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Abstract
Computer programs which do any
task which requires reasoning about
physical systems need to use models
of those systems with varying accu-
racy/complexity tradeoffs. This paper
describes an approach to model gener-
ation in the domain of heat transfer
which is capable of producing mod-
els that vary greatly along this dimen-
sion . This approach is based on the
law of conservation of energy, which
provides a set of choices for the mod-
els in terms of "control volumes" and
heat flows. These choices are made
by using rules of thumb, which can
be seen as instances of two reduc-
tion operators, delta-iso and domi-
nance. Various rough models are used
to estimate the physical parameters on
which these rules depend . That is, the
rough models are evaluated in the pro-
cess of building more accurate ones .
The application of these operators is
only valid for a specific set of phys-
ically meaningful quantities ; thus we
are really reasoning about physics, not
equations.
This method has been implemented in
a running system, MSG.

Introduction
Computer programs which do design or di-
agnosis of physical systems, or indeed do
any task which requires reasoning about
such systems, often need a way to predict
the behavior of the system given its struc-
ture, i.e ., they need to model the physi-
cal parameters and processes of the sys-
tem. Unfortunately, models which embody
all the details of the system are often too
complex to use tractably. Thus, we need
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approximate models which trade off accu-
racy for simplicity. Furthermore, in many
cases there is no single model which is suf-
ficient for the whole task ; e.g ., in a parame-
ter design task it may be necessary to use a
fast but approximate model to get a design
that is close to right, and a more accurate
but slower model to get to the final design .
Since building models is such a key part
of reasoning about physical artifacts, it is
important that computer systems which do
tasks like design be able to build (or select)
models as needed . We have implemented a
system for automatically building models
for a particular class of problems in the do-
main of heat transfer, where quantitative
algebraic, ordinary and partial differential
equations are involved .
An important issue in modeling is that :

A system must make a number of
choices that determine the accuracy
and complexity of the model it is
building . How can it make these
choices so as to minimize complexity
but still (with reasonable likelihood)
meet a specified accuracy?
The issue is complicated by the fact that

many models in our domain do not have
closed-form solutions. Consequently, it is
difficult to a priori estimate the error of a
model, and to use it to guide the choices
of approximations. Our domain experts
would rather use a number of heuristics to
guide their decisions, which often result in
a model close to a specified accuracy. Our
system also make use of such heuristics .
Our analysis of these heuristics, which is

the main focus of this paper, indicates that
they are not just experiential knowledge.
They are also based on the domain theory,
and there is a structure on these heuristics .
In particular :

. The heuristics are structured by the fun-



damental law of the domain, the conser-
vation of energy. The law and the do-
main theory impose asequence on choos-
ing approximations .

" Semantically, the heuristics involves the
spatial and temporal variations of be-
havior and material properties of arti-
facts. Syntactically, they can be seen as
instances of delta.iso and dominance re-
duction operators[Falkenhainer, 1992) .

" The heuristics base the choices of ap-
proximations on variations of behaviors
of artifacts, which are then estimated by
a set of rough models including order
of magnitude reasoning about the heat
fluxes .

Thefollowing sections will describe what
the choices are, and how the heuristics
make those choices. The section after that
will describe MSG (Model Selection and
Generation), a system that implements our
approach. The last two sections discuss re-
lated work and give a summary.

What Are the Choices
Before we can discuss how the choices are
made, we must describe what the choices
are. That is what we will do in this section .

In order to understand what the choices
are, it is first necessary to understand how
the models are derived from the physics of
heat flow . An equational model consists
of a set of variables and a set of equations
relating these variables. In the domain of
heat transfer, all mathematical models are
based on a fundamental physical law : the
law of conservation ofenergy . This law says
that the rate of change of energy stored
within any bounded region of space is equal
to the net heat flow into the region plus any
internal heat generation within the region .
But in order to apply this conservation law,
it is necessary to first specify a set of con-
trol volumes, regions of space bounded by
control surfaces . Then the variables rep-
resent the physical parameters of the con-
trol volumes such as temperature and en-
ergy. The equations include at least one
governing equation, representing the inter-
action of energy and heat flows according
to the conservation law, with terms model-
ing how each energy and flow depends on
the physical parameters . There will also
be other equations, if necessary, to repre-
sent other constraints such as initial and
boundary conditions .
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The approach of using control volume for
formulating conservation laws is the com-
mon approach to model formulation in the
domains of heat transfer and fluid mechan-
ics. To create such a model, then, we must
choose a set of control volumes, a set of
energy processes to include, and a specific
model for each process included.
The issue in choosing control volumes

that has the greatest effect on the com-
plexity of the resulting model is the choice
between a lumped control volume and a dif-
ferential one. A lumped control volume oc-
cupies a finite volume, and we represent a
parameter (e.g . the temperature) of the
entire volume by a single number . A dif-
ferential control volume is infinitesimal -
actually, we are modeling all the points
of the region by a "representative" control
volume that has parameters representing
the actual xyz position of this volume in
the region . There are also combined types,
e.g . a control volume that is lumped in the
x dimension and differential in y and z.
A lumped control volume leads to al-

gebraic or ordinary differential equations
(ODE's), while a differential control vol-
ume leads to partial differential equations
(PDE's) .
After a control volume is chosen, it is

then possible to identify all the energy
and heat flow processes acting on that vol-
ume, and choose which ones to include in
the model. One such choice is whether
to include heat storage processes in the
model. Since these are the only processes
whose representation mentions time explic-
itly, leaving them out results in a steady
state model in which time does not ap-
pear as a separate dimension, while leaving
them in results in a transient model.
Two other choices involves heat flow pro-

cesses. In some cases it is possible to ignore
heat flow in one or more dimensions (e.g .
in x), which reduces the model from 3D to
2D or 1D, thus greatly reducing the cost
of numerical solution . If the model does
include a conductive heat flow, it is possi-
ble to ignore the fact that thermal conduc-
tivity of many materials actually depends
slightly on the temperature of the material .

How Do We Make These
Choices?

Given the kinds of choices outlined above,
the question remains as to how we make
them. First we will discuss the general ap-
proach, and then see how it is instantiated



in a number of specific decisions .

General Approach
Our informal observation of real engineers
shows that they use a number of "rules
of thumb" to make such decisions, and so
our system does too . However the main
point of this paper is the following: our
analysis shows that these rules can be ex-
plained as deriving from two basic reduc-
tion operators : )

Delta-iso: If ~ < e then we can re-
place f(v) with f(vo) everywhere in our
model .
Here f is some function of parameter
v .

	

ODf is the amount f(v) varies as v
varies over its range (i .e .

	

I min f(v) -
max f(v)1) . If this is much smaller than
some reference value for f, we can ig-
nore the variation, and treat f(v) as if
it were independent of v, and equal to
f(vo) where vo is some fixed value in the
range of v .
Dominance : If B <_ e then we can re-
place A + B with B
Both of these operators say that if some

value (A or the variation in f) is "small",
then we can ignore the smaller value . One
question this raises is "small compared to
what?" In an artifact where temperatures
vary by hundreds of degrees, a variation of
one degree may be small, while in an ar-
tifact where temperatures vary by only a
few degrees at most, a variation of one de-
gree may be significant . For dominance the
answer is straightforward - compare A with
the rest of the sum it is being added to . For
delta iso, it turns out that the appropriate
f*ef can be determined from knowledge of
the domain (both analytic and empirical) .
It is often, but not always, f itself.
But if "small" means "smaller than this

other value", we still have to say how much
smaller, i .e ., what e is . The answer here is
that e depends on how accurate a model we
need . In our domain, for instance, e = .1
generally leads to models with an accuracy
of f3-5%. Values of e for other accuracies
can sometimes also be determined a priori
from domain knowledge, but must often be

'The names of these operator are derived
from the ter-
minology of Falkenhainer[Falkenhainer, 1992]
- the dominance operator is exactly the same
as Falkenhainer, and delta-iso is a variation on
his iso operator .
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set by trial and error - a model is built with
a given e, and its accuracy is evaluated by
comparison with a better model. If nec-
essary e is adjusted, and we repeat . Note
that such iteration is not a focus of our cur-
rent work. Our system simply takes the e's
as input .

The final question is how we can de-
termine the value of the ratio, i .e .

fret

or B .

	

As we will see, often f, A, and
B are values such as temperatures which
are not given as part of the problem state-
ment . Indeed, often they are the unknowns
which the model, once built, will be used to
find . However, we are able to escape from
this apparent circularity for two reasons.
First of all, it is sometimes possible to give
bounds on the variations of some expres-
sion, which is what we need for the delta-
iso rule, without knowing the detailed val-
ues of the expression . For example, the
temperature in an artifact with no internal
heat generation will lie between the max-
imum and minimum temperature in the
initial condition and current condition of
its boundary environment . Thus, we can
bound the variation of temperature given
only information in the problem. Also, we
sometimes have constraints on the deriva-
tive of a function, which can give us bounds
on the variability. The second reason we es-
cape from the apparent circularity is that
when we are building a model at one level
of accuracy, we can often base our model-
ing decisions on the results of a much less
accurate model . Often a crude order-of-
magnitude result can tell us enough . These
less accurate models appear in the forms
of domain specific compiled rules, some-
times using "dimensionless numbers", such
as Biot number, which are numbers often
used by engineeers to characterize a sys-
tem.

Our current system only goes one level
deep in this process of using a less accu-
rate model to gather information needed
in building a more accurate model, but we
speculate that in general the process may
be recursive, e.g . with decisions about a
highly accurate model being based on re-
sults from an intermediate model, which
in turn is built based on results from a still
less accurate model, and so on. Further-
more, we have observed that the same pro-
cess is also used by engineers in the domain
of ship design .



Example Rules
Now let see how a number of example rules
are instances of this general scheme .

Choice of control volume Choice of
control volume is guided by the degree
of temperature variation in spatial dimen-
sions. The justification for choosing a dif-
ferential control volume is to capture tem-
perature variation in a region . If tempera-
ture is uniform, then a lumped model is as
effective as a distributed model, with less
computation cost .

For

	

a
solid whose boundary touches a fluid, the
Biot number[Incropera and DeWitt, 1990]
is used to estimate that temperature varia-
tion . It is a "dimensionless number", i.e . a
ratio in which all physical dimensions such
as length and time cancel out . Such num-
bers are common in these rules of thumb.
The Biot number is derived from the bal-
ance of heat flux at the surface of an object .
It is defined as

AT.- .lid

	

h * L
_

	

- Biot Number
OTboundary

where h, k, L are convection coefficient,
conductivity, and thickness of an object
along one spatial dimension. The formula
for Biot number is derived from an esti-
mate of the ratio of internal thermal resis-
tance of a solid to the boundary layer ther-
mal resistance, but it can be shown that
this ratio is also roughly the ratio of tem-
perature drop across thickness of the solid
to temperature drop across the boundary.
Thus, a small Biot number value implies
a small temperature variation within the
solid. If it is less than the specified thresh-
old value, e, a lumped model is chosen .

This decision is an instance of the delta-
iso operation, with f(v) = T,oIid(x) and
fref = OTboundary.

Reduction of Transient to Steady
State Reduction of transient to steady
state is guided by the relative amount of
temperature variation over time, defined
as AtTITrnin, where OtT is the difference
in average temperature at the start and
end of the time interval we are modeling,
calculated by using an algebraic lumped
model of heat flow, and T,nin is the min-
imum temperature of the two values . If
OtTIT..in <_ e, then T is assumed to be
constant with respect to time t . Therefore,
aT/at = 0, and the term representing en-
ergy storage can be dropped out, resulting

in a steady state equation . For example,

ka2T = PC aT
~

ka2T = 0
ax- at ax-

This decision is an instance of the delta-
iso operation.

Spatial Dimension Reduction Re-
duction from a 3D to a 2D or 1D model is
based on inferring that heat flow in some
dimension, say x, is much smaller than in
other dimensions . If so, we can drop the
term for heat flow in x from the heat equa-
tion, and for example,

aX2 + k-T

	

T = 0-_ O~ k-k y

	

y
We estimate the ratio of heat flow in one

dimension to heat flow in the other dimen-
sions using a kind of order-of-magnitude
reasoning; the resulting rule of thumb is
based on the aspect ratio of the object, i .e .
the ratios of its lengths in x, y, and z.

This decision is an instance of dominance
operation, using the the dominance of heat
flux to eliminate terms ofsecond order par-
tial derivative in equations. Since we drop
the only term that mentions, say, x, this
results in a drop of spatial dimension.

Non-linear to Linear Equations The
heat equation in its full form is a non-linear
PDE. If we can assume that thermal con-
ductivity is independent of location, we can
transform this into a linear PDE which is
much easier to solve. For example,

a(kaT)=0~ka~T
e
=0

ay ay

	

ay

This simplification is based on estimat-
ing conductivity variation with respect to
temperature. The conductivity variation
is defined by OTk/kmin, where OTk is dif-
ference of conductivity at maximum and
minimum temperatures . If ATk/k*nin <_ e,
then the conductivity is assumed to be in-
dependent of temperature, and therefore,
also independent of x, y, and z (assuming a
homogeneous material), which justifies the
transformation above.
This decision is an instance of delta-iso

operation .

Implemented System
We will now discuss MSG, the system we
have implemented for thermal modeling
based on our approach .
The input to MSG is
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Figure 1 : Tasks in Model Generation

"" Modelr

Data

Data Flow

The physical system to model: a bound-
ary representation of the objects' geome-
tries, and their material properties, en-
vironment, and initial conditions .

A query that a model is required to
answer, expressed in terms of a vari-
able, and its distribution across space
and time . (E.g ., T(x, t) would ask how
temperature varied over the x dimension
and over time .)

A set of thresholds e for the approxima-
tion rules

A mathematical model satisfying the in-
put query and the set of thresholds, and
is expressed in terms of aset of variables,
their attributes, and a set of equations,
and

" A set of assumptions which the system
makes in choices of control volumes, and
energy terms.

The architecture of MSG follows the
structure of the model building process
outlined above. See Figure 1.

The system described in this paper has
been implemented. The first two subtasks,
i.e. choice of control volumes and reason-
ing of energy and heat flows, are written
in Common Lisp and CLOS, and the third
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subtask, mathematical simplification, is in-
terfaced with Maple, a symbolic mathe-
matical system .
The system is currently being tested

for both single-component and multi-
component objects. It has generated 12
examples, with 2 algebraic models, 2 ODE
models and 8 PDE models (of which one of
them involves 2 coupled PDE, and another
one is a non-linear one) . The examples
cover heat treatment of flat plate, cooling
fin problem, extrusion process, and oven .
The types of heat flow include conduc-
tion and internal heat generation within
solids, radiation and convection at surfaces
of solids . The CPU time for these examples
running on a Sparcstation 1 ranges from 1
second for an algebraic model to 4 seconds
for a model of two coupled PDEs.

Discussion
This section will make several additional
points .

Inferring Global Error from
Local Error

Note that our models can be viewed ei-
ther as systems of mathematical terms and
equations or as systems of physical pro-
cesses (temperatures, heat flows, etc), but
that either way they are systems with parts
that can interact in complex ways . We
are concerned with the cost and accuracy
of solving the whole system of equations,
i.e . with determining the overall behavior
of the physical system . However, our sim-
plification methods are based on reasoning
about the effect a given approximation will
have on individual terms or equations, i.e .
on the local behavior of parts of the system .

In general, one cannot simply assume
that a bounded change to a part of a sys-
tem of equations will lead to a bounded
change in the overall solution . Further-
more, our domain experts tell us that the
systems we are dealing with are too com-
plex for them to be able to do much formal
reasoning on how a local error affects the
overall solution . So how can we justify our
approach?
The answer is that we do not try to apply

the operators to arbitrary terms in arbi-
trary expressions. Rather, we apply them
only to very specific terms, representing
specific physically meaningful quantities in
a specific class of equations, modeling a
particular kind of physical system. For



these particular quantities in these partic-
ular systems, experts in the domain know
from experience that bounded local error
leads to bounded global error, and in par-
ticular that a local error of 10% usually
leads to a global error of 10% or less.

Thus, although the operators have been
presented in mathematical form, they
should not be seen as syntactic opera.
tions on equations, but rather as opera-
tions on specific physical parameters and
processes, for which we have empirical val-
idation that the operators lead to correct
results. In fact, as can be seen from the
discussion of MSG's architecture above,
the rules of thumb derived from these op-
erators are applied by MSG at a stage
where the representation is still an ex-
plicitly physical one, before we have cre-
ated the initial set of equations. This is
consistent with our approach, discussed in
[Ling and Steinberg, 1990], of reasoning as
long as possible in a physical representa-
tion .

Independence and Symmetry
It is interesting to note that the kind of
approximations our system makes are in-
dependence assumptions, that f(v) is in-
dependent of v or that whatever physical
term A +B equals is independent of A .

In our context, this independence leads
to simpler models in at least two ways .
First of all, dropping a dependence on a
dimension like x or t can lead to a problem
of smaller dimensions, which is thus much
more tractable numerically. Secondly,
dropping of dependence can lead to a
more decomposable problem. For instance,
dropping the dependence of heat conduc-
tivity on temperature turns the equations
into linear partial differential equations,
which can be decomposed into separate so-
lutions for each dimension.

Need for Validation and Revision
of Models
It should be noted that there are several
kinds of heuristics in this method . The va-
lidity of using the reduction operators in
the places they are used and also the values
of e used are based on at least somewhat
uncertain domain knowledge, and some of
the methods used to evaluate the ratios in
the rules are approximate. Because mod-
eling decisions are based on heuristics that
are not always correct, the model that re-
sults from our method, like the models
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that human engineers produce, may not
in fact have the required accuracy . It is
only a good first guess, and must be vali-
dated and, if necessary, revised. Our cur-
rent work does not focus on this problem
of validation and revision .

Related Work
Both Addanki et al [Addanki et al., 1991]
and Weld [Weld, 1990] [Weld, 1992] focus
on model selection and switching. The
work of Addanki et al uses graphs to repre-
sent a set ofuser-provided models, anduses
domain specific parameter change rules to
select models which resolve the conflicts
between predictions and observation. Our
approximation operators are used to con-
struct models, rather than to select one
from a set of user-provided models. Weld's
work uses a domain independent technique
of comparative analysis to select appro-
priate models from a set of user-provided
models for query of the form "Is parame-
ter X > parameter Y?" . The forms of our
approximation operators are domain inde-
pendent, but the operators require domain
specific methods to infer behaviors of ob-
jects. Our approximation operators can
work on a more general form of queries,
but cannot provide guarantee on the ac-
curacy of approximate models. Finally,
our operators cover not only terms elimi-
nations in equations by fitting approxima-
tions, but also simplification of the over-
all form of equations by different choices of
control volumes.

Nayak [Nayak, 1991] presents a domain-
independent technique of validating an ap-
proximate model of a set of algebraic equa-
tions, by comparing the prediction of the
model with those from an accurate model,
and see if the discrepancy falls within a
specified tolerance.

Falkenhainer

	

[Falkenhainer, 1992]
presents amethod of building aset of likely
useful models, based on input estimates of
probability distribution of problem param-
eters. The models are then evaluated by
actually executing them on a number of
examples, rather than by the kind of a pri-
ori rules our system uses . An interpola-
tion function is obtained for these accu-
racy. The interpolation function is then
derived from these measurements and used
to guide future model selection. The ap-
proach is promising when the cost of nu-
merical evaluation can be amortized over
much use of the resulting models, and when



the cost of evaluating the models is not too
high, i.e . models are not too complex, and
the number of likely-useful models is not
too high .

Other relevant work are by Falkenhainer
and Forbus
[Falkenhainer and Forbus, 1991], by Finn
et

	

al

	

[Finn et al ., 1992],
by Nayak [Nayak, 1992], and by Gelsey
[Gelsey, 1989] . This work, however, does
not focus primarily on the issue of auto-
matically choosing an approximation with
a desired numerical accuracy .

Summary
Modeling is important in automated rea-
soning about complex physical devices.
This paper describes an approach to model
generation for algebraic, ordinary and par-
tial differential equations in the domain of
heat transfer . The structure of the con-
servation law, and the control volume for-
mulation, provide a set of choices for the
models in terms of control volumes, and
heat flows. These choices are made by us-
ing rules of thumb, which can be seen as
instances of two reduction operators, delta-
iso and dominance. Various rough models
are used to estimate the physical parame-
ters on which these rules depend. That is,
the rough models are evaluated in the pro-
cess of building more accurate ones. The
application of these operators is only valid
for a specific set of physically meaning-
ful quantities ; thus we are really reasoning
about physics, not equations.

This method has been implemented in a
running system, MSG.
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