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Abstract

In [Dague, 1993], a formal system ROM(K)
involving four relations has been defined to
reason with relative orders of magnitude. In this
_paper, problems of introducing quantitative
information and of ensuring validity of the
results in R are tackled.

Correspondent overlapping relations are defined
in R and all rules of ROM(K) are transposed to
R. The obtained system ROM(R) depends on
two independent numbers which may be freely
chosen for each application. Unlike other pro-
posed systems, a sound calculus is thus ensured
in R, while keeping the ability to provide
commonsense explanations of the results.

These results can be refined by using additional
techniques. In this way, k-bound-consistency,
which generalizes interval propagation, is evalu-
ated. Using computer algebra to push symbolic
computation as far as possible and delay
numeric evaluation considerably improves the
results. Exact results may even be obtained by
computing the roots of partial derivatives and
then the extrema of symbolic expressions. It is
also sometimes possible to transform rational
functions so that each variable occurs only once:
interval propagation then gives the exact results.
ROM(R), possibly supplemented by these
various techniques, constitutes a rich, powerful
and flexible tool for performing mixed qualitative
and numeric reasoning, essential for engineering
tasks.

Introduction

The use of qualitative reasoning has expanded consid-
erably these last years, the principal field of applica-
tion being the behavioral modeling of complex
physical systems, in view of design, diagnosis or
supervision, when purely numeric models are too
~omplex or when available knowledge is imprecise or
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uncertain. For these intelligent engineering tasks,
qualitative reasoning methods are required that are
sufficiently flexible and subtle to be able to incorpo-
rate numeric processing and be implemented effi-
ciently. Most of the existing approaches [de Kleer
and Brown, 1984, Forbus, 1984, Bobrow,
1985, Kuipers, 1986, Dormoy and  Raiman,
1988, Murthy, 1988, Struss, 1988, Williams,
1988, Travé-Massuyes and Piera, 1989] do not fulfil
these requirements satisfactorily.

We are concerned here with the relative orders of
magnitude paradigm, which is rich enough to capture
a type of commonsense reasoning used by experts
(“close to”, "negligible w.r.t.”), when simplifying prob-
lems or qualitatively expressing variations of a param-
eter between different functioning modes, and more
precisely concerned with orders of magnitude
expressed by binary relations r invariant by
homothety (A r B depends only on A/B).

The first attempt to formalize such reasoning
appeared with the formal system FOG [Raiman,
1986] (see also [Raiman, 1991] for a more general
set-based framework), based on 3 basic relations and
described by 32 inference rules, which has been used
successfully in the DEDALE system of analog circuit
diagnosis [Dague et al., 1987] for reasoning about the
current intensities, which are not directly observable.
Nevertheless, FOG has several limitations which
prevent it from being really used in engineering. A
first difficulty arises when wanting to express a
gradual change from one order of magnitude to
another: only a steep change is possible, due to the
non overlapping of the orders of magnitude. This
can be solved, as described in [Dagucs, 1993], by
introducing a fourth relation “to be distant from”
which allows overlapping relations to be defined and
used. This has given a formal system ROM(K) with
15 axioms, consistency of which was proved by
finding models in non standard analysis.

But two crucial problems remain: the difficulty to
incorporate quantitative information when available



(in DEDALE this lack of a numeric-symbolic inter-
face meant writing Ohm’s law in an ad hoc form) and
the difficulty to control the inference process, in order
to obtain valid results in the real world. These prob-
lems were pointed out in [Mavrovouniotis and
Stephanopoulos, 1987] but the proposed system
O(M) does not really solve them. In particular, use of
heuristic interpretation semantics just ensures the
validity of the inference in R for one step (application
of one rule) but not for several steps (when chaining
rules). This second paper focuses on solving these
two problems by concentrating on how to transpose
the formal system ROM(K) to R with a guarantee of
soundness and how, using techniques of interval cal-
culus and computer algebra, to build a powerful tool
for both qualitative/symbolic and
quantitative/numeric calculus for engineering pur-
poses.

The present paper is organized as follows. Section 2
recalls the main features of ROM(K). Section 3
shows through an example how ROM(K), as FOG
or O(M), may lead to results that are not valid in R.
In section 4 a translation in R of axioms and proper-
ties of ROM(K) is given, which ensures soundness of
inference in R. In section 5 the example is revisited
with this new formulation; this time correct results
are obtained. Nevertheless they may be far from the
optimal ones and too inaccurate for certain purposes.
In section 6 numeric and symbolic algebra techniques
are proposed to refine these results: applications of
consistency techniques for numeric CSPs; use of
computer algebra to push symbolic computation as
far as possible and delay numeric evaluation, which
considerably improves the results; symbolic calculus
of derivatives and of their roots by using computer
algebra alone in order to compute extrema and
obtain optimal results; formal transformation of
rational functions by changing variables, which allows
the exact results to be obtained, in particular cases,
by a simple numeric evaluation and opens up future
ways of research.

The Formal System ROM(K)

See [Dague, 1993] for a complete description. Quan-
tities are taken in a totally ordered commutative field
K. [A] stands for the sign of A induced by the total
order < of K and |A| for the absolute value of A.
The logical implication, equivalence, and, or, not, are
written as: =", "« 7, ”", “or”, “—=" respectively
(considering axioms and properties as rewriting rules
of a symbolic deduction system ROM). The formal
system ROM(K) involves four binary relations =, ~,
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< and #, intuitive meanings of which are “close to”,
“comparable to”, “negligible w.rt.” and “distant from”

respectively. The 15 axioms are as follows:

(A) A=xA

(A2) Ax~B m— BxA

(A3) Ax~B, BxCm— AxC

(Ad) A~B m— B~A

(A5 A~B, B~Cwm— A~C

(A6) Ax~B m— A~B

(A7) A~B — CA=CB

(A8) A~B — CA~CB

(A9) A~1 +— [A] +

(Al10)) A<B «— B=x(B+A)

(A1) A@B,B»vCa—rA@C

(A12) AxB, [C]=[A] — (A+O) = (B+C)
(A13) A~B, [C]=[A] — (A+C)~(B+C)
(Al4) A~ (A+A)

(Al5) A%B «— (A-B)~A or (B-A)~B

Two axioms are in fact definitions: (A10) defines <
in terms of & (a quantity is negligible w.r.t. another
iff the quantity obtained by adding it to the second
one remains close to this second one) and (AlS)
defines # in terms of ~. (two quantities are distant
iff their difference is comparable to one of them).
Thus, there are only two basic relations &~ and ~, the
properties of which are given by the other 13 axioms.
These basic relations are not independent but coupled
by the axioms {A6) (~ is coarser than =) and (All)
(if two quantities are comparable, any quantity which
is negligible w.r.t. the first one is also negligible w.r.t.
the second one) which, using (A10), can be rewritten
as: (All) B~C, Bx (B+A) — C= (C+A) (if
two quantities are comparable and if adding a third
quantity to the first one gives a close quantity, then
adding the same quantity to the second one will also
give a close quantity). From (Al) to (A6) it results
that both ~ and ~ are equivalence relations. (A7)
and (AB) state that both ~ and ~ are stable by
homothety and thus entirely determined by the class
of 1 for ~ and the class of 1 for ~. (A9) introduces a
coupling between these relations and signs: a conse-
quence is that two elements which are comparable
have the same sign. (Al2) and (A13) state that both
relations ~ and ~ between two quantities are pre-
served by adding a quantity of the same sign, i.e.
when moving the two quantities away from 0 by the
same amount. By using invariance by homothety
this is equivalent to saying that if two quantities are
close (resp. comparable) then any quantity between
them (for the order of K) is close (resp. comparable)



to them. Finally, (A14) states that, by adding a
quantity to itself, one obtains a comparable quantity
(by using other axioms, it is simply equivalent to say
that there exist at least two different standard positive
rational numbers that can be compared by the
relation (A ~ B or A < B)).

In [Dague, 1993], 45 properties of ROM(K) have
been deduced from the previous axioms; they all have
a clear intuitive qualitative meaning and illustrate the
qualitative dependencies between the four relations.
In particular it is proved that < and % are also stable
by homothety. < is proved to be a strict order
between equivalence classes for ~ (other than the
class reduced to 0), and # a symmetric relation
between equivalence classes for ~. The relationship
between 4 and ~ is clarified by the following result:
if two quantities are close, then any quantity which is
distant from one is distant from the other and the
two distances are close. A completeness result of this
qualitative representation is obtained: any given two
elements are always related by ~ or (not exclusively)
by +.

In addition to the introduction of the new relation
# and the numerous associated properties, the main
difference between ROM(K) and FOG or O(M) is
that it is not assumed, as in FOG and O(M), that (A
~ B or A € B) is a total preorder on positive ele-
ments, i.e. that ~ is nothing else than the negation of
< on positive elements:

A~B « —(A<B)a-(B<A)A[A]=[B] .
for non zero A,B, or, equivalently, that 4 is nothing
else that the negation of ~ on non zero elements:
A+ B «— (A~ B)for non zero A,B.

In fact, a series of models of ROM(K) depending
on one parameter is found in the field K= R of real
numbers of non standard analysis, such that the
above property of FOG and O(M) is not satisfied in
these models. Not only does this prove the consist-
ency of the axioms of ROM(K), but it also allows
overlapping relations to be defined, that smoothly
express the changes in order of magnitude, which was
impossible with FOG or O(M). Instead of the 3 non
overlapping relations &, =& A ~, <€ between two
positive quantities A < B, the result is 7 basic
relations that now overlap:
Ax~B,~(A%B),~-(AxxB)AA~B,A%+BarA
~B,A%B A ~(A<B), -(A~B),A<B.

Taking into account signs and identity, these 7
basic relations give 15 primitive overlapping relations
between quantities of the same sign, to be compared
with the 7 non overlapping relations of O(M) coming
from the 3 basic ones. Adding the 47 compound
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relations obtained by disjunction of successive primi-
tive relations gives a total of 62 legitimate relations,
to be compared with the 28 relations of O(M).

Example: a Heat Exchanger

We now have a clear, sound and rich system to
formally reason about relative orders of magnitude.
We are thus going to try to apply it to a simple
example of a counter-current heat exchanger as
described in [Mavrovouniotis and Stephanopoulos,
1988]. Let FH and KH be the molar-flowrate and
the molar-heat of the hot stream, FC and KC the
molar-flowrate and the molar-heat of the cold stream.
Four temperature differences are defined: DTH is the
temperature drop of the hot stream, DTC is the tem-
perature rise of the cold stream, DT1 is the driving
force at the left end of the device, and DT2 is the
driving force at the right end of the device. The two
following equations hold:

(el) DTH - DT1 — DTC + DT2 = 0,

(e2) DTH x KH x FH = DTC x KC x FC.

The first one is a consequence of the definition of the
temperature differences, and the second one is the
energy balance of the device. Let us take the fol-
lowing assumptions expressed as order of magnitude
relations:

(i) DT2 ~ DT1, (i) DT1 <« DTH, (iii) KH =~ KC.

The problem is now to deduce from the 2
equations and these 3 order of magnitude relations
the 5 missing order of magnitude relations between
quantities having the same dimension (4 for temper-
ature differences and 1 for molar-flowrates). Let us
take the axioms (Ai) above and the properties (Pi) of
ROM as stated in [Dague, 1993].

Consider first the relation between DT2 and DTII.
Thanks to (P4) A< B, C~ A — C < B, ROM
infers from (i) and (ii) that (1) DT2 < DTH.

Consider the relation between DTH and DTC.
(PS)YA<B — —-A<Band (P6) A< C, B<«C
— (A+B) < C applied to (ii) and (1) imply —DT1
+ DT2 < DTH. From this it can be deduced, using
(A10), that DTH ~ DTH — DT1 + DT2, i.e. using
(el) that (2) DTH = DTC.

Consider the relation between DT1 and DTC.
From (ii) and (2) it can be deduced, using (A6) and
(All), that (3) DT1 < DTC.

Consider the relation between DT2 and DTC. It
results from (i) and (3), by using (P4), that (4) DT2
< DTC.

Another deduction path can be found to obtain the
same result. In fact, from (A10) A ~ B — (B—A) <



A and A ~ C — (C—A) < A, using (P5) and (P6),
(P) A~ B, A~ C— (C—B) € A can be derived.
As, from (3) and (A10), it results that DTC =~
DTC+ DT], it can be deduced from this and (2),
using (P), that —DTH+DT1+DTC < DTC, ie.
using (el) that (4) DT2 < DTC.

Consider finally the relation between FH and FC.
(A7), applied to (iii) and (2), gives DTH x KH =
DTH x KC and DTH x KC ~ DTC x KC.
Applying (A3) then gives DTH x KH ~ DTC x KC.
Applying (A7) again and using (e2) gives (5) FH =~
FC. :

The five results (1 to 5) have thus been obtained by
ROM (identical to those produced by O(M) because
% is not used here):

(1) DT2< DTH (2) DTH~ DTC (3) DT1<«
DTC (4 DT2< DTC (5) FH = FC.

We have now to evaluate them in the real world.
For this, it is necessary to fix a numeric scale for the
order of magnitude relations. Choose for example <
represented by at most 10%, =~ by at most (for the
relative difference) 10 % and ~ by at most (for the
relative difference) 80%. Assumptions thus mean
that:

(i) 0.2 < DT2/DTI1 <5, (i") DT1/DTH < 0.1,
(ii) 0.9 < KH/KC < 1.112.

It is not very difficult in this example to compute the
correct results by hand. It is found (see also sub-
sections 6.3 and 6.4) that:

(17 DT2/DTH 0.5 (2) 0.714 < DTH/DTC <
1.087 (3) DTI/DTC < 0.109 (4) DT2/DTC <
0.358 (5) 0.828 < FH/FC < 1.556.

This shows that only the formal result DT1 <
DTC is satisfied in practice. For the 4 others,
although the inference paths remain short in this
example, there is already a non trivial shift, which
makes them unacceptable. This is the case for the
two =~ relations: DTH may in fact differ from DTC
by nearly 30%, and FH may differ from FC by 35%.
And the same happens for the two < relations: DT2
can reach 35% of DTC and, worse, 50% of DTH.
This is not really surprising because we know that
there is no model of ROM(K) in R. Here, it is essen-
tially the rule (P4) that causes discrepancy between
qualitative and numeric results. Rules such as (P4),
or (All) from which it comes, and also (A3) are
obviously being infringed. What this does demon-
strate is the insufficiency of ROM for general engi-
neering tasks and the need for a sound relative order
of magnitude calculus in R.
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Transposing the Formal System to R:
ROM(R)

In fact, all the theoretical framework developed in
[Dague, 1993] and summed up above is a source of
inspiration for this task. Since the rules of ROM
capture pertinent qualitative information and may
help guide intuition, they will serve as guidelines for
inferences in B ([Dubois and Prade, 1989] addresses
the same type of objectives by using fuzzy relations).
Let us introduce the natural relations in R,
parameterized by a positive real k, “close to the order
k"

A~B «— |A-B| <k xMax(|Al,|B]),

ie. for k<1, (I} 1=k < A/B < l/lI-k or
A =B=0, "distant at the order k"

A+B « |A-B| >k x Max(|Al,|B),

te. fork<l1, (II) A/B<1-k or A/B>1/1-k or
B =0, and “negligible at the order k™:

A<B — |A|l <kx|Bl,

ie. (Il =k <A/B<k or A=B=0.

The first one will be used to model both ~ and ~,
the second one to model 4, and the third one to
model <, by associating a particular order to each
relation. When trying to transpose the axioms (Ai)
by using these new relations, three cases occur.

Axioms of reflexivity (Al), symmetry (A2,A4),
invariance by homothety (A7,A8), and invariance by
adding a quantity of the same sign (A12,Al3,
assuming (A9)) are obviously satisfied by ~ for any
positive k.

A second group of axioms imposes constraints
between the respective orders attached to each of the
4 relations. Coupling of ~ with signs (A9) is true for
any order k attached to ~ that verifies k < 1. The fact
that ~ is coarser than ~ (A6) forces the order for =
to be not greater than the order for ~. Axiom (A14)
is true for ~ if k > 1/2. Part of the definition of < in
terms of =, more precisely the left to right impli-
cation of (A10) has the exact equivalent: A € B +—
B &~ (B+A) for k<1. We can thus take the same
order k, for < and ~. In the same way, the definition

of 4 in terms of ~ (A15) has its equivalent: A 1 B
— (A-B)'** A or (B—A)'~" B provided k <
1/2, ie. 1=k > 1/2. If we call k; the order for #, we
can thus take 1—k; as the order for ~. All the above
thus leads to the following correspondences:

AxB «— ASB A~B «— A-"B

k2
ARD —+ ALB - AgB s AgB
with 0 <k, <k,<1/2<1-—k,< 1. Note that, as the
formal system ROM(K) depends on two relations, its



analog in R has two degrees of freedom represented
by the orders k; and k..

Remaining axioms are those which are not true in
R. For these, the loss of precision on the orders is
computed exactly in conclusion. The rest of the defi-
nition of < in terms of =, i.e. the right to left impli-
cation of (A10) gives:

B £ (B+A) +~— A'<" B (k/(1=k)< 1 when
k<1/2).

Transitivity axioms (A3) and (ASZ each give:

AXB, BXC = A "SYC(k+k—kk'<l
when k<1 and k' <1).

Finally the coupling between = (through <) and ~
(A1l1) gives:

A<B, B'R¥C — A< C(k/k'< 1 whenk<k).

Like the axioms (Ai), all properties (Pi) deduced in
[Dague, 1993] are demonstrated in the same way by
computing the best orders in conclusion, when they
are not directly satisfied, and constitute all the infer-
ence rules of ROM(R). For reasons of lack of space,
here are the most significant or useful of the 45 prop-
erties for our purpose.

(P4), as (All), gives A < B, A'=* C ~— C '€ B.

(P6) gives A € C, B<C — (A+B)< C (which
can be improved if [A]=~—[B] by taking max(kk")
as order in conclusion) and (P) gives A ~B,AXC
— C—B < A with k"= (k+k'—kk")/(1—max(k k"))
(which can be improved if [C—B]=[A] by taking
k"= (k+k'—kk")/(1-k").

Transitivity of < (P11) obviously improves the degree
A<B, B<Cwm—~ A< C.

The incompatibility of < and ~ (P14) A'~? B, A 2

k2
B — A=B=0and of ~ and & (P34) A ~ B, A 4
B +— A=B=0 are ensured provided k; < k,. These
two properties will be used to check the consistency
of the set of relations describing, for example, an
actual behavior of a physical system, or on the con-
trary to detect inconsistencies coming, for example,
from discrepancies between modeled and actual
behaviors of a system for tasks such as diagnosis.

k
Relations between & and % (P37, P38) give A + B,

% (k2= k1)/(1 = k1) k k2
C~AngC Band A~B,C+ A —
(C-A)¥? (C-B).

Finally, the completeness of the description is

k.

obtained: A'~?B or A 4 B provided that k; <
1/2.

Moreover, it can be proved that adding the
assumption A'~? B or B’ ~? A or A 2 BorB 2 A

k;

would be equivalent to adding A ABor A ,ﬁ B and
also equivalent to k; < k;. This would imply
ki=k;=e as in FOG or in the strict interpretation of
O(M) [Mavrovouniotis and Stephanopoulos, 1987],
i.e. only one degree of freedom instead or two. In
the same way that formal models of ROM(K) could
not be reduced to FOG or O(M), the same is
obtained for ROM(R) by choosing k,<k; ie.
O0<k;<k:<1/2. Note that, in relation to non
standard models of ROM(K), one degree of freedom
corresponds to what is chosen as the analog in R of
the infinitesimals, and the other to the choice of the
analog of the parameter e¢ [Dague, 1993] of the
model, where ¢ corresponds to k;/k,.

e R S R
o k k 1k 1k 1k, 1k, k, k, +
H-H-- o — ]'_ AL , GEEciiiiads
~— o
R X
2 Z
< i
<< Fig. 1 >
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This above gives the exact counterpart in R, of the
15 primitive relations of [Dague, 1993] (in fact infer-
ence rules analog to the previous ones can be defined
for these relations, often with some better orders in
conclusion by taking into account the signs of the
quantities, e.g. (P6) and (P) above), for describing the
order of magnitude of A/B w.rt. 1. These relations
correspond to real intervals which overlap (in con-
trast with the strict interpretation of O(M)) and are
built from the landmarks k;, k;, 1-k;, 1=k, 1, 1/(1—
k), 1/(1-k;), 1/kz, 1/k; of R, (see Fig. 1). Note that,
as in the formal model, intervals (k;, ki), (1=k,, 1-k))
and their inverse are not acceptable relations. The
heuristic interpretation of O(M) [Mavrovouniotis and
Stephanopoulos, 1987], which only allows the correct
inference to be made for one rule, corresponds to the
particular case where k; =k,/(1+k;). But here k; and
k; are chosen independently, according to the exper-

The orders appearing in each rule of ROM(R) have
to be considered as variables, with order in conclu-
sion symbolically expressed in terms of orders in
premises. Inference by such a rule is made simply by
matching relations patterns in premises with existing
relations, i.e. by instantiating the orders to real
numbers, and computing the orders in conclusion to
deduce a new relation. A sound calculus in R is thus
ensured whatever the path of rules used, i.e. any con-
clusion that can be deduced by application of rules of
ROM(R) from given correct premises is correct when
interpreted in B. This may be entirely hidden from
the user, with both data and results being translated
via k; and k; in symbolic order of magnitude relations
as in FOG, but this time correctly. But the user may
also incorporate numeric information as required by
using k orders directly or even introducing numeric
values for quantities. In this last case, binary relations
between two given numeric quantities are automat-
ically inferred from the equivalent formulation of
these relations in terms of intervals (I,I1,1II).

Control of the inference in order to avoid combina-
tory explosion remains a problem for large applica-
tions. A pragmatic solution is to call on the expert
who will possibly prevent a rule from being applied if
he considers in the light of its underlying qualitative
meaning that the conclusions are not relevant.

The Example Revisited

Let us take the example of the heat exchanger again
and follow the same reasoning paths, but this time
using the inference rules of ROM(R). Take, as in the
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numeric application, k;=0.1 and k,=0.2. As (1) is
inferred by using (P4) we obtain:

(la) DT2 < DTH with k3=k/ks=0.5.

DT2 and —DT 1 having opposite signs, application of
(P6) gives —DT1 + DT2 <« DTH
with k4=max(k; k3)=0.5. Using left to right impli-
cation of (A10) and (el), we get:

(2a) DTH ¥ DTC with k4 =max(k;,k3)=0.5.
From (ii) and (2a), it can be deduced, using (All),
that:

(3a) DTI < DTC with k5=k,/(1—kd)=0.2.

The first deduction path leading to (4) has as an
equivalent, using (P4), DT2 < DTC with
k6=k5/k;=1, which cannot be used because the
order of < is assumed to be < 1. We may, however,
use the other deduction path. As, from (3a) and

(A10), we have DTC £ DTC + DT, it can be
deduced from this and (2a), using (P) and (el), that:
(4a) DT2 < DTC
with k7= (k4 + k5—k4k5)/(1-kS5)=0.75.

Note that two different paths leading to the same
formal result in ROM may lead here to different
results in ROM(R). This poses the as yet unsolved
problem of defining heuristics in order to obtain the
best result, by pruning the paths that lead to less
precise ones (the length of the deduction path not
necessarily being a %ood criterion).

From DTHxKH ~ DTHxKC and DTHxKC %
DTCxKC, (A3) gives DTHxKH £ DTCxKC, from
which, using (A7) and (e2), we obtain:

(5a) FH X FC with k8=k, +kd4—kk4=0.55.

Results (la to 5a) have thus been obtained by
applying rules of ROM(R). In terms of intervals,
these relations are expressed as:

DT2/DTH < 0.5 0.5< DTH/DTC <2
DTI/DTC < 0.2 DT2/DTC < 0.75
045 < FH/FC < 2.223.

They can automatically be translated in terms of
formal order of magnitude compound relations w.r.t.
scales k; and k, (with obviously a loss of precision in
general), giving:

DT2<.< DTH DTH « . DTC DTl K
DTC DT2<.<DTC FH<+ .}k FC

In contrast with results of FOG or O(M) (1 to 5),
this time the results are correct. We thus have a
sound calculus in R, with all the advantages of the
qualitative meaning transmitted by rules of ROM. In
particular, each of the above results has its explana-
tion in commonsense reasoning terms given by the
rules applied to obtain it. Using symbolic computa-
tion, the formal k orders of the results can even be
expressed in terms of k; and k;. This can be used for



other purposes such as design, so as to tune the
values of k; and k; and thus make sure desired orders
of magnitude relations are satisfied.

Nevertheless it can be noticed, by comparing them
with exact results (1'to 57), that these relations are not
in general optimal. In fact, in qualitative terms, the
exact results would give:

DT2 <..< DTH DTH « .~* DTC
DTC DT2«€.<DTC FH= .}k FC,
improving 3 of the 5 above results. The improvement
is even more obvious when comparing ranges given
by numeric orders k3 to k8 with exact results. Only
DT2/DTH is correctly estimated (i.e. (1a) and (1°) are
the same). In fact, this is not surprising. Although
each rule of ROM(R) has been computed with the
best estimate for order in conclusion, so that each
rule taken separately cannot be improved, this does
not guarantee optimality through an inference path
using several rules that share common variables. In
some way, what we have is local optimality, not
global optimality. If we estimate that the obtained
results, although sound, are not accurate enough for
our purpose, we have to supplement ROM(R) with
other techniques.

DTI1 <

Using Numeric or Symbolic Algebra
Techniques

Once sound results of ROM(R), with the obvious
qualitative meaning of the inference paths, have been
obtained, several supplementary techniques can be
used in order to refine them if needed. These tech-
niques come from two different approaches: numeric
ones which transpose well-known consistency tech-
niques for CSPs to numeric CSPs, and symbolic ones
which use computer algebra. These approaches are
not exclusive and can be usefully combined.

Applying Consistency Techniques for Numeric
CSPs

A first way of refining the results is to start from defi-
nitions (LILIII) of the fundamental relations of
ROM(R) in terms of intervals, a technique that can
easily be extended to all 15 primitive relations.
Numeric values are also naturally represented by
intervals to take into account precision of observa-
tion. Interval computation thus offers itself. More-
over, we are not limited to intervals representing the
15 primitive relations or the compound ones, ie. to
the scale of ROM(R); we can in fact express any
order of magnitude binary relation between two
quantities by an interval encompassing the quotient
of the quantities. In particular, intervals do not need
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the specific symmetry properties of those of ROM(R)
such as in (LILIII). Since using intervals is thus
more accurate when expressing data, it should also be
so for the results. But, unfortunately, interval propa-
gation is rarely powerful enough: in the heat
exchanger example nothing is obtained by this
method.

The idea is to generalize interval propagation in the
same way that, in CSPs, k-consistency with k>2
extends arc consistency. This has been done in
[Lhomme, 1993], who shows that the consistency
techniques that have been developed for CSPs can be
adapted to numeric CSPs involving, in particular,
continuous domains. The way is to handle domains
only by their bounds and to define an analog of
k-consistency restricted to the bounds of the
domains, called k-B-consistency. In particular
2-B-consistency, or arc B-consistency, which formal-
izes interval propagation, is extended by the notion of
k-B-consistency. The related algorithms with their
complexity are given for k=2 and 3. They have been
implemented in Interlog [Dassault Electronique,
1991], above Prolog language. In this section, these
techniques are evaluated w.r.t. the heat exchanger
example.

Starting from equations (el) and (e2) and assump-
tions (i’i’,iii"), bounds for the 5 remaining quotients
are looked for. In this case, as already seen, arc
B-consistency gives no result. But 3-B-consistency
gives the following results for the first 4 quotients
(nothing is obtained for FH/FC) with parameters
characterizing the authorized relative imprecision at
the bounds w1=0.02 and w2=0.0001 (in about 75s
on an IBM 3090):

(1 DT2/DTH < 0.508
(29 0.665 < DTH/DTC < 1.120
(3 DT1/DTC < 0.112
(47 DT2/DTC < 0.559.
It can be noticed that estimates (27,3”,4") are better
than corresponding results of ROM(R) (2a,3a4a)
and, for the first two, not far from optimal ones
(2',3). 4-B-consistency has also been tried, although
execution time increases considerably. For example,
0.710 < DTH/DTC < 1.090 and DT2/DTC < 0.362,
which well approximate (2") and (4"), are obtained in
a few minutes with wi1=0.01 and w2=0.05.

Although interval propagation alone is in general
insufficient, k-B-consistency techniques with k>3
may thus provide very good results, but some diffi-
culties remain (here, nothing can be done with
equation (e2), wunless considering at least
5-consistency with efficiency problems).



Using Symbolic Algebra first

The above results reach the limits of purely numeric
approaches. If we want to progress towards optimal
results, we have to use computer algebra in order to
push symbolic computation as far as possible and
delay numeric evaluation In a great number of real
examples, the total number of equations expressing
the behavior of the system and of order of magnitude
assumptions equals the number of order of magni-
tude relations asked for, and the desired
dimensionless quotients can be solved in terms of the
known quotients, using these equations. These sol-
utions are very often expressed as rational functions
and this symbolic computation can be achieved by
computer algebra.

For example, from equations (el) and (e2), known
relations
DT2=QIxDT1, DT1=Q2xDTH, KH=Q3xKC,
and searched relations
DT2=XxDTH, DTH=YxDTC, DTI=WxDTC,
DT2=ZxDTC, FH=UxFC,

MAPLE V [Char, 1988] immediately deduces the
formulas (F):

X =QIxQ2, Y = 1/(1-Q2+ Q1xQ2),

W = Q2/(1-Q2+ Q1xQ2),

Z = Q1xQ2/(1-Q2+ Q1xQ2),

U = (1-Q2+Q1xQ2)/Q3,

with 1/5<Ql1 <5 0<Q2<1/10, 9/10<Q3 <
10/9.

Numeric CSP techniques can now be applied
directly to these symbolic equations. This time,
results are obtained just with arc B-consistency, even
for U:

(Is) X<05 (2s) 0666 <Y <1112 (3s5) W<
0.112 (4s) Z<0.556 (5s) 0.810 < U < 1.667.

It can thus be seen that, when starting from solved
symbolic expressions, the most simple numeric tech-
nique, i.e. analog to interval propagation, gives results
which are close to the exact ones (1'to 5) and, in all
cases, much better than those given by ROM(R) (la
to 5a). Obviously, using 3-B-consistency improves
the results still further, in particular for Z, as follows
(with w1=10.001 in 10s):

(Is) X <05 (2¢) 0713 <Y < 1.088 (3s) W
<0110 (4s) Z<0358 (55) 0827 < U <
1.556,

which are practically optimal.

Using Symbolic Algebra Alone for Computing
Optimal Results

Symbolically expressing searched quotients in terms
of known ones (Qi) leads to expressions which are
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continuously differentiable in Qi and most often alge-
braic (rational functions such as in (F)). The
problem to be solved can thus generally be expressed
as that of finding the absolute extrema of these
expressions on n-dimensional closed convex
parallelepipeds defined by the ranges of the known
intervals mi < Qi < Mi for 1<i<n. It is well-known
that these extrema occur at points where partial
derivatives are null. Thus this is a way to compute
them exactly from roots of derivatives by using com-
puter algebra.

More precisely, a necessary (not sufficient because
it can correspond in particular to a local extremum)
condition for an absolute extremum in a neighbor-
hood is the nullity of all the partial derivatives at the
given point. A difficulty arises because extrema may
be obtained on a face of dimension < n rather than in
the interior of the parallelepiped. Thus derivatives on
all faces have to be considered. But, thanks to com-
puter algebra, it is sufficient to symbolically compute
partial derivatives once and for all and then, in order
to obtain derivatives on any face, to fix the Qi, which
determine the face, to their numeric values. Roots of
all derivatives (in our case roots of a system of
polynomials) are computed, firstly in the interior and
then on the different faces in decreasing order of
dimension, and the corresponding numeric values of
expressions at these points are evaluated up to the
vertices. These values are finally compared and only
the highest and lowest are kept, which correspond to
the absolute extrema.

Let us now apply this method, implemented in
MAPLE V, to the heat exchanger example.
Expressions X, Y, W and Z depend on the 2 van-
ables Q1 and Q2 and are thus considered w.r.t. the
rectangle 1/5 < Q1 < 5, 0 < Q2 < 1/10; U, which
depends on the 3 variables Q1, Q2 and Q3 is consid-
ered wr.t. the parallelepiped based on the previous
rectangle with 9/10 < Q3 < 10/9. Results are com-
puted immediately and summarized below.

For X, Y, W and Z, it is found that only their
derivatives w.rt. QI are null on the edge Q2=0.
Corresponding constant values X=0, Y=1, W=0
and Z=0 are shown, after inspection of vertices, to
be the minima for X, W and Z, but not an absolute
extremum for Y. Looking now at the vertices, it is
found that the maximum of X is obtained at the
vertex Q1=5, Q2=1/10 and is equal to 1/2; the
minimum of Y is reached at Q1=35, Q2=1/10 and 1s
equal to 5/7, and its maximum is reached at Q1=1/5,
Q2=1/10 and is equal to 25/23; the maximum of W
is obtained at Ql1=1/5, Q2=1/10 and is equal to



5/46 and the maximum of Z is obtained at Q1=35,
Q2=1/10 and is equal to 5/14.

The denvative of U w.r.t. Q1 is null both on the
edge Q2=0, Q3= 9/10 corresponding to the con-
stant value U=10/9 and on the edge Q2=0,
Q3=10/9 corresponding to the constant value
U=9/10. But it is finally found that the minimum
occurs at the vertex Q1=1/5, Q2=1/10, Q3=10/9
and is equal to 207/250, and that the maximum
occurs at the vertex Q1=35, Q2=1/10, Q3=9/10 and
is equal to 14/9.

Finally computer algebra, which works with
rational numbers, gives the exact solutions (S) to our
problem:
0<X<1/2 5/7<Y <2523, 0<W < 5/46, 0
< Z < 5/14, 207/250 < U < 14/9.

Floating point approximation with 3 significant digits
gives (1" to 5).

The method of roots of derivatives, processed by
computer algebra, is thus a very powerful technique
to automatically obtain the exact ranges. But, in
addition to the complete loss of the qualitative aspect
of the inference and the necessity, as in the above
subsection, for the system of equations to be algebra-
ically solvable, there are two other drawbacks to this
approach. The first one is that roots of a polynomial
system cannot in general be obtained exactly. This is
solved in practice in a large number of cases by using
the most recent modules of computer algebra which
are able to deal with algebraic numbers (represented
as a couple of a floating point interval and a
polynomial, coefficients of which are algebraic
numbers, such that the considered number is the only
root of the polynomial belonging to the interval).
The second one is the exponential complexity of the
method: in an n-dimensional space we have 3¢
systems of polynomials to look for, from the interior
to the vertices. The method becomes intractable very
rapidly unless the number of variables (assumed order
of magnitude relations) remains very small.

Syntactically Transforming Rational Functions: a
Line of Research

There are cases where, after having judiciously syn-
tactically transformed rational functions which are
solutions of the set of equations, the simple interval
propagation technique gives the exact optima, as
illustrated in the example.

Let us consider symbolic formulas (F). The exact
result (1s) can be obtained simply by interval propa-
gation for X because variables Q1 and Q2 have only
one occurrence in X. It is not the case for the other 4
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formulas, which is why, in this case, interval propa-
gation does not give exact results (2s to 5s). However,
a simple trick may be found by hand to satisfy this
condition. In fact the expression 1-Q2+ Q1xQ2 in
Y, W and U may be rewritten as 1+ Q2x(Q1-1),
which boils down to changing a variable: QIl-1]
instead of Q1. A simple interval propagation gives
23/25 < 1+ Q2x(Q1-1) < 7/5, from which exact sol-
utions (S) for Y, W and U are immediately obtained.
It is not the case for Z because Q1 appears also in
the numerator. But Z can be rewritten as
Z=1/(1+(1/Q1)(1/(Q2—1))) where each new vari-
able 1/Ql and 1/(Q2—1) appears only once. The
exact result (S) 0 < Z < 5/14 follows immediately.
This interval propagation may be achieved exactly by
manipulating rational numbers, or with a given
approximation by manipulating floating point
numbers, as is done by Interlog with 10 exact signif-
icant digits.

It can be concluded that, when expressions can be
rewritten by changing variables, such that each new
variable occurs only once, simple interval propagation
gives exact solutions. This transformation is obvi-
ously not always possible. A line of research would
be to characterize the cases where such a transforma-
tion of rational functions (or at least a partial one
which minimizes the number of occurences of each
variable) is possible and to find algorithms to do this.

Conclusion

It has been shown in this paper that the formal
system ROM(K) [Dague, 1993] can be transposed in
R in order to incorporate quantitative information
easily, and to ensure validity of inferences in R. Rules
of ROM(R) thus guarantee a sound calculus in R
(which was not the case with FOG, O(M) or
ROM(K)), while keeping their qualitative meaning,
thus guiding research and providing commonsense
explanations for results.

If the loss of precision through inference paths is
such that some of these results are judged to be too
imprecise for a specific purpose, several complemen-
tary techniques can be used to refine them.
k-consistency algorithms for numeric CSPs, which
generalize for k>2 interval propagation, generally
improve the results but may require a large k, in
which case they are very time consuming. A better
approach is first to use computer algebra to express
dimensionless quotients for which approximation is
searched in terms of quotients for which given
bounds are assumed, and then to apply k-consistency



techniques to the symbolic expressions obtained. It
has also been shown that computer algebra alone
may be used to obtain exact results, by computing
roots of partial derivatives in order to obtain the
extrema of the expressions on n-dimensional
parallelepipeds although this method, which is expo-
nential in n, is tractable only for a small number of
variables (i.e. known quotients). Finally, future work
would consist in formally modifying rational func-
tions in order to have a minimal number of occur-
rences of each variable, thus making interval
computation more precise; in particular, when it is
possible to have only one occurrence for each varn-
able, simple interval computation gives the exact
results.

All this assortment of tools, with ROM(R) as the
basis, is now available to perform powerful and flex-
ible qualitative and numeric reasoning for engineering
tasks, and will be tested soon on real applications in
chemical processes.
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