
Abstract

A Qualitative System Identification Method

A method which can qualitatively identify a dy-
namical system according to qualitative descrip-
tions about the behavior of the observed system
is proposed . The system identification problem
is well known especially in control theory . It in-
volves the identification of the causal structure of
systems according to observed behabvior .
We introduce a Qualitative System Identifi-

cation Method based on Qualitative Reasoning .
The proposed method determines the most likely
constraints that can satisfy a given observation
set .
Our approach takes an analytical approach to

the modeling process which generates a mathe-
matical model of an observed dynamical system
according to its behavior .

AI topic : qualitative system identification

	

,
identification of causal structure

Domain area : mathematical modeling

Language/Tool : CommonLisp / SparcStation

1 Introduction
The estimation of the behavior of a dynamical
system, namely simulation, requires the causal
structure of the system to described as differential
equations and by determing their numerical solu-
tions . System identification is the inverse problem
of such simulation process . It is the process of
identifying a causal structure between the vari-
ables that characterize the observed dynamical
system, from observations about the behavior of
the variables . This paper discusses a qualitative
system identification method based on qualitative
reasoning .
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The method proceeds in two steps, given the
situation in which a time series of characteristic
variables is observed .

1 . Estimation of Qualitative States described
by Qualitative Values and Qualitative
Derivatives .

2 . Identification of causal structure as Qualita-
tive Differential Equations .

Chapters 2 through 4 derive the basic mathemat-
ical relations . In order to estimate possible qual-
itative states, State Estimation Rules are derived
in chapter 5 . A method to estimate the qualita-
tive differential equations is derived in chapters 6
through 7 . An experimental result is presented in
chapter 8 .
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Quantization of Value
The qualitative description of a numeric value is
called its Qualitative Value . A qualitative Value
is a symbolic value which consists of several land-
marks and intervals in Euclid Space . The pro-
posed method employs several symbols in order
to develop our method in Qualitative Value Space
in which the only landmark is "ZERO" .

We define the basic operations of these Qualita-
tive Values in Table .l .

Here, "C" describes subset . Therefore, the
following relations exist between the Qualitative
Values defined above .

landmark 0 [0]
interval (-oo, 0) [-]
interval (0, +oo) => [+]
interval [0, +oo) [0+]
interval (-oo, 0] [-0]
interval (-oo, +oo) [+0-]
interval (-oo . 0) (0, +oo) [+-]



aQ = [+1
aQ=[o]
aQ=H

Table 1 : Addition and Multiplication of Qualitative Values

(A) Additive Operations

[+] 101 [-] [0+1 [-01 [+-1 [+0-1

[Q] C [+1

	

=~> [Q] = [+1
[Q] C [ 0 1

	

=> [Q] = [01
[Q] C [-1

	

=> [Q] = [-1
[Q] C [0+]

	

[Q] = [ 0 ] or [Q] = [+ 1
[Q] C [-01

	

[Q] = [ 0 ] or [Q] = [-]
[Q] C [+-]

	

[Q] = [+] or [Q] = [-]
[Q] C [+0-]

	

=> [Q] = [+] or [Q] = [ 0 ] or [Q] = [-]

A qualitative description about a derivative
value is called a Qualitative Derivative . Its mean-
ing is as follows .

Q is increasing .
Q is steady .
Q is decreasing .
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Quantization of Time

In this paper, characteristic values are assumed to
have continuous behavior . Therefore, they must
satisfy the following conditionsINishida 89] .

1 . Once a Qualitative Value enters into an in-
terval, it must stay there for a while .

l . A Qualitative Value goes through a landmark
when it transfers from one interval to an-
other .

(B) Multiplication

3 . Qualitative value passes through a landmark
in an instant .

Value states can, accordingly, be divided into
two types, namely, "Static State" and "Momen-
tary State" . Therefore, time is quantized . Cor-
responding with these two state types, two types
of quantized time are defined, namely, "Time In-
terval" and "Moment" . On the quantized time
axis, Time Intervals and Moments appear alter-
nately . Figure .1 shows the continuous function
Q(t) and its qualitative description [Q(te)] on the
quantized time axis tq .

4

	

Basic Mathematical Rela-
tions

4.1

	

Assumption of Continuous Be-
havior

As assumed in the previous chapter . the Qualita-
tive Value [Q(t)] can not transit by jumping over
any landmark nor any interval from quantized
time t to t' . Therefore, in the Qualitative Value
Space, which has arbitrary n landmarks and n+1
intervals .

[+1 1 [+ [+0-1 [+1 [+0-1 [+0-1 [+0-)
1 0 1 1 101 [-] [0+1 1-01 1+-1 1+0-1
1-1 1-1 1+0-1 [-] [+0-1 1+0-1
[o+] [0+] [+o-] [+o-] [+o-]
[- 01 1 -01 1+0-1 [+0-1
[+-] [+0-1 [+0-1
(+o-]

1+1 101 1-1 [0+1 [-01 [+-] [+0-1
1+1 1+1 [ 01 [-1 1 0+1 1-01 [+-1 [+0-1
[01 101 [01 1 01 1 01 1 01 1 01
1-1 1+1 1-01 10+1 [+-] [+0-1
10+1 10+1 1-01 1+0-1 [+0-]
1-01 [0+ 1 [+0-1 [+0- 1
[+-] [+-1 [+0-1
[+o-] [+o-]



Figure 1 : Continuous function Q(t) and its qual-
itative interpretation [Q(t q )] on Quantized Time
Axis tq

Q(t)

[Q(t4)]

to t1 t2 t4 is t6

landmark L;

	

n
:nterval

	

(-oo, L1)
interval

	

(Lj, Lj+1)

	

,

	

7 = 1,2, . . .,n - 1
interval

	

(Ln, +oo)

Qualitative Value [Q(t)] must satisfy the fol-
lowing relations.

" Prohibition ofjumping over landmark

I([Q(t)] - Li) - ([Q(t')] - Li) C [o,+oo)}

" Prohibition of jumping over interval

n n

t

t q

{([Q(t)] - Li) + ([Q(t')] - Lj)} 0 [ 6 ]
i=1 jai

In the Qualitative Value Space that has only
landmark "ZERO", the next relation must be sat-
isfied . (In this case "Prohibition of jumping over
interval" need not be considered .)

[Q(01 - [Q(01 C 10+1

	

(1)

4 .2 Rules to Distinguish Time In-
terval or Moment

Assuming a differentiable function Q(t) defined in
Euclid Space, Q(t) satisfies the next relation .

Q(t')

	

=

	

Q(t) +
At

_ dQ(t;)
dt

At

	

=

	

tl -t

Quantizing this relation into the Qualitative
Value Space, the following relations are derived.

[Q(t')l C [Q(t)l + aQ(t - t')

	

[At]

	

(2)

[Q(t)l C [Q(t')l - aQ(t --~ t')

	

[At]

	

(3)

Here, [At] is a qualitative description of the tem-
poral length taken by qualitative state transition .
Now assume three continuous quantized time

tprev ,tnow -' tnext- "Moment" is a point on a
quantized time axis and has no length . Therefore,
the following relations must be satisfied .

(( When tnow is a Moment ))

" Quantized time passes from tnow to tnext in
an infinitesimal moment . Therefore, accord-
ing to formula (2), [Q(t)] satisfies the next
relation .

[Q(tnext)l C [Q(tnow)l + aQ(tnow - tnext) - E

" Quantized time goes back from tnow to tprev
in an infinitesimal moment . Therefore, ac-
cording to formula (3), [Q(t)] satisfies the
next relation .

[Q(tprev)l C [Q(tnow)l - aQ(tprev -' tnow) . E

	

(5)

When formulae (4) and (5) are satisfied, tnow
is judged to be a "Moment" .

(( When tnow is a Time Interval ))

" Quantized time passes from tprev to tnow in
an infinitesimal moment. Therefore, accord-
ing to formula (2), [Q(t)] satisfies the next
relation .

[Q(tnow)] C [Q(tprev )] + aQ(tprev --1 tnow) ' E

" Quantized time goes back from tnext to tnow
in an infinitesimal moment. Therefore, ac-
cording to formula (3), [Q(t)] satisfies the
next relation .

[Q(tnow)] C [Q(tnext)l - 8Q(tnow -" tnext) - 6

	

(7)



Here, e describes an infinitesimal moment. Ad-
ditive operation of a Qualitative Value with an-
other Qualitative Value multiplied by e is effective
only when the Qualitative Value is on alandmark .
For example, the following relations are satisfied .

[+] + [-] ' e = [+]
[0]+[-]'e=[-]

When formula (6) and (7) are satisfied, t,,,,, is
judged to be a "Time Interval" . When all of these
four formulae are satisfied, tnow is judged to be
either "Moment" or "Time Interval" .

Here, in each formula, the term aQ(t -r t') is
unknown . Therefore, this term is assumed to be
as follows.

aQ(t - t') C [+0-]
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Qualitative Integration Rule
Qualitative analysis of the behavior of a vari-
able Q(t) is performed using the following
relation[de Kleer 84].

[Q(t')] C [Q(t)] + aQ(t)

This relation is called the "Qualitative Integration
Rule" . This rule was derived from the following
mean value theorem defined in Euclid Space .
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E (t, t')

	

dt, t'
QW) = Q(t) + (t, - t) - Q(o

	

( 9)

However, formula (8) is derived from formula (9)
only under the condition that Q(ti) is a strictly
monotone function at ti E (t,t') namely, aQ(ti)
does not change . Therefore, formula (8) can not
describe the following transition .

[Q(t)] = [0], .9Q(t) _ [0]
When .9'Q(t) = [+]

u
[Q(t')] = [+], NW) = [+]

We derived a new "Qualitative Integration Rule"
using the next relation defined in Euclid Space.

Q(t') = Q(t) +

	

t t
Q(~)~J

(10)

Quantizing formula (10) into Qualitative Value
Space, the next relation is derived.

[Q(t')] C [Q(t)] + aQ(t) . bt + aQ(t') . bt'

	

(11)

Here, bt and bt' are qualitative descriptions of
the temporal length of each quantized time t and

t' . Therefore, defining [At] as a temporal length
needed for state transition, the next relation is
satisfied .

[Ot]
clef [ti - t] = bt + bt'

State transition from Momentary State to
Static State takes an infinitesimal moment, that
is, [At] = s. Moreover, t is Moment. Therefore,
the next two relations are satisfied .

bt=[0], bt'=e

State transition from Static State to Momen-
tary State takes a finite time, that is, [At] = [+] .
Moreover, t' is Moment. Therefore, the next two
relations are satisfied .

bt=[+], bt'=[0]

We call formula (11) the new Qualitative Integra-
tion Rule .

5 Estimation of Qualitative
States

Estimation of possible qualitative states is per-
formed by estimating the possible Qualitative
Derivatives 9Q(t) according to the observed time
series of Qualitative Values [Q(t)] . We defined
the following two rules in order to estimate possi-
ble Qualitative States, asuming three continuous
quantized time tprev --" tnow -r tnext - These rules
were derived using the basic mathematical rela-
tions derived in the previous chapter.

5 .1

	

State Estimation Rules
(( State Estimation Rule.1 ))

When tnow is a Moment. The Qualitative
State, ([Q(tnow)],aQ(tnow)) is estimated in the
following manner .
Given the sequence tprev (Time Interval) -+

tnow(Moment) -} tnext(Time Interval), the fol-
lowing relations are derived using the Qualitative
Integration Rule (11) .

[Q(tnow)] C [Q(tprev)] + gQ(tp,..)

[Q(tnext)] C [Q(tnow)] + aQ(tnext) ' E

(12)

(13)

Substituting the observed values [Q(tp, ev )] ,
[Q(tnow)] , [Q(tnext)] into these formulae, yields
{aQ(tprev),aQ(tnext)1 . In addition, aQ(t) must



satisfy the Assumption of Continuous Behavior

(( State Estimation Rule.2 ))

tprev

N(tprev) - aQ(tnow) C [0+1

aQ(tnow) - N(tnezt) C [0+1

aQ(tnext) C aQ(trnow) + [+0-1 - E

Table 2: State Estimation Rule.l

tnow

tnow-ps tnow_pe
( tnows ) [

	

tnow_m

	

I ( tnow-e

(14)

Moreover, considering tnow is a Moment, accord-
ing to formulae (4) (5) .

N(tprev) C N(tnow) - [+0-1 " E

	

(15)

and N(tnow) which satisfies these formulae (14)
(15) can be derived. Now, we have the relations
possible when tnow is a Moment , as listed in Ta-
ble.2 . We call these relations the State Estimation
Rule . 1 .

[Q(tprev)] [Q(tnow)] [Q(tnext)1 aQ(tnow)

When tnow is a Time Interval, we can not as-
sume 8Q(t) to be constant . Therefore, we assume
the interval tnow consists of several sub-intervals
as shown in Figure .2 .

Figure 2: Division of tnow into Sub-Intervals

tnext

Here, tnow, is defined as the interval immedi-
ately after tprev, tnow_e is defined as the interval
immediately before tnext - In these sub-intervals,
the qualitative states .

5

([Q(tnow,)1, aQ(tnow-.,))
([Q(tnow_e)], aQ(tnow-e))

are estimated using the following relations derived
from formula (11) .

[Q(tnow,)] C [Q(tprev)] +8Q(t,now_s) -E

	

(16)

[Q(tnext)] C [Q(tnow_e)1 + aQ(tnow_e)

	

(17)

Where [Q(tnow, ) 1 = [Q(tnow_e)] = [Q(tnow)] "
tnow_m is defined as the interval that includes Mo-
ments tnow_ps and tnow_pe . That is,

Interval tnow�, : [tnow-ps, tnow-pel

However, we can not say how many sub-intervals
tnow _r� is divided into .
We discuss how to estimate the qualitative

states,

([Q(tnowsn_j )1, aQ(tnow_m_j )),
j = 1, 2. . . . . . .

According to the mean value theorem (9), we
can define a state which must be in the inter-
val tnow-m . Such states can be estimated by as-
suming the strict monotony of function Q(t) in
the interval tnow_�, . Assuming strict monotony
of Q(t) in tnowm, aQ(tnow_rn) can be estimated
using the next relation derived from the Assump-
tion of Continuous Behavior (1).

aQ(tnow,) ' aQ(tnow_m) C [0+1
N(tnow_m) ' 6Q(tnow_e) C [0+1

However, care is needed here. When an observed
system has several variables {Qi : i = 1, . . .}, we
can not assume that {aQj(tnowsn) : i = 1 . . . . }
appear at the same quantized time (defining ~;
for each variables using formula (9), we cannot
assume all J~i : i = "1 . . . .} appear at the same
time). Therefore, considering the quantized time
tnow-mi at which each variable aQi(tnow-,n) Is

assured to appear given monotony, we can state

8Qj(tnow_m_i) C [+0-1 , 7 :0 i

For example, consider the situation in which the
next time series was observed .

tprev tnow tnext
[X11 1 0 1 [+1 1 0 1
[X21 :

	

[01

	

[+1

	

[ 01

Possible Qualitative States are estimated as fol-
lows.

[+1 101 [+1 101
[+1 [01 [01 [01

[+1 101 [-1 [-01
[01 [01 [+1 [01
[01 [01 [01 [01
[01 [01 [-1 [01

[-1 [ 01 [+1 [0+1
[-1 [01 [01 [01
[-1 101 [-1 101
[+1 [+1 [+1 [+0-1

[-1 [+0-1



We now have the relations for which the situation

tno,o is a Time Interval. These relations are given
as Table .3 . We call these relations State Estima-
tion Rule.2 .

5 .2

	

Example of State Estimation

This section introduces an example of applying
the State Estimation Rules to a simple case . Con-
sider a dynamical system which has two charac-
teristic variables, namely, X1 and X2 . We assume
that a time series of Qualitative Values [X1] and

[X2] are observed as follows .,

[X1(t)] : [-] [011+1 [+] [+] [01 [-] [-] 1-1101101
[X2 (t)] : [+] [+] [+] [01 [-] [-] [-] [ 0 1 [+] [01 [ 0 1

Quantized Time

{ [Q=], aQi }

	

i = 1,2. . . .

Applying State Estimation Rule . 1 and Rule . 2, the
possible qualitative states listed in Table.4 can be
estimated.
These Qualitative States should satisfy some

kinds of Constraints . We discuss how to estimate
the Constraints in the next chapter.
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Identification of Constraints

6.1

	

Constraint Identification Method

In Qualitative Reasoning, we describe the causal
structure between characteristic variables as Con-
straints . Qualitative Simulation [Kuipers 86] is
performed by finding possible state transitions be-
tween several Qualitative States which satisfy the
Constraints. Such Constraints describe a tempo-
ral causal structure of the dynamical system and
are in fact, Qualitative Differential Equations. In
this chapter, we discusse how to estimate Quali-
tative Differential Equations by finding causal re-
lations between characteristic variables and their
derivatives, namely,

In order to find these relations, we use the follow-
ing Polynomial .

order

	

n n

[ 0 ] C 1: [C'k . . . . . .k_ti_.,1.]11[Qi]k . rlOQj t' (18)
m-0

	

i=1 j=1

m = k1 +---+kn +1 1 +---+ln

Here, T means an additive operation between
Qualitative Values and rj means qualitative mul-
tiplication . [Ck. . . . .,kn,t~ . . . .,tn] are the coefficients of
the terms which forming the Polynomial . "order"
means the order of the Polynomial . Therefore,
when order = 1, formula (18) is a Linear Dif-
ferential Equation . By substituting Qualitative
States

([Q1], Ni, - . . , [Q.], aQn)

estimated by the State Estimation Rules into for-
mula (18), the estimation of Constraints is per-
formed by searching for possible sets of the co-
efficients [Ck,, . . .,k�,t . . . . . . 1 .] satisfying the relation
«C�

In our method, we begin searching the coeffi-
cients with order = 1 . When possible coefficients
can not be found, order is incremented .

6.2 Example of Identification o:
Constraints

Using the example discussed in the previous chap-
ter, we estimated the Constraints. According to
this example, the following 18 Constraints are es-
timated.

[0] C [X1]+ 19x1 - [X2]
[0] C [x1] + 19x1 - [X21 - axe
[0] C [x1] + [X2] + axe
[01 C [X1] -19x1 + [X2]+19X2
[0] C [X1] - 19X1 + [XZ]
101 C [x1] -19x1 + [X21 - axe
[0] C [X1] -19x 1 - axe
[0] C [x1] -19x 1 - [x2] - axe
[01 C 19x1 + [x2] + axe
[01 C 19x1 +axe
[0] C 19x1 - [x2] + axe
[01 C 19x1 - [x21
[01 C 19x1 - [x21 -19x 2

In this case, the possible coefficients are found
with polynomial of order = 1 . Therefore, these
Constraints are Qualitative Linear Differential
Equations.

[0] C [x1] + 19x1 + [X2]+ axe
[0] C [x1] + 19x1 + [x2] - axe
[0] C [x1] + 19x1 + axe
[0] C [x1] + 19x1 - axe
[01 C [x1] + 19x1 - [x2] + 19X2

Quantized
Time

Possible States
([X1],19X1, [X2], 19X2)

tnow-s ([+], [+], [+], [+])
tnow-m-1 ([+]~ [ 0 ] , [+], [+0-])
tnow-mom ([+], [+0-] , [+], [0])



Moreover,

He =

(( Model No. 1 ))

k

Pc(si)logpc(si) _ -k - Pk lo9Pk
i.1

According to formulae (21) (22), Entropy reduc-
tion is rewritten as follows.

H,. = 1 .0 -
Hmax = 1 .0 - 2n tog 3

	

(23)
log k

According to formula (23), when the number of n
variables is fixed, H, . depends only on the num-
ber of states k . Moreover, smaller numbers of k
indicate improved forcasting power.

According to these relations, we chose the Si-
multaneous Constraints which are satisfied by the
smallest number of states, as appropriate models .

7.3

	

Example of Appropriate Simul-
taneous Differensial Equations

Using the example introduced in chapter 5, we es-
timated the most appropriate Simultaneous Dif-
ferential Equations . For the data given, the fol-
lowing 6 models are estimated .

[0 ] C [X11 + 19x1 + [X21 + 19x2
1 0 1 C 19x1 - [x21

((Model No.2))

	

[0) C [x11 +19X1 +19X2
[01C8X1 - [X21

(( Model No.3 ))

	

[01 C [X11 + [x2] + axe
[0) C 19x1 + axe

((Model No.4 ))

	

[0] C [X11 + [x21 + 19X2
[0] C 19x1 - [x21

(( Model No.5 ))

(( Model No.6 ))

[0 ] C [X11-19X1 + [x2] + axe
[01 C 09X1 + 19X2

[ 01 C [X11-19X1 + [X21
[ 0 1 C 19x1 + 19X2

8 Experimental Results of
Qualitative Simulation

We can now show that the observed behav-
ior can be reproduced by Qualitative Simulation
[Kuipers 86] using the above mathematical mod-
els. Figure .3 shows qualitative simulation results

from Model No.1 - Model No .6 . Here, Mod-
els No.1, No .2 and No.4 are qualitatively equiva-
lent . Moreover, Models No.3 . No .5 and No .6 are
also qulaitatively equivalent . This figure shows
that the observed behavior is reproduced by each
model.

Figure 3 : Results of Qualitative Simulation

(( Model No.1 (= No .2 = No.4) ))

[0J/ . . . . . . . . . . . . . . . \ . . . . . . . . . . . . . . . -. :* t9
[-1

[X2(t)]

[0] . . . . . . \ . . . . . . . . . . . . . . . / . . . . . . . . . -. = t~ t4
[-1

(( Model No. 3 (= No. 5 = No. 6) ))

[Xi(t))
[+]
[0] I' . . . . . . . . . . . . . . . .

	

. . . . . . . . . . . . . . _,
1-1

[X2(t)]
[01 . . . . . . \ . . . . . . . . . . . . . . . / . . . . . . . . . ...,

9 Conclusion

t9

We have introduced a method that qualitatively
models dynamical systems using the qualitative
descriptions about the behavior of observed sys-
tems. Moreover, we showed experimental results
in this paper . We built an experimental system on
a SparkStation using the CommonLisp language .
Inputs of the experimental system are the name of
characteristic variables and the time series of the
variables. The appropriate models are calculated
automatically .
We discussed a development of our method in

Qualitative Value Space in which the only land-
mark is "ZERO" . However, Basic Mathematical
Relations derived in Chapter.4 are not depend on

t9



the Qualitative Value Space . Therefore, the pro-
posed method can be extended to cases where the
Qualitative Value Space includes more than one
landmark value , by (1)defining new symbols for
the Qualitative Value Space , (2)defining the ba-
sic operations between these symbols and (3)de-
riving new State Estimation Rules from the Basic
Mathematical Relations .
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Table 3: State Estimation Rule.2

[Q(tprev)1 [Q(trnow)l [Q(tneat)] aQ(tn, o.1) aQ(tnow_m)(*) gQ(tnovi_e)

(*) : aQ(t � o,m) assuming strict monotony of Q(t) in t� ow _� ,

Table 4: Example of Applying State Estimation Rules

Observed Time Series
[xil[x,]

Applied Rule Qualitative State
([xll, axl , [x21 , axe)

1-11+1

[011+1 Rule . I --+ (101,10+1,1+1,1+0-1)
([+1, [+1, [+1, [+0-1)

1+11+1 Rule.2 ([+1, [0+1, [+1, [+0-1)
([+l, [+0-l, [+l, [-01)
([+1, [+0-1, [+l, [-l)

[+1[01 Rule . 1 (1+1,1+0-1,101,1-01)
([+], [+0-1, [-1, [-1)

[+1 [-] Rule.2 ([+1,1-01, [-1, [+0-1)
([+l, [+0-1, [-1, [-01)
([+l, [-1, [-1, [+0-1)

1011-1 Rule . I ([01, [-0l, [-l, [+0-l)
([-1, [-1, [-1, [+0-1)

[-11-1 Rule.2 ([-1, [-01, [-1, [+0-1)
([-],[+0-],[-],[0+1)
([-], [+0-1, [-1, [+1)

[-1[01 Rule.1 -> ([-], [+0-1, [01, [0+1)
([-1, [+0-1, [+1, [+1)

1-11+1 Rule.2 --> ([-1, [0+1, [+l, [+0-1)
([-1, [+0-1, [+], [01)
([-1, [+1, [+1, [-1)

[01[01 Rule.1 --> (101,101,101,101)

[01[01

1+1 1+1 1+1 [+0-1 1+0-1 1+0-1
[+1 1+1 101 1+0-1 [-01 1-1
101 1,+1 [+1 1+1 10+1 1+0-1
101 1+1 101 1+1 101 [-1
101 [-l 101 1-1 101 1+1
101 [-l 1-1 1-1 1-01 1+0-1
1-1 1-1 101 1+0-1 10+1 1+1
1-1 1-1 1-1 1+0-1 1+0-1 1+0-1
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Estimation of Appropriate
Models

When an observed system has n characteristic
variables, the system can be modeled by Simul-
taneous Differential Equations consisting n Con-
straints . In this section, we discuss a method to
find the combinations of Constraints that have
the strongest forecasting power[Cellier 91] as ap-
propriate Simultaneous Differential Equations.

7 .1

	

Exclusion of Inconsistency
The Qualitative States estimated in chapter 5
satisfy each Constraint estimated in chapter 6.
However, there are the cases in which Qualitative
States can not satisfy the "Simultaneous" Con-
straints . These cases occur due to the uncertain-
ties of Qualitative Values in estimated Qualitative
States (ex: [0+], [-0], [+0-]) . For example, con-
sider the next state (State A) which consists of 4
variables.

State A
([Xl], ax l , [X2], aX2) C ([+], [-0], [-], [0+])

State A satisfies each of the next Constraints.

[0] C ax l - [X2]
[0] C aXl - aX2

However, Qualitative States that satisfy these Si-
multaneous Constraints, that is,

((+], (+], (+], L+])

	

,

	

(1+1,101,101,101)
(L+1, (-], f-], f-])

	

,

	

(fo], f+], (+], (+~)
([o],[o],fo],fo])
(L-]~L+],f+],(+]) , (f-],LO],fo],[o])

do not include any states which satisfy State A,
that is,

This means that State A does not satisfy the
Simultaneous Constraints. We call such cases
"Inconsistency' . Such Simultaneous Constraints
should be excluded as candidates for appropriate
models .

7.2 Searching

	

Combinations
of Constraints with Strongest
Forecasting Power

Cellier[Cellier 91] introduced "Entropy Reduc-
tion" as a measure of the forecasting power of the

Constraints . In our case, "Entropy Reduction" is
defined as follows . Considering probability pc(s)
of state s which satisfies the given Constraint Set
c, the next relation is satisfied .

Epc(s) = 1 .0
Vs

Entropy is defined as,

He def
-~pc(S)logPc(S)

b's

Entropy H, takes maximum value .

Therefore,

Therefore,

Hno-constraint = Hmax

when all of the states occur with the same prob-
ability. This occurs when no Constraint is given.
Moreover, when state occurence is deterministic,

Hdeterministic = 0

Using these values, Entropy Reduction Hr is de-
fined as follows .

Hr
def 1 . 0 -

	

He

	

(19)
Hmax

Hr is a real number in the range between 0 .0 and
1 .0, and higher values usually indicate improved
forecasting power.

Considering a dynamical system which has n
characteristic variables, Qualitative States s are
described as follows.

(Nil, aQi})

	

,

	

i = 1 . . . . ,n

In the Qualitative Value Space with 3 values (only
landmark "ZERO"), there exists 32, states . Now
we assume k states satisfy Constraint c, and their
probability p,(s) are the same, namely, Pk .

Pc(Sl) = Pc(S2) =,

	

. .

	

= Pc(Sk)
def

Pk

EPc(s) = k - Pk = 1 .0

	

(20)
Vs

We rewrite pk as p�,ax , in the case where k = 32n .

According to formula (20),

Pmax = 1/32,

Hmax = - 7, Pmax log Pmax = 2n log 3

	

(21)
Vs


