then the
valid assumption is that x,,,...,%p  are all constant. However, if the parameters have
dependencies then then a weaker assumption, h(#xp,,..., 7, ) = 0 is needed.
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We now return to the case where the boundary conditions specified are
z(0) = ZTmar and £(0) = 0. Most of the previous analysis carries through
but there is no parameter T' and hence no #®r. The clue to discovering
the missing parameter T is to somehow establish that there is oscillation.
This can be accomplished in a number of ways; the traditional approach
has been to draw the inference from qualitative or quantitative simulation
of the equation. We will now demonstrate how the dimensional approach to
analyzing the equation, discussed earlier, may be used to establish oscillation.

The original differential equation, (5), can easily be rewritten in terms of

11
the 7s as & )
an? + 7, =0. (9)
Since 7, and m; have no physical dimensions associated with them, we can
assign to them the abstract dimensions [II,] and [II;] respectively. Now using
[II.] and [II;] as the basic dimensions, and requiring (9) to be dimensionally
homogeneous, leads to the dimensional relation

[Hx] [nt] 2= [IL,].

Note that the dimension [II;] cancels out. We have an inference procedure
to conclude that the cancelling out of [II.] implies a solution of the form!?

Ty ~ 4™
which we dub as possible-oscillation. Symbolic substitution of this form in
(9), reveals that A is imaginary and hence the oscillation is real and has a
time-period. 13

Let us now consider the spring and mass oscillator where friction is not
negligible. This introduces a damping term (b %) in the original equa-
tion where the damping coefficient b has the dimensions [MT~!]. Using

1 There is a remarkably simple rewrite rule — variables and parameters are replaced by
corresponding s e.g. z is replaced by w;. The basis variables e.g. m do not occur in the
equation since their contribution is absorbed in the #s.

12More formally, the form p ~ ¢ means that the relation holds within a dimensionless
constant i.e p = K¢ where K is dimensionless within the current interpretation.

131f A turned out to be real, then the behavior would be monotonic-increase or
monotonic-decrease depending on the sign of 4. Of course this is mathematically equiva-
lent to saying that monotonic increase is oscillation with an imaginary time-period.
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the same basis as before we now have an additional dimensionless product,
7y = b/k/?>m!/2. We now have two parameter ms and holding them constant
amounts to having

g(vr by 7FT) =0
which can be written as

7mr = H(mp).

Of course, we cannot determine the sign of 07/3b since we do not know the
form of the function H.* Holding both 77 and m, constant leads to two
dimensionally homogeneous relations

T ~m/b, and T ~b/k

depending on whether k or m is eliminated. Each of these relations respects

the intra-regime partials obtained for the undamped case i.e. (g—%) 1s positive
and (%%) is negative. However, they yield different signs for (%{—'). The

damped spring example brings out a limitation of dimensional reasoning; in
such cases additional information would be needed to resolve the difficulty
e.g. knowing whether nr is directly or inversely proportional to m.
Consider two variants of the basic oscillator with two springs, of stiffnesses
k; and k,, connected either in series or in parallel. The dimensional approach
cannot distinguish between these cases; it will now produce two regimes

Tk/? k)

TS =

using kj as a basis variable. The effect of changing k; and k; will be character-
k

ized by the intra-regime partial (5‘93—1) and the inter-regime partial [(g%)] '

both of which are negative. Hence both the springs exert similar effects on

the time-period of oscillation.!®

YIn the terminology of [1], this is equivalent to saying that the inter-regime partial

linking T to b is ambiguous i.e. [%%]k is positive and [%—{-’]m is negative.

18There is a configuration where the springs can exert opposing influences on the time-
period — the mass is situated between the two springs each of which is connected to a
rigid support. Now while one spring is being compressed, the other one is being stretched.
This case would be captured by introducing a negative sign in the regime 7, and now the
intra-regime partial would still be negative but the inter-regime partial would be positive.
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4 Discussion

The main objective of this paper was to demonstrate that differential equa-
tion knowledge can be useful in justifying the dimensional analysis proce-
dure proposed in [1]; we have demonstrated this at some length in context
of the spring and mass oscillator. In general, a differential equation and the
associated boundary / initial conditions, codifying the physical knowledge
underlying a device or a phenomenon, provide the pertinent variables and
parameters. The classification of variables (dependent, independent, param-
eters, etc.) assists in basis selection. Moreover, the classification provides an
argument as to which ws may be held constant:

e If all the s, except those corresponding to the dependent and the
independent variables, are held constant, then the Buckingham root
function e.g. (6) yields an unspecified functional relationship between
the dependent and the independent s

e Any changes to the parameters and/or coefficients that respect this
constancy, will yield similar behavior as predicted earlier

The spring example was chosen for its simplicity and versatility since
in principle it embodies many oscillatory processes. More general cases are
characterized by a system of differential e.g. stellar interior equations in
astrophysics and the Lotka-Volterra equations in ecology. Both these cases
have been analyzed using the same approach. One observation is that as we
deal with more complex systems i.e. more parameter 7s, there is greater need
for analysis of the differential equations themsleves. Towards this end, our
work on dimensional analysis of differential equations has proved particularly
useful.

The arguments provided so far might may have led the reader to believe
that differential equations are in fact the sole enablers of the dimensional
approach. In the rest of this paper we will dispel this notion by broadening
the discussion. The overall argument is that dimensional reasoning provides
a framework to integrate information from many different sources (or en-
ablers) to bring it to bear on the questions of interest. Broadly speaking,
the dimensional reasoning task requires three kinds of knowledge — knowl-
edge of pertinent variables, knowledge needed to partition these variables
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into basis and non-basis variables, and knowledge of what regimes may be
held constant.

Knowledge of pertinent variables may come from many other sources such
as expert knowledge, a library of designed components and from analogies to
or conceptual perturbations of known designs, just to name a few. Similarly,
the basis selection task uses information such as — is this an exogenous
variable, is this an output variable for my analysis, is this a well-known
constant (e.g. Newton’s gravitational constant G) etc. Some more details are
included in the discussion on heuristics for basis selection in [1]. Both these
tasks in fact benefit from the dimensional constraints placed by Buckingham'’s
theorem e.g. all dimensions that occur in the dimensional representations of
the system variables must also occur in the dimensional representations of
the basis variables. Even the task of acquiring pertinent variables can use
dimensional information e.g. if a certain dimension (say [L]) occurs in the
dimensional representation of only one variable then either this variable is
irrelevant or some other relevant variable has been missed.

Holding all parameter regimes constant is a useful but initial heuristic.
Often the process might result in ambiguities, as we saw in the case of damped
spring example. The important part is that regimes provide a useful mech-
anism for focusing the expert’s knowledge e.g. casting the system in the
form of regimes might allow us to index into expert knowledge about the
functional relationship between some subset of the regimes.

Finally, the dimensional analysis approach should not be viewed as a
standalone technique; instead, as mentioned above, it provides a simple yet
powerful mechanism for organizing and focusing knowledge. The system
that we are building emphasizes flexibility; it has been architected to accept
different kinds of knowledge that can be brought to bear on the problem.
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Appendix: A Dimensional Approach to Dif-
ferential Equations

Dimensional Representation

An important task is to obtain the dimensional representations of terms in
the equation in terms of the abstract primary dimensions [Y] and [X]. The
intuitive argument is that dimensional representation constitutes a vector
space and both differentiation and integration are linear operators in this
vector space. Hence if y and z are both members of a vector space, then
so are y', y”, [ydr and so on. Therefore they each have a dimensional
representation in a system where the primary dimensions are [X] and [Y].

The rules for generating dimensional representations of expressions are as
follows:!6

16Some notation: the symbol 2 denotes that the expression on the right-hand side is
the dimensional representation of the expression on the left-hand side. It is important to

note that the mapping from a dimensional relationship is many-to-one; thus £ is not an

equality relation, but shorthand notation for the mapping A( ). If = iq (say) and y £ Q,
then it does not follow that z = y.
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Dimensionless quantity II; £ ).
Monomials z" £ Xxp
Multinomials zoyP L [XeyA
General Multinomial Enga £ [xm | X® . Xon]
Polynomials St £ X
Differentiation (:—i‘) £ [yx
(&) £ Wx7
(&) 2 x™
Integration [fx)dz £ [A(f(z))X)

Most of these rules are conventional and obvious. They follow from the
definition of any polynomial of degree n as an element in a vector space of
dimension n whose basis is the set of monomials of degree n or lower. In
the language of real analysis, the space of orthogonal vectors z* describes
an orthonormal basis.!”. This assumption, of the polynomials of degree n or
lower forming a basis (i.e the coefficients are linearly independent), is in fact
made frequently, and for example, lies at the heart of the technique of partial
fractions.®

We now add one rule that greatly increases the generality of the dimen-
sional analysis. So far, expressions that are exponential are assumed to be
either dimensionless or undimensioned. We assume instead the following
rule:

Exponentials e* £ [X¥]

Here the exponent w is the first transfinite ordinal. The algebra we use for
these numbers is the Conway arithmetic for numbers [4, 8]. Because Conway
numbers form a field, our assumption of the vector space continues to be
valid.

Consider the dimensional interpretation of a polynomial, as shown above,

17See for example, [9, p. 143
181n partial fractions, the technique is 8o basic that even otherwise detailed and thorough
books rarely carry an explanation of the theory, e.g. [7].
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viz.

fjakzk LX) (10)

If we now assume that the polynomial is not restricted to be finite-
dimensional, i.e. n < oo, we see that the dimensional representation of a
polynomial of infinite degree is [X]* which is encoded as [X]“. Now con-

sider such an infinite-degree polynomial in z, viz. the definition of e”.

e = Zakx", ap = (k!)“1
k

where 0 < k < co. Thus, when the dimensional representation of a mathe-
matical expression is Y = [X“], the mathematical expression is of the form
y = €°. The transition is valid because the basic theorems applicable to any
orthonormal basis smoothly extend to the infinite-dimensional Hilbert space
of polynomials z*.

Reasoning from Dimensional Signatures

The dimensional signature provides important clues to the form of the solu-
tion. For each of the four classes mentioned above, we summarize the rules
of inference, and provide some notes on coverage. The notation y ~ z™ that
y is a polynomial of degree n in z; otherwise y ~ f(z), where f is a tran-
scendental function, means that y = K f(z) and K is dimensionless in the
([X],[Y]) system of dimensions.
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Class Dimensional | Inference
Signature Rules

Yields [Y] = [X]™ | [Y] = [X]™ y~z™ or
Relationship m # 0 y ~ (zh + zP)™/?

[Y] Cancels Out | [Y]® = [X]™ |f(¥,y,2)=0 = y~et""

[X] Cancels Out |[Y]™ =[X]° |f(¥',9,z)=0 = y4~Inz

Both [X]and [Y] |[Y]°=[X]° |y~2z4 or
Cancel Out y ~ (zh + zp)A/p

e For the class Yields [Y] = [X]|™ Relationship the equation be reduced to
the lowest possible order prior to computing the dimensional signature.
For example the equation y” = (y')?/z must be reduced to a first order
equation z' = z%/z where z = ', prior to computing the dimensional
signature.

For the classes [X] Cancels Out and [Y] Ceancels Out equations of the
form

f(y(k)w e ,yn,yl’ yam) =0

for example: ¥y = zy or y” = y3/z? are not covered.

The rules of inference contain parameters p and A which can be crucial
to determining the form of the solution and hence its qualitative char-
acteristics. The inference procedure consists of symbolic substitution
of the form in the actual equation in order to determine the value of
the parameters. Often just the sign of the value or its type (real or
imaginary) will suffice for purposes of qualitative behavior.
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m # 0 F®,- gy y)=0 = y~et

m # 0 f(y("),---,y”,y’,m)=0 = y~lnz






