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Abstract
Understanding flow in the three-dimensional
phase space is challenging both to human experts
and to current computer science technology . To
break through the barrier, we are building a pro-
gram called PSX3 that can autonomously explore
the flow in a three-dimensional phase space, by
integrating Al and numerical techniques .
In this paper, I point out that quasi-symbolic rep-
resentation called flow mappings is effective as a
means of capturing qualitative aspects of three-
dimensional flow and present a method of gen-
erating flow mappings for a system of ordinary
differential equations with three unknown func-
tions . The method is based on a finding that ge-
ometric cues for generating a set of flow patterns
can be classified into five categories . I demon-
strate how knowledge about interaction of geo-
metric cues is utilized for intelligently- controlling
numerical computation .

Introduction
Behavior of ordinary differential equations (ODEs) can
be qualitatively understood by analyzing the topolog-
ical and geometric features of the flow or the phase
portrait, which is the set of all solution curves or orbits
in the phase space . Usually, essential part of qualita-
tive analysis is carried out by applied mathematicians
who have not only ample knowledge and experiences
but also perceptual abilities of recognizing complex ge-
ometric objects . In the process of experts' understand-
ing of ODES, qualitative analysis precedes quantitative
analysis . The role of qualitative analysis is to grasp
the rough picture of the behavior of a given system of
ODEs and to focus the scope and range of quantita-
tive analysis . It is often the case that human experts'
work is so substantial that it results in a full journal
paper such as (Matsumoto et al., 1985) . It is quite
challenging to analyze and model experts' ability and
skills .

Recently, automating qualitative analysis of sys-
tem of ODEs has been attempted by several authors
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(Sacks, 1991 : Nishida and Doshita . 1991 ; Nishida et
al ., 1991 ; Kalagnanam, 1991 : Zha.o, 1991) . Unfortu-
nately, most of these methods are only applicable to
two-dimensional flows .

Qualitative analysis of three-dimensional flow is
quite challenging both to human experts and to the
current AI technology . To human experts, three-
dimensional flow is hard to grasp intuitively even if
it is visualized, for it is abstract and does not pro-
vide enough visual constraints for recovering three-
dimensional geometry from visual presentation . In ad-
dition, flow itself may sometimes be fairly complex .
To the AI technology, the task is not easy. Firstly,

some mathematical theories, such as existence and
non-existence theorems, are hard to interpret proce-
durally . Secondly, AI does not have enough experience
with representing and reasoning about geometric ob-
jects in continuous space . Finally, numerical errors are
inevitable which may cause serious logical errors .
To break through the barrier, we are building a

program called PSX3 that can autonomously explore
the flow in a three-dimensional phase space by inte-
grating Al and numerical techniques . A key issue is
designing an effective representation that would al-
low us to integrate experts' high level decision mak-
ing process and powerful numerical analysis methods .

. I point out that quasi-symbolic representation called
flow mappings is an effective means of representing
qualitative aspects of three-dimensional flow . We have
proposed the notion of flow mappings as a means
of representing flow in (Nishida and Doshita, 1991 ;
Nishida et al., 1991) . However, we have only demon-
strated their utilitv for two-dimensional flows . We have
yet to validate the concept for three or higher dimen-
sional flows .

In this paper . I present a method of generating a
set of flow mappings for a system of ODEs with three
unknown functions . The method is based on a finding
that geometric cues for constructing a set of flow pat-
terns can be classified into five categories . I demon-
strate how knowledge about interaction of geometric
cues is utilized for intelligently controlling numerical
computation .
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Flow in Three-Dimensional Phase Space
In this paper, we consider qualitative behavior of sys-
tems of ODEs of the form :

dx = f(x) ;

	

(1)
dt

where x E R3 and f : R.3 - R3 . From geometric points
of view . we can think of (1) as introducing a rector field
in the three-dimensional phase space spanned by three
unknown functions x = {x(t), y(t), z(t)) in the sense
that it defines flow vector dx = { dt , a , dt ) at each
point in the phase space . Given a. vector field, we can
think of orbits or trajectories resulting from travers-
ing the phase space according to the vector field . The
qualitative behavior of (1) can be grasped by studying
the topological structure of the phase portrait, the set
of all orbits in the phase space .

For a while, I focus on systems of piecewise linear
ODEs in which f is represented as a collection of lin-
ear functions and constants.' Although they are but.
a subclass of ODEs, systems of piecewise linear ODES
equally exhibit complex behaviors under certain con-
ditions .

'Later, I will discuss how the method presented can be
extended to cases in which only general restrictions (conti-
nuity) are posed on f .

(e) trace of an orbit near (0, 0, 0)
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Figure 1 : Matsumoto-Chua's circuit (Matsumoto et al., 1985) and a trace of an orbit near a double scroll attractor

For example, consider a system of piecewise linear
ODEs:

where .

dT = -6.3x + 6.3y - 9g(x)

	

'
~t =07x-0.7y+z

	

(2)

g(x)

	

=

	

-0.5x + 0.3 (x < -1)
-0.8x(-1<x<1)
-0.5x - 0.3(1 < x) .

System of ODES (2) is obtained by simplifying the cir-
cuit equations of Matsumoto-Chua's circuit (third or-
der, reciprocal, with only one nonlinear . 3-segments
piecewise linear resistor VR: see Figure la) .

In spite of its simplicity in form, (2) exhibits a fairly
complex behavior, for the phase portrait contains a
chaotic attractor' with a "double scroll" structure,
that is, two sheet-like thin rings curled up together into
spiral forms as shown in Figure le (Matsumoto et al.,
1985) . Orbits approach the attractor as time goes and
manifest chaotic behaviors as they irregularly transit
between the two "rings ."

2Roughly, an attractor is a dense collection of orbits that
nearby orbits approach as t - oc . The reader is referred to
(Guckenheimer and Holmes, 1983) for complete definition
and discussion .



(a) a coherent bundle of orbit intervals

f : generalized .
source

(c) an expanding bundle(b) a contracting bundle
of orbit intervals

	

of orbit intervals

f-t,f :) t

characterized as: f -+ t

Flow Mappings as Representation of
Flow

characterized as:

	

characterized as :

Figure 2 : A flow mapping and an aggregated bundle of coherent intervals of orbits

Chaotic attractors may exist only in three or higher
dimensional phase space . This fact makes analysis of
high dimensional flows significantly harder than two-
dimensional flows . Analysis of the double-scroll attrac-
tor was reported in a full journal paper (Matsumoto et
al., 1985) in applied mathematics .

We would like to represent flow using finite-length,
quasi-symbolic notations, for many powerful AI tech-
niques assume the input to be symbolically repre-
sented . The key idea I present in this paper is to par-
tition orbits into intervals (orbit intervals) and aggre-
gate them into "coherent" bundles (hereafter, bundles
of orbit intervals) so that the flow can be represented
as a sum of finitely many bundles of orbit intervals . I
define the coherency of orbit intervals with respect to a
finite set of sensing planes arbitrarily inserted into the
phase space : a bundle of orbit intervals -t is coherent,
if all orbit intervals in -ib come from the same general-
ized source (or g-source) and go to the same generalized
sink (or g-sink) without being cut. by any sensing plane,
where g-source and g-sink are either (a) a fixed point
or a repellor/attractor with more complex structure,
or (b) a singly connected region of a sensing plane .
A flow mapping represents a bundle of orbit intervals

as a mapping from the g-source to the g-sink . Thus,
it is mostly symbolic . However, it is not completely
symbolic as we represent the shape of g-sources and
g-sinks approximately. Figure 2a schematically illus-
trates a bundle of orbit intervals and its representation
by a flow mapping, where the g-sinks and g-sources are

t : generalized
sink

(d)

	

the Lorenz attractor

characterized as :

f - t, f C t

	

ft -ti, f2 - t2, fl Uf2 D t: U is
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connected regions of a sensing plane . We are interested
in minimal partitioning of flow into coherent bundles of
orbit intervals that would lead to minimal description
length .

Figure 3 shows minimal partitioning of the flow of
Matsumoto-Chua equation (2) in a. three-dimensional
region R : 1 <_ x _< 3,-2 _< y _< 2, -3 _< z _<
3, 0.566(x-1 .5)-0.775y+0.281(z+1 .05) > 0 into bun-
dles of orbit intervals . Plane 0 .566(x - 1 .5) - 0 .775y -1-
0.281(z+1.05) = 0 is a two-dimensional eigenspace and
line P26P29 is a one-dimensional eigenspace of a fixed
point p26 . Orbits in region 0 .566(x - 1.5) - 0.775y +
0.281(z + 1 .05) > 0 approach the two-dimensional
eigenspace with turning around the eigenspace P26P29 .
As they approach the two-dimensional eigenspace, the
spiral becomes bigger and diverges . The flow in R can
be partitioned into fifteen bundles of orbit intervals .
,For example, orbit intervals entering R through region
v1v5P41P40P10 can be partitioned into five bundles of
orbit intervals :

~Dl : z1P2P3P4P5 --' v1PIPsP6P5
~2 : P2v5P43P39P38P30P28P4P3

- PIP51P35P36P302022P9Ps
~D3 :PSP4P28P32P31P10 - P11P15P38P30P31P10

'D5 : P39P43P41P40 --' P44p43P41P42 "
'4 : P29P3aP31P32P28P30 -' P25P23P24P23P34P33

The advantage of flow mappings is threefold . First,
they can be used to locate important orbits such as
repellors3 and attractors . Thus, flow mappings repre-
senting bundle as shown in Figure 2b and Figure 2c
suggest possible existence of attractors and repellors,

3 Repellors are orbits that repel nearby orbits (or attract
nearby orbits as t - -oo) .



_2
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Figure 3: Anatomy of flow of Matsumoto-Chua equation (2) in region R : 1 < x < 3, -2 < y G 2,-3 < z <
3.0.566(x - 1 .5) - 0 .775y + 0.281(2 + 1 .05) > 0



respectively. Figure 2d characterizes the structure of
the Lorenz attractor, known as an chaotic attractor
(Guckenheimer and Holmes, 1983) . Detection of these
structure motivates focusing more detailed analysis .

Second, they provide an abstract and concise char-
acterization of flow, allowing to capture the flow at a
desired grain size . For example, when distances be-
tween sensing planes is sufficiently large, an attractor
with a complex internal structure may be abstracted
simply as a source of orbits, while the smaller the dis-
tance becomes, the finer resolution one may gain to see
the internal structure of an attractor .

Third, flow mappings economically represent bun-
dles of orbit intervals, three-dimensional geometric ob-
jects, only by referring to a pair of two or less dimen-
sional geometric objects . This means that flow map-
pings convey less but only essential information for rea-
soning about qualitative behavior than more straight-
forward representation, such as polyhedral approxima-
tion (Zhao, 1991) .

Generating Flow Mappings for
Three-Dimensional Flow

In order to design an algorithm of generating flow map-
pings for a given flow . I have studied the relationships
between geometric patterns that flow makes on the sur-
face of sensing planes and the topological structure of
underlying orbit intervals, and found that they can be
classified into five categories called geometric cue inter-
action patterns . My algorithm makes use of geometric
cue interaction patterns as local constraints both to
focus numerical analysis and interpret the result .

Geometric Cues
Let us consider characterizing flow in a convex region
called a cell which is bounded by sensing planes by a
set of flow mappings . In order to do that we study ge-
ometry that orbits make on surfaces of a sensing plane .

I classify the surface in terms of the orientation of
orbit there . A contingent section S of the surface is
called an entrance section if S is on a single sensing
plane and orbits enter the cell at all points of S ex-
cept some places where the orbits are tangent to the
surface . An exit section is defined similarly. An en-
trance or exit section (e.g ., exit section vlp5P7v4) may
be further partitioned into smaller sections (e .g ., sec-
tions v lp l v 4 , vlpsPfiPsP1, and P6P7Pa) by one or more
section boundary (e.g ., vip1 and p6ps), which may be
either (a) an intersection of sensing planes, (b) an im-
age or an inverse image of a section boundary, or (c)
an intersection of a two-dimensional eigenspace and the
cell surface . Section boundaries play an important role
as primary geometric cues on the surface .

Tangent sections separate entrance and exit sections .
Tangent sections are further classified into two cate-
gories : a concave section (e.g ., P5P7) at which orbits
come from the inside the cell, touch the surface, and
go back to the cell, and a convex section (e .g ., V I p5-and
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plop3l) at which orbits come from the outside the cell,
touch the surface, and leave the cell .
An intersection of an eigenspace and the surface 4 is

called a pole or a ground depending on whether the
eigenspace is one-dimensional or two-dimensional, re-
spectively . In Figure 3, point P29 is a pole and line
segments P41p40, P4OP1s, P1sP12, etc are grounds .
A thorn is a one-dimensional geometric object which

thrusts outward from section boundarv into an en-
trance/exit section . In Figure 3, there are two thorns :
P23P24 and p3op29 . Thorns result from peculiarity of
eigenspace .

Interaction of geometric cues may result in a junc-
tion of various types . For example, section boundaries
P2P4 and P5P4P2a in Figure 3 meet at P4, making a T-
junction., while vipip51 and v4PIPs make an X-junction
at p1 .
Some geometric cues such as fixed point P26 or con-

vex section PIOP31 are trivial in the sense that they
can be easily recognized by local computation without
tracking orbits, while others such as a T-junction at
p4 are nontrivial because they cannot be found with-
out predicting their existence and validation by focused
numerical analysis .

Geometric Cue Interaction Patterns
I have classified interactions of geometric cues into five
categories, as shown in Figure 4 . Each pattern is char-
acterized by a landmark orbit such as X, X,, in an X-X
interaction or T1 X in a T-X interaction that connect
geometric cues .
A X-X ("double X") interaction is an interaction

between boundary sections . In Figure 3, example of a
X-X interaction is with the landmark orbit P2P1 .
A T-X and a T- T ("double T") interaction co-occurs

with a concave section, which "pushes in" or "pops
out" bundle of orbit intervals . In Figure 3, example of
a T-X interactions is with landmark orbit P2ap22P3s-
A Pole-T interaction results from peculiarity of or-

bits in an eigenspace of a saddle node . The closer
the start (or end) point of an orbit approaches the
ground, the closer the end (or start) point of an orbit
approaches the pole . Special care is needed for search-
ing for a Pole- T interaction when the derivative of the
flow at the fixed point has complex eigenvalues, for
a . boundary edge may turn around the pole infinitely
many times .

A~Thorn- T interaction accompanies peculiarity, too .
A T-junction consisting of a section boundary, a convex
section, and a concave section is mapped to/from the
top of a thorn . Points on the section boundary of the
Tijunction are mapped to/from the concave section,
points on which are in turn mapped to/from the body
of the thorn .

4For simplicity; I assume that no surface of a cell is an
eigenspace, which is a special subspace consisting of orbits
tending to/from a saddle node .



(a) X- 'Interaction

	

(b) T-TInteraction

	

(c) T-TInteraction

ground (Es)

bin o(r) = p

(d) Pole . TInteraction

	

(e) Thorn-TInteraction

Figure 4 : Geometric Cue Interaction Patterns

(stage 1)

	

trivial geometric cue recognition : identify trivial geometric cues on the surface
and classify each surface into entrance, exit, concave, and convex sections ;

(stage 2)

	

nontrivial geometric cue recognition : seek nontrivial geometric cues by track-
ing orbits from trivial geometric cues and matching the result with geometric
cue interaction patterns;

(stage 3)

	

cell surface partitioning : partition entrance and exit sections based on trivial
and nontrivial geometric cues ;

(stage 4)

	

flow mapping generation : generate flow mappings by analyzing how parti-
tioned cell surfaces (and a fixed point if any in the given cell) are correlated
by the flow .

Figure 5 : A procedure for generating flow mappings for a given cell



Analysis Procedure
Roughly, a procedure for generating flow mappings for
a given cell is divided into four stages : trivial geometric
cue recognition, nontrivial geometric cue recognition,
cell surface partitioning, and flow mapping generation,
as shown in Figure 5 .

Trivial Geometric Cue Recognition At this
stage, the surface is classified with respect to the orien-
tation of flow and trivial geometric cues are recognized .
For piecewise linear flow, computation is relatively sim-
ple and complete information can be obtained almost
always . Table 1 shows class of computation required
to solve major subproblems arising at this stage .

Nontrivial Geometric Cues Recognition

	

This is
the most essential part of the procedure . Reasoning is
required to find nontrivial geometric cues and corre-
late them with trivial geometric cues . The procedure
for this stage is based on knowledge about geometric
cue interaction patterns . Currently, the knowledge is
encoded procedurally as a process of planning, moni-
toring, and interpreting the result of numerical compu-
tation . First, orbits are tracked forward and/or back-
ward from concave sections, section boundaries, and
the ground . Note that we can track only finitely many
orbits, so that care must be taken not to miss impor-
tant geometric cues . Then, the images and/or inverse
images of trivial geometric cues are examined to see
whether there is a possibility of the existence of a non-
trivial geometric cue . Explanation is sought that may
correlate the geometric cues, by consulting a library of
geometric cue interaction patterns .

Cell Surface Partitioning

	

The goal of this stage
is to find a minimal partitioning of the cell surface so
that each region may correspond to a g-source or g-sink
of a maximal bundle of orbit intervals . Minimal cycles
consisting of pieces of one-dimensional objects (either
tangent sections, section boundaries or ground) as well
as zero-dimensional objects (junctions) are sought from
the set of trivial and nontrivial geometric cues identi-
fied at previous stages, and they are identified as a
boundary of a two-dimensional g-sources/g-sinks .

Flow Mapping Generation Flow mappings are
generated by examining records of tracking orbits to
see how g-sources/g-sinkss are correlated with each
other by orbit intervals involved in the given cell .

Implementation
The analysis procedure described above is imple-
mented as PSX3 (Nishida, 1993), except for procedures
for Pole-T and Thorn- T interactions .

In order to cope with increasingly complex mathe-

'Two-dimensional ones should be found in cell surface
partitioning ; and the rest (zero-dimensional ones ; i .e ., fixed
points) are to be found in trivial geometric cue recognition,
if any in the give cell .
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matical problems, we have connected PSX3 with Math-
ematica (Wolfram . 1988) . Mathematica also provides
us with a fancy graphics to help understanding three-
dimensional geometric objects . PSX3 automatically
produces a command sequence which allows Mathe-
matica to produce a three-dimensional graphics for the
user .
We have tested the current version of PSX3 against a

few systems of piecewise linear ODEs whose flow does
not contain Pole- T or Thorn- T interactions .

Example (1)
Let us see how early stages of the analysis procedure
work for the top-left portion of the cell shown in Fig-
ure 3 . Figure 6a shows the result of trivial geometric
cue recognition . Figure 6b and 6c show the way or-
bits are tracked and nontrivial geometric cues are rec-
ognized . In the former, as pis move downward from
vertex v 1 , their images 6(p=)s jump from the top plane
to the rear plane . For this case, PSX3 assumes the ex-
istence of an Xjunction . In the latter, as qj s go to the
right, their inverse images 6-1 (qj) jump from the left
plane to the front plane, for which PSX3 assumes an-
other X junction . Figure 6d shows that a X-X interac-
tion is chosen an underlying geometric cue interaction
pattern that correlates the two X-junctions .

Example (2)
Now Consider a linear flow

:a-' -_ _x-2y+2
g

t
t =3x-y-Zz-2

dt 2 -

in cell :

0.2<x<2,0 .2<y<2,-0.2<z<2.1- 32x<y .

Figure 7a shows some of trivial geometric cues together
with some orbit intervals and the frame of the cell . Fig-
ure 7b shows the result of cell surface partitioning that
PSX3 has produced together with internal representa-
tion of flow mappings :

((CYCLE-40 FIXED-POINT-1) (CYCLE-45 CYCLE-33)
(CYCLE-36 CYCLE-47) (CYCLE-50 CYCLE-41)
(CYCLE-51 FIXED-POINT-1) (CYCLE-44 CYCLE-52)
(CYCLE-54 CYCLE-53) (CYCLE-55 CYCLE-46)
(CYCLE-56 CYCLE-37) (CYCLE-57 CYCLE-35)
(CYCLE-58 FIXED-POINT-1) (CYCLE-59 CYCLE-49)
(CYCLE-60 CYCLE-42) (CYCLE-61 CYCLE-39)
(CYCLE-62 CYCLE-34) (CYCLE-63 FIXED-POINT-1)
(CYCLE-64 CYCLE-48) (CYCLE-65 CYCLE-43)
(CYCLE-66 CYCLE-38) (CYCLE-67 CYCLE-32)
(CYCLE-68 FIXED-POINT-1)),

which is a list of pairs of the form (a ,3) which rep-
resents a flow mapping from a to ,3 by orbit inter-
vals contained in the cell . For example, the first item
says that all points in CYCLE-40 are mapped to fixed
point FIXED-POINT-1 (see also annotations given to
Figure 7b) .



Table 1 : Class of Computation Required to Solve Major Subproblems at (stage 1)

required information

	

class of computation

location of fixed point

	

solving linear simultaneous equation

type of fixed point

	

computing eigenvector of a 3 x 3 matrix (which requires solving a
cubic equation with one unknown)

eigenspace of saddle node	computingeigenvector ofa 3 x 3 matrix

location of tangent section

	

solving linear simultaneous equation

subcategorization of tangent sections

	

computing the sign of a polynomial

orbit

	

integration
(If one would like to take full advantage of linear system, s/he could
resort to an analytic solution method whose hardest part is com-
puting eigenvalues of a 3 x 3 matrix. )

intersection of an orbit and the boundary

	

integration and computing the sign of a polynomial
(If one would like to full advantage of linear system, s/he could
obtain the result by computing eigenvalues of a 3 x 3 matrix and
solving nonlinear simultaneous equation with three unknowns.)

convex

	

v~ ~~,

	

+

	

(exit)section

	

.~ t

entrance
section "'
Convex y!_..
section

(a) classify the surface

exit section section boundary

f-o

convex section

(b) tracking the orbits forward

	

(c) tracking the orbits backward

	

(d) interpretation based on

at pi (i = 1, 2. . . .)

	

at qi (i = 1, 2 . . . .)

	

geometric cue interaction
patterns

jump =~ );-junction
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qt qz q3

Figure 6 : A process of generating flow mappings for (2)

1
interpreted as
a X-Xinteraction



(a) trivial geometric cues, orbit intervals, and the
frame of the cell

Generalization to Nonlinear ODEs

So far, I have carefully limited our attention to sys-
tems of piecewise linear ODEs, for which the flow in
each cell is linear . However, it is not hard to extend
the method to nonlinear ODEs, if we are to handle
only non-degenerate (i.e ., hyperbolic) flows.s What to
be added is twofold : (a) a routine which will divide the
phase space into cells that contain at most one fixed
point, and (b) a general nonlinear (non-differential) si-
multaneous equation solver . Neither of these are very
different from those that have been implemented for
analyzing two-dimensional flow (Nishida and Doshita,
1991) .'
Another thing we might have to take into account

is the fact that certain assumptions such as planarity
of an eigenspace do not hold any more . Fortunately,
local characteristic of a nonlinear flow is equivalent to
a linear flow, as linear approximation by Jacobian pre-

'Degenerate flows are rare, even though generative prop-
erty (Hirsch and Smale, 1974) (a proposition that the prob-
ability of observing a degenerate flow is zero) does not hold
for three-dimensional flow .

7 It should be noted that a nonlinear simultaneous equa-
tion solver may not always produce a complete answer .
Dealing with incompleteness of numerical computation is
open for future research . Some early results are reported
in (Nishida et al., 1991) .

(b) result of cell surface partitioning

r .

	

1 .5

annotations given by hand

Figure 7 : Trivial geometric cue recognition and cell surface partitioning for (3) by PSX3

Related Work

serves local characteristics of nonlinear flow as far as
the flow is hyperbolic . Thus, the local techniques work .
Globally, we have not made any assumption that takes
advantage of the linearity of local flow, so it also works .
Implementation of these codes is, however, left for fu-
ture .

This work can be thought of as development of a basic
technology for intelligent scientific computation (Abel-
-son et al., 1989 : Kant et al ., 1992) . whose purpose is
to automate scientific and engineering problem solving .
In this paper, I have concentrated on deriving quasi-
symbolic, qualitative representation of ODEs by intel-
ligently controlling numerical analysis . Previous work
in this direction involves : POINCARE (Sacks . 1991) .
PSX2NL (Nishida and Doshita, 1991), Kalagnanam's
system (Kalagnanam, 1991) . and MAPS (Zhao, 1991) .
KAM (Yip. 1991) is one of the frontier work, though
it is for discrete systems (difference equations) . Un-
fortunately, these systems are severely limited to two-
dimensional flows, except MAPS.
Zhao claims MAPS (Zhao, 1991) can analyze n-

dimensional flows too . MAPS uses polyhedral approx-
imation of collection of orbits as intermediate inter-
nal representation . As polyhedral approximation rep-
resents rather the shape of flow than the topology,



it is not suitable for reasoning about qualitative as-
pects in which the topology of the flow is a main issue .
The more precise polyhedral approximation becomes ;
the more irrelevant information is contained, making it
harder to derive topological information . In contrast,
flow mappings only refer to g-sinks and g-sources of
bundles of orbit intervals, neglecting the shape of or-
bit intervals in between . As a result, (a) topological
information is directly accessible, and (b) unnecessary
computation and memory are suppressed significantly.

Limitations of the Approach
The method reported in this paper has two major lim-
itations . First, it is not straightforward to extend it to
general n-dimensional flow, even though the underly-
ing concepts are general, for I have chosen to improve
efficiency by taking advantages of three-dimensional
flow . Second, the current approach may be too rigid
with respect to the topology of flow. Sometimes, we
may have to pay a big cost for complete information,
especially when the topology of the flow is inherently
complex (e.g ., fractal basin boundary (Moon, 1987)) .8
Making the boundary fuzzy might be useful .

Concluding Remarks
The problem tackled in this paper is both hard, rel-
evant and central to qualitative reasoning and AI in
general .

It is hard for a solution to the problem itself deserves
a full journal paper in applied mathematics in a decade
ago . Thus, it is a real world problem.

It is relevant and central to qualitative reasoning,
for implementing an ability of reasoning about topol-
ogy of geometric patterns in a continuous domain is
essential to qualitative reasoning and will advance the
current technology as it significantly generalize envi-
sioning techniques . Symbolizing continuous world is
one of the main issue of qualitative reasoning .

Automating qualitative analysis by intelligently con-
trolled numerical analysis involves reasoning about
complex geometry and topology under incomplete in-
formation .

In this paper, I have pointed out that complex geo-
metric patterns of solution curves of systems of ODEs
can be decomposed into a combination of simple ge-
ometric patterns called geometric cue interaction pat-
terns, and shown how they can be utilized in qualita-
tive analysis of three-dimensional flow .
As a further work, important future work involves

generalization into n-dimensional flow and abstrac-
tion and focusing . From my own experience, it seems
steady to proceed step by step by gradually increasing
the number of dimensionality, rather than directly dive

'Note that this does not mean the current approach is
not suitable for analyzing chaos . Remember that the exam-
ple I have used in this paper is Matsumoto-Chua's double-
scroll attractor which is known as a chaotic attractor .
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into n-dimensional flows, for applied mathematicians
are more carefully investigating ODEs one by one, and
deliberate in generalization .
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