QUALITATIVE DESIGN WITH ENVISIONMENT

Bernard YANNOU
(Ecole Centrale Paris / Université Paris VI)
Ecole Centrale Paris - Laboratoire Productique Logistique
Grande Voie des Vignes - 92295 Chatenay-Malabry - France
Fax : (33-1)-41-13-12-72, Email : yannou@cti.ecp.fr

Abstract

The earlier stages of a design process consist in
enumerating (automatically or not) some design
alternatives that may be interesting to be studied
further. These design alternatives are characterized by
a qualitative architecture; i.e.,, the schematics of the
system is defined but parameters are not valued or are
defined by an interval. Moreover, for a dynamic system
design, functional relationships between dynamic
variables (like a monotonic function) can be imposed.
Therefore, the dynamic information can be viewed as
one or several sets of incompletely specified ODEs.
Actually, there is no proper analysis tool of such
incomplete data in regard to expected dynamic
behaviors which we call dynamic functional
specifications.

We describe, in this paper, a conceptual design
toolbox for dynamic systems called QDES (standing for
Qualitative DESign). QDES, taking as input a total
envisionment of a set of QDEs for a current design
alternative, we revisited such an envisionment in the
form of a constraint satisfaction problem formulation.
Next, QDES is based on : (1) a new model of a dynamic
functional specification in a phenomenological way, (2)
a design process history (with new algorithms) showing
mutual constraints between expected behaviors
(functional specifications) and potential behaviors
(envisionment) of the current design, (3) features of
abstraction and simplification enabling large-scale
models to be handled.

1. Introduction

One of the most important goals of Qualitative Physics
is to be used as a tool for design of physical systems.
Such a tool would allow the knowledge of dynamics to
be used qualitatively (i.e., not numerically) in the initial
stages of the design. Two methodologies can be
imagined :

(1) developing a synthesis design tool determining the
best system matching with some dynamic functional
specifications,

(2) developing a general analysis design tool letting the
designer qualitatively appreciate the degree of
matching between the potential behaviors of a design
alternative and the dynamic functional specifications.
This tool could even eliminate some spurious
alternatives of architecture from the pre-design phase,
thus saving effort and money.

250

In practice, being still very far from good automatic
design procedures, we are just presently interested in a
good analyzing tool of physical systems, a design
toolbox that a designer can easily handle and for which
results are easily interpreted. Thus, it is sufficient to
have a phenomenological model of the system
containing the only description of possible behaviors
(contrary to a causal model). Therefore, our toolbox
QDES accepts as input a total envisionment of a
system which is a finite state-transition-graph
[6,8,9,16,25] representing the dynamic behaviors from
all initial states. We consider that design must handle
total envisionments in order to characterize a
mechanism in its totality and to be sure not to forget
disastrous behaviors. Any sort of total envisionment
can be considered. From this point of view, QDES
represents a general design methodology.

This methodology consists in :

(1) assuming a system model able to match

optimally some dynamic specifications. The

assumptions of the designer about the system
model concern : (a) a component law (e.g., a resistor
model), (b) a process law (e.g., a displacement-
strain relation of a beam), (¢) the schematics of the

system (e.g., the kinematic constraints for a

mechanism), (d) a control function,

(2) carrying out a total envisionment from a

(presently one) set of QDEs (Qualitative differential

Equations),

(3) appreciating in QDES the matching between the

envisionment of the current system model and the

dynamic functional specifications, and eventually
testing relaxation of such specifications,

(4) returning to (1) in the case of a bad matching.
This methodology is a framework for a lot of very
different design problems. For example, QDES can be
a tool to identify a symbolic model of ODEs (in fact, a
system of QDEs) from a series of experimental data.
Indeed, it is interesting to have a global idea of the
matching between experiments and a proposed model
before using heavy data fitting procedures.

We were absolutely conscious of the combinatorial
explosion inherent to a total envisionment. Two
answers were brought to partly overcome this problem.
Firstly, we developed a minimal and very efficient
envisioner based on a constraint satisfaction problem
formulation. Secondly, handling large-scale
envisionments is made easier in letting the designer
build a hierarchy of models using considerations of
abstraction (aggregation) and simplification (filter). For

these two reasons, we are convinced that QDES is
practically a consistent solution for a class of systems
corresponding to : a set of incompletely specified
ODEs, highly non-linear ODEs, problems of
reasonable size (not too many variables), sets of
sophisticated dynamic functional specifications.

The phenomenological feature of our system also
exists in the hierarchy of models because this hierarchy
is characterized by some type of behavior assumptions.
Moreover, we will let the designer appreciate the
appropriateness of functional specifications on the
envisionment in a visual manner by the global shapes
and properties of the graphs.
Section 2 presents our new efficient total envisioner.
Section 3 presents our design model beginning by the
problems remaining open in the qualitative design
field, then giving the definition of a dynamic functional
specification, presenting a new algorithm of mutual
pruning of an envisionment and several specifications,
and ending by a brief description of the design session.
Section 4 evokes related work in the field. We conclude
in section 5.

2. A new total envisioner

We fundamentally revisited total envisionment from a
set of QDEs. This revisiting is based on the efficient use
of a constraint propagation technique (arc-consistency
on integers, see §2.2), an explicit typage of qualitative
states into instants or/and intervals and a new simple
and efficient envisionment algorithm (see §2.7).

The examples of QDE given in this section are only toy
examples without any design interest. They are only a
support for our explanations.

2.1. Our notation

At first, let us define some notation and concepts which
constitutes our basic vocabulary.

® [] is the Sign function of Sign Algebraand @, ®, ©, =
are the qualitative operators.

* A Qualitative Variable which has a value in the Sign
set {-,6,+] is related to a continuously differentiable

function of time on K.

* The Series of Derivatives of x denoted SD(x) is a list of
qualitative variables which are successive derivatives of
x. The set of SD(x) values is denoted V(SD(x)).

eg.: SD(x)=(xx'x") ; V(SD(x)=((-8,+)(0/4),... }

® An analytic variable is a variable for which a series
expansion exists. Then, analyticity is a property of a
series of derivatives. An important consequence is that
an analytic variable is constant throughout the
simulation or always in evolution over the intervals.
This last case can be assimilated into analyticity by a
twist of the language. Analyticity can be used to model
processes evolving at different time scales [17] and
simplify a lot an envisionment.

* A Qsystem (Fig. 1) is a set of QDEs (Qualitative
Differential Equations) defined by seven Prolog-like

predicatesl : Sum, Product, Power, Constant, M+, M-
and Derivatives as following :
(1) the linear QDE :
[x1]®...@ [xn]O[y1] ©..0 [ym] =ct
iswritten: Sum((x1,....xn), (y1,...,ym), ct)
with ¢t standing for a constant value : -, # or +.
(2) the monomial QDE :
[x1] &...&® [xn] =([y] or ct)
iswritten: Product((x1,...xn),y)
(3) the power n of a variable x :
[x] ®...8[x] =([y] or ct)
iswritten: Power(x, n, y)
(4) a constant variable x over time is written :
Constant(x, ct)
(5&6) the functional relationships of increasing
(resp. decreasing) functions are written :
M-+(x,y) (resp. M-(x,y))
(7) the Derivatives predicate (one per Qsystem) has
two arguments : the lists of analytic SD (first
argument) and the lists of non-analytic SD (by

default) (see Fig. 1).

Product((xy) , xy)

Product((x,z) , xz)
X'+aX-a.Y=0 Sum((x'x), (y), @)
Y'+Y+XZ-5.X=0 Sum((y'yxz), (x),e)
Z'+cZ-XY=0 Sum((z'z), (xy), e)

Derivatives(((xx').(y,y')(z,z")(xy)(xz)), ())

Fig. 1 The Qsystem of the Lorenz attractor representing the
dynamics of a fluid in convection (ab,c are positive constants).

* The set of all the variables of the Qsystem is denoted
QS and the set of all qualitative states (consistent
valuations of such a QS) is denoted V(QS).

eg. 1 QS=((xx"x")yy’); VIQS)={((-0+),(6+))...)

» We denote the instant set as being P={[INSTANTy] /
ye V(QS)) (P for Point) and the interval set as being
I={[INTERVAL,y] | yeV(QS)].

2.2. Arc-consistency

A very trivial resolution engine enumerates all
qualitative states and constrains transitions (see §2.3,
§2.4,§3.2). Our program is written in LE-LISP V152 with
a constraint propagation library called PECOS®. We
use constraint propagation on integers, especially the
arc-consistency algorithm and the daemon procedure.
A qualitative variable x is represented by a constrained
variable : X € {-1,0,1) corresponding to -, g, +. The
qualitative multiplication is exactly the constraint of
integer multiplication.

The qualitative addition [x] @ [y] =[z] is constrained by :

e the integer constraint (arc-consistency) :
d<=X+Y-Z<=1,

1 Our QDE vocabulary is very similar to that of the QSIM
program [16,17,18].
2 LE-LISP is a trademark of INRIA (FRANCE).

3 PECOS is 2 trademark of ILOG (FRANCE).

251

* three daemons which operate during
enumeration when some conditions are verified :
if X=0 then constrain(Y=2Z)
if Y=0 then constrain(X=Z)
if Z=0 then constrain(Y=-X)
Such simplicity does not prevent it from being very
efficient.

2.3. An explicit typage of states

In most approaches, the basic simulation algorithm for
total envisionment consists in :
(1) enumerating all qualitative states (set V(QS))
from the qualitative algebraic constraints (all but
the Derivatives predicates) and from the analyticity
property;
(2) for ally elements of V(QS) and considering y as
an instant (state of zero duration), applying (by
various methods) transition constraints (from
Derivatives) and again qualitative algebraic
constraints for a future state. Then, enumerating
these future states;
(3) repeating step (2) considering ¥ as an interval of
time.
Simulation is conventionally carried out to a deep level
of two, leading to a complexity of
Card({V(QS)—V(QS))). This type of algorithm is not
economical because we enumerate future states at
steps (2) and (3) which were already enumerated in
step (1). This is due to the need to generate causal
explanations. Moreover a state is here typed in instant
or/and interval iff some transition exists a posteriori.
Solving these two problems can be achieved in
explicitly typing states in instants or/and intervals and
in considering (I—-P}{P—]] as the potential transition
set. This would lead to an improvement of the
algorithm efficiency by a factor of at least two in the
case of distinct sets P and I, but practically of three and
more. It can be shown that a general sort algorithm into
instants and intervals (Fig. 2) taking into account which
series of derivatives are analytic or not, is trivial. It
essentially consists in tests of the presence of a zero
value in the lists of analytic and non-analytic series of
derivatives.

INSTANT

Fig. 2 General algorithm of sort of states into instants and
intervals. An is the set of ANalytic 5D; it is the first
parameter of Derivatives. Na is the set of Non Analytic SD; it
is the second parameter of Derivatives.

252

2.4. Williams' approach of transitions

Williams [24,25] proposes a clear transition automaton
of a pair (ff'); to (ff'); with an explicit instant/interval
alternation which we adopt. It can be summarized by
three rules :

¢ Continuity of all variables : -—+ and +—- are
forbidden transitions.

o Intermediate Value Theorem : a value @ of an
interval remains @, a value + of an instant remains +,
a value - of an instant remains -.

® Mean Value Theorem also called integration law :

lf2l =1fs] @f inservall
Being inspired by Kuipers' transition tables [16], it can
be shown that this automaton is equivalent to two
transition graphs from instants and intervals (Fig. 3),
which we call P-Table and [-Table as Kuipers does.
Although apparently different, we can show that our
tables expressed from Williams' rules can also be
extracted from Kuipers' tables because of the same
Mean Value Theorem and instant/interval alternation.
For this reason of compatible semantics, we will say
that our algorithm of total envisionment can be an
efficient preprocessor to QSIM.
P-TABLE

I-TABLE

(-.+)Q (+.+? (-.+9
(l)Q (-.-)9 t-.-)Q (+.-)Q (-J.-)Q
(J.-)Q)) P (I- RS~

e i aervat
flg_ .1 :)l.l.l' elementary transition graphs for (f,f’) : P-Table and
-iaoie

All the transition constraints are expressed in the two
tables (Fig. 3). We do not have a global examination of
state to carry out like de Kleer and Bobrow [5] who use
the Taylor series instead of the Mean Value Theorem.
For this reason, all transition constraints between two
states can be cleverly implemented by associations of
such elementary tables (for each variable and its first
derivative). These elementary tables are propagated
with the qualitative addition and the daemon
procedure previously defined. So, we propagate two
transition tables between two adjacent qualitative
states which we call the QS-P-Table and the QS-I-Table.

(+,+ (#+)

(#.)

2.5. Higher Order Derivatives (HOD)

Symbolically differentiating the Qsystem n times (our
simulation algorithm is parameterized in n, in practice :
0, 1 or 2) enables us to have the n Higher Order
Derivatives (HOD's) expressions (Caution ! This HOD
definition is somewhat different from Kuipers'). Such
additional QDE constrain more the problem and
consequently eliminate spurious transitions and even
spurious intervals when some non-analytic variable
exists. Differentiating one time the Lorenz attractor
Qsystem, new QDE appear (to the right of Fig. 4, not in

bold) linking the HODs (x"",y"' 2" xy'»z’) with the initial
variables of QS. Each predicate of the QDE vocabulary
has a specific differentiation rule. For example, M+(x,y)
is differentiated into Sum((x’),(y’'),¢) and Constant(x,+)
into Constant(x’,e). Differentiating two times the
Qsystem only consists in differentiating these new
QDE obtained at the first differentiation. So, we
naturally adopt the "Sign equality assumption" of
Kuipers [18] for the second differentiation of M+(x,y)
which gives the debatable : Sum((x"').(y"")8).

Product((x,y) , xy) Product((x"y) , new-a)
Product((x,y") , new-b)
Sum((new-a,new-b), (), xy*)
Product((x',z) , new-c)
Product((x,z") , new-d)
Sum((new-c,new-d), (), xz')
Sum((x"'x’),(y'),e)

Product((x,z) , xz)

Sum((x'x), (y),)

Sum((y'yxz), (x), 8) Sum((y"y'xz')(x)0)

Sum((z',2), (xy), &) Sum((z",2'),(xy’),e)

Derivatives(((xx'x"),(y,y"y Iz2" 2")(xy xy) (xzxz'))
, ((new-a,new-b,new-c,new-d)))

Fig. 4 First Differentiation of the Lorenz attractor Qsystem. In
bold stands the initial Qsystem. (x"'¥"'z"" xy’'xz’) are the
first HODs.

Differentiating the QDE Product((x',z) , new-) leads to
the creation of two variables : new-¢ and new-f defined
by the two QDEs : Product((x"',z) , new-e) and Product(
(x',z’) , new-f). This latter QDE will not be created
another time during the differentiation of the next
QDE Product((x,z’) , new-d). Such monomial
recognition (product or power) limit the QDE
expansion and new variable creations and
consequently simplify the enumeration phase. In the
same manner, the Power predicate, which could seem
to be somewhat redundant with the Product predicate,
has been introduced to be more efficient during the
symbolic calculation phase.

Such differentiations take place before the state
enumeration phase. But, what is very important to
understand is that only the QS’s variables (in bold) are
enumerated, the HOD values being deduced or
calculated by constraint propagation. Thus, the HOD
values can be -, # or + values, but also ? (any of the -, #
or + values) , #g, #- or #+ (Fig. 5). Then, each qualitative
state is a constrained system between the HODs and
the new variables created during the differentiations.

4

ar., P 52 53 P 54 Iss 157
thwuc
x

LI B I
[N~ I
R]

1%
LI |
#4014
R |

Rl
- R R-E
LA B B I
=3+ 310

B ENEN]
[N |
I
R]

LS EVEN]
L |
* e 1O
T-3#=31

ESESER]
[|
L N

ESESER]

DDDID

S0
L1 =21
(I]
LN]
BB L

L1 10+001 %+

BB B - B - B

S - BN A A -

DD D e e

N R
= ORI I O

|_Heu-3-0 .

Fig. 5 Example of some qualitative states for the Lorenz
attractor Qsystem. Only the QS’s variables : ((xx"), (y,¥'),
(zz')) are enumerated.

For the Lorenz attractor example, numerous transitions
are ruled out with the first and second HODs (Fig. 6).

233

No state is ruled out because all the variables were
stated as analytic.

HOD || states transitions
0 cr O
1 || 123 270
2 123 262

Fig. 6 The Lorenz attractor results in function of the number of
HOD taken into account.

We can note that the HOD calculation for a non-linear
Qsystem is no more complex than that for a linear
Qsystem because it is not necessary using constraint
propagation to qualitatively invert a differentiated
Qsystem to calculate the HOD's. Here, a definite
advantage of our approach compared with Kuipers' [18]
(only for an envisionment graph determination) is that
we are modelling a qualitative variable as an only value
whereas Kuipers is modelling a variable as a pair
<qmag,qdir>. Therefore, Kuipers is compelled to
enumerate the gdir value of the higher order variables
of the series of derivatives. Such a gdir corresponds to
our first HOD. A state (with a unique SD) which has for
us an ambiguous (?) first HOD value : V(SD(x))=(-+17)
is translated into three states :(-+-),(-+8),(-++) for
Kuipers. This problem of combinatorial complexity (let
us imagine several such SD in a state) is identified by
Kuipers under the name of chattering variables.
Fouché, in his PhD dissertation [13], recently
completed some serious work on unifying conventional
envisionments and behavior generation of QSIM. But
he confirms himself that a conventional procedure to
have an envisionment in QSIM was to simulate to a
depth of two (instead of sorting states into instants and
intervals) without landmark values and to proceed
almost systematically to a focus-on-qmag aggregation.
In results, this is exactly the same as our first-HOD, but
a lot more complex.

2.6. Detection of equilibria
Kuipers [16] states :"An interval can only lead to an
instant of different value”. We show that it is true when
this interval does not contain a zero-value in V(QS) but
false for other intervals. Indeed, we allow the following
transitions of Fig. 7 for QS=SD(x)=(x,x'x"):

I1(eee)—P1(eee)—12(+++).

P4

I5

14

Fig. 7 Behavior of a variable x with stages and slopes.

We interpret it as an unstable equilibrium which
evolves from an infinitesimal perturbation, or as a
behavior caused by an external controlled variable (let
us imagine a robot-arm for which the hand is
constrained to follow the curve shown in Fig. 7, we
impose a concise history [26]). This last case is crucial
for our future definition of functional specification at

§3.1. Such a behavior is completely eliminated by
conferring the property of analyticity to the variable.
Until recently, everybody [5,8,16,25] said a quiescent
state was an all zero-derivative state and no transition
was determined from this state, e.g.,
QS=((xx"x"")(y,y')(2)), ye V(QS) | y=((+.8,0).(-8),(-))
would be a quiescent state. This is immediately
contradicted by a counter-example (Fig. 8).

OnR: x"(t)2=x(t) gives qualitatively :
[x"] ®[x"] =[x]
Qsystem =(Power(x", 2 ,x), Derivatives(() , (x.x'x"")))}

4
A particular solution on ﬁm:ﬂt}:m
Then, envisionment must forecast corresponding
states and transitions :

7=(+-+) — P5=(0,0,0) = I9=(+,++)
Thus we see that P5 is not a quiescent state because

(1) Product((cos,€) , sin’)

Rigidshatt () Product((sin,®) ,)
with nomass (3) Sum((x,cos’) (). o)

Gmiity @) Sum((sin,0") (). 8)
S

Y« (5) Derivatives(((sinsin’),
(cos,cos’).(x).(6,67))())
Fig. 10 The pendulum with no friction : QDEs (1,2,3) model the

(sine,cosine) behavior. QDE (4) is Newton's law. All the
variables are assumed analytic.

[Fx]=+.

Fig. 8 Counter-example showing that an all zero-derivative
state is not a sufficient definition for quiescent state

An all zero-derivatives state only defines an
equilibrium state but it can be an unstable one. It is the
case for the example of Fig. 8 because state (#s0)
evolves to (+++). We clearly show that this observation
can only be a posteriori made, i.e., after a complete
determination of the graph. The simulation on this
example carried out in Fig. 9 for a non-analytic variable
x lets one may presume two types of behaviors around
the instant P5. It is impossible for us to know if we have
an immediate evolution : I[7—P5—I9 (unless we
succeed in showing inevitably that P5=(egs|e+)), or an
equilibrium during an interval which is able to evolve :
I7—P5—15—-P5—19. An element of response can be
found by conferring the property of analyticity to the
variable : I5 would not exist and we would have a
behavior of immediate evolution.

F13

7 e

T

;
3
.
:

B
(+)

Fig. 9 Envisionment graph of [x"] &[x"']<{x] (Fig. 8) without (a)
and with (b) simplifications

Other interesting a posteriori deductions can be made
on this example. Inconsistent instants (P4 and P6) are
revealed on the graph. Indeed, an instant cannot be a
source (P6=big-bang ?) nor a well (P4=end of the world
?) of a graph. After these a posteriori simplifications, we
notice that the initial graph is simplified into two non-
connected subgraphs (Fig. 9b), which reveals a
potentially chaotic behavior and is a very important
result for a functional interpretation.

A last example can be given on a mechanical problem :
the conventional pendulum (Fig. 10).

254

Fig. 11 Total envisionment of the pendulum. The threeinstanis
: P13, P14 and P15 are inconsistent because they correspond to a
quadrant (sinecosine)=(e,8). Arrows in nodes of Fig. b represent
g.

There are two equilibrium states : P12 and P16. P16 is
the quiescent state where 6=0. With no friction we can
not reach this state of rest unless we are constantly at
rest. The instant P12 is the unstable equilibrium where
6=n. The symmetry of the graph of Fig. 11a emphasizes
well the three cases of the energy amount of the
pendulum (Fig. 11b) : the pendulum has not enough
(I8—P3), just enough (I8—P12) or enough energy
(I8—P17) to reach the higher position (8=x). Such a
graph is automatically unfolded by a new algorithm we
developed for the QDES toolbox.

2.7. Total envisionment algorithm

Our algorithm of total envisionment in a constraint
propagation environment follows :

(1) Symbolic differentiation of the Qsystem to have the
HOD expressions.

(2) Enumeration of all states (HOD's are not
enumerated, they are not chattering variables).

(3) Sort of states into instants and intervals (Fig. 2),
taking into account HOD values.

(4) Propagation of the two QS-I- and QS-P-Tables
between two states (not yet valuated) by additions of
elementary I- and P-Tables (Fig. 3). HOD's are taken
into account.

(5) Determination of valid transitions :

For allxe
Propagate(QS-I-Table(x—7))
Forall ye P
if (consistent(Propagate(QS-I-Table(x—y))))
then Transition(x—y)
For all xe P
Propagate(QS-P-Table(x—7?))
Forall yel
if (consistent(Propagate(QS-P-Table(x—y))))
then Transition(x—y)
(6) Elimination of inconsistent momentary instants.

(7) Determination of quiescent states and unstable
equilibria.

2.8. Temporary conclusion

Here are the key features of our envisioner :

(1) The determination of states and transitions is
carried out with a constraint propagation technique of
arc-consistency on integers.

(2) The Williams' transition rules are compatible with
constraint propagation.

(3) Before the transition phase, all states are
enumerated and sorted into instants and/or intervals
taking into account which series of derivatives are
analytic.

(4) HODs are not enumerated, thus we avoid the
chattering variables.

(5) The transition phase consists in determining :

{(T-=P)AP=I}.

(6) We clearly show that stable and unstable equilibria
can be characterized only a posteriori (i.e., after
determination of all the transitions).

(7) We also claim that Kuipers' QSIM algorithm would
improve its efficiency greatly if our tool was used as a
preprocessor of QSIM. Actually, QSIM does the same
work all the time during transitions. Our envisionment
graph holds all the local transition information. QSIM
qualitative states with landmarks are richer
information than ours but they could be indexed in a
hashing table by the corresponding state of ours.

All these points contribute to a homogeneous, efficient
and simple tool of envisionment. This work can be
related to the Forbus' "QP Engine" [9] which is a total
envisioner for the "QP theory” [8] using an ATMS. We
developed a much more simple envisioner for a QDE
set. Like Forbus, no conceptual progress is made, but
an efficient informatic structure is proposed, the
necessary first step to handle large envisionments in
the QDES toolbox. .

3. Design Model

We think that many problems remain open in the
qualitative design field. Let us detail some of those that
we attempted to solve in QDES :

* We did not find any satisfactory and expressive
definition of a functional specification in terms of
expected behaviors. Up to now, they were restricted to
a unique expected behavior (2], or they included other
types of specifications like time-scale [17], processes of
interest [7]. We would like to treat the problem which is
very widespread among physicists of identifying a
supposed dynamic model from multiple experimental
behaviors (a phenomenological issue).

¢ How must these functional specifications be
combined to design a product ?

¢ What does pruning an envisionment constrained to
verify functional specifications mean ?

* We know that in real life a functional specification
can be partly verified; what does "partly” mean ? Is it
possible to prune a functional specification ?

* We would like to have a tool to test the relaxation of
functional specifications on the system.

3.1. Functional specification

In order to find a satisfactory model for our functional
specifications, we will place ourselves in the framework
of the identification of a dynamic model from multiple
experimental behaviors. The result of an experiment is
a set of histories of some variables [26]. We can for
each history qualitatively interpret its shape slicing the
curve by time-points of changes of interest. The
number of such time-points depends on the degree of
derivative we consider; are we interested by a change in
derivative or by a change in curvature ? In any case,
from several such histories measured by sensors, we
can totally order all time-points for an experiment.
Then, we can reconstitute one behavior of segments
[10], a segment being a projection of a qualitative state
on a subset of variables of the Qsystem (here, the
measured variables). For one experiment, we have a
total equivalence [26] between a state-based model and
a history-based model with totally ordered time-points
(Fig. 12).

One behavior of segments :
P1(-8+)—I12(—)—=P3(—8)—14(—)—P5(s—)—16(+—)
=1
Concise historiesof a, b, ¢ :

al b c

+) +—
—

e W= e

with (£2<#3<t1}

Fig. 12 Two equivalent models of a behavior for a
Segment=(a,b,c)

A dynamic model is well characterized and constrained
after several experiments. Then, two cases arise in a set
of experiments :

255

* (a) For each measured variable, its history is the
same for all experiments. The only difference
concerns the ordering between time-points which
changes between experiments. Several physical
phenomena occur but their relative ordering is not
relevant, this is the well-known occurrence
branching problem [13].

» (b) At least one history of a variable differs
between two experiments.

Therefore an exhaustive set of experiments can be
viewed as a set of equivalence classes for variable
histories (conserving the specific time-point orderings
in a class). The key idea is here to consider each
equivalence class and to express it in a concise and
expressive manner avoiding the combinatorial
complexity of the occurrence branching problem if we
were to specify each state-based behavior. Therefore,
contrary to a measurement interpretation problem, for
our design problem we express such an equivalence
class as a set of concise histories for variables (and
eventually for their successive derivatives) with
partially ordered time-points (Fig. 13). This is our
definition of a functional specification. We claim that
with the exhaustive set of ordering operators
{=#>>=<<=], expressing a functional specification
with a set (i.e., conjunctions) of ordering relations
[1,3,22] and without disjunctive ones, is easy, fast and
expressive. Nevertheless, in some very specific cases,
disjunctions between ordering relations are necessary.
In these cases, we will split the specifications into
several conjunctive ones.

One Functional specification =
Concise histories + partially ordered time-points
=(tl<t3 , R2<=t3 , {112}
< List of behaviors of segments
{(t1<t2=3}, {t1<t2<t3}, {t2<t1<t3}}

< Ordering graph of segments

Fig. 13 Ome functiomal specification and equivalent data
(circles stand for instants and squares for intervals). t7(ipt3)
stands for an instant at current time t=tp=13, 7 being already
passed, such data define a unique segment.

Once the functional specification has been defined by
the designer, we are able to generate two other types of
equivalent data. We can enumerate the list of
behaviors of segments and after building an ordering
graph of segments grouping all possible segments of
behaviors and their relative transitions. Here, two
implicit time-points appear : tstart and tend, standing
for the beginning and the end of the experiment. They
are consequently the same for all histories.

3.2. Functional specification algorithm

The algorithm interpreting the functional
specifications as segments, behaviors and ordering

256

graph (Fig. 14) uses our standard tool of arc-consistency
on integers and stands in four points :

* We constrain time-points to be integers in a domain
from 1 to the number 7 of time-points (here 3). Again,
we constrain time-points with relations of order (arc-
consistency on integers) and we enumerate the
solutions.

* Next, each enumeration (potential behavior) is
transposed in another table switching index (from 1 to
n) and data (from 1 to n). It allows a better idea of the
relative orders of time-points to be obtained. Data of
this new table is a list of time-points occurring at
imaginary time between tstart and tend. This list may
be empty or can contain multiple equal time-points.

* Next, we must filter out some duplicated behaviors. It
can be seen in Fig. 14 that behaviors B3 and B5 are
identical to behavior BI. It is not worth comparing
them, it is enough to systematically eliminate
behaviors having an empty list inside data. It is clear
such an algorithm is far from being optimized (in
comparison with [22]), but it has the advantages of
simplicity and using our standard tool of arc-
consistency technique.

* Results can be now established. For each non-
eliminated behavior of the previous table, we move
along the time axis from tstart to tend building instant
segments and interval segments. For that we consider
at a current point of the axis the list of the time-points
already encountered and for instants a second list of
time-point(s) characterizing the current instant. For
instance, t1(t2t3) stands for an instant (because of the
pair of parentheses) at t=t2=13, t]1 being already
passed. We can notice that such data is a
characterization of a segment through histories data.

For iin [1,3] constrain ti in [1,3]
Functional_Constraints(t1,2,t3)
Enumerate(t1,12,t3)

, Relative values pf
dany 53
(t1) ©r8) 0
(t1) (t2) @3)
t1) 0 (23)
(t2) (t1) @3)
0 (1) q2t3)
Ordering graph : Behaviors Bi !
BI: (ts)-ts—(t) 5t1E23)-> tlt 2t3(te)
B2: (ts)—>ts—(11) 5t1 2)>t12-t 162(t3)—->t L2(13)—(te
B4: (ts)-ts—(R2) >t2(t 1)->t12-t 112(t3)—-t1 L2(t3)—(te
Fig. 14 Algorithm of determination of segments, behaviors and

ordering graph from the functional specification (s stands for
tstart and fe for tend).

time
tend
Bl

ot

B2

— duplicated
behaviors
filter

3.3. Combining several functional
specifications

We have a very interesting property in the equivalence
of the ordering graph of segments with the list of
behaviors of segments and consequently with the initial
functional specification. It means that the number of

paths in the graph between tstart and tend is equal to
the number of behaviors of segments. This is not a
trivial property because we do not have spurious paths
in the graph like in Fig. 15. This is due to conjunctions
between relations of order.

Fig. 15 (1,2,3,4) and (5,2,3,6) could be consistent paths and
(1,23,6) and (523 4) could be spurious paths

A disjunction would not give this property. The
combination of two functional specifications to design a
unique product is naturally defined by the union of the
two lists of behaviors of segments. But uniting the two
ordering graphs would result in a previously evoked
problem of disjunction (Fig. 15). Although being more
expressive and compact than two initial ordering
graphs, the resulting graph would impoverish the
information. It is exactly the same problem as between
several generations of behaviors like QSIM does and a
resulting envisionment, the latter form contains less
information about consistent behaviors. Moreover,
such uniting of two ordering graphs have no sense
when the respective segments lie on different
variables.

3.4. Simultaneous pruning of
envisionment and specifications

We are going to explain what pruning an envisionment
and a functional specification by their mutual
constraints means. Let us examine a unique behavior
of segments. We know through the Forbus’' ATMI
theory [10] that it is possible to determine all the
potential images (image-paths) of a behavior of
segments in the place of paths throughout the
envisionment of the system.

Our algorithm of simultaneous pruning follows : for a
behavior of segments, if at least one image-path is
found, we will prune the envisionment, pruning all
states and transitions not present in any image-path,
otherwise it is the behavior of segments which will be
eliminated (Fig. 16). Pruning an envisionment from a
set of functional specifications simply consists in
making a loop on all the behaviors of segments. This
pruning algorithm (Fig. 16) is called intersection and we
logically supply the subtraction procedure to have
explicit results about the pruned data.

A pruned functional specification (one per initial
specification) is interpreted without any ambiguity as
the part of specifications the system is able to match.
Here, we have a model which is very close to real
problems.

The pruned envisionment represents the functional
configuration space of the system or the vaster part of
the envisionment which may be required to match with
the feasible part of the functional specification. It does
not mean that the behavior of the system must be
restricted to this pruned envisionment because if any
image-path is found, the functional specification is
already verified. It may only be a good tool to have an

idea of non-functional modes of the system by
difference of the initial and pruned envisionments.
These non-functional modes of behaviors can be the
cause of waste, may lead the system to undesirable
situations, or can help to simplify or redesign a part of
the system.

procedure intersection(IN : eno, list-specif ;
OUT : pruned-env , list-pruned-specif)
list-St&Tre (empty-list)
list-pruned-specif « (empty-list)
For each specif in list-specif
pruned-specif « (empty-list)
For each behavior in specif
list-image-paths « image-paths(behavior , env)
if not(is-empty-list(list-image-paths)) then
put-in-list(behavior , pruned-specif)
put-in-list(States&Transit-of(list-image-paths)

, list-5t&Tr)
end if
end for
put-in-list(pruned-specif , list-pruned-specif)
end for

list-St&Tre—union-of-elements(list-St&Tr)

pruned-enve«env-restricted-to(env , list-St&Tr)
end
Fig. 16 Pruning algorithm for the intersection of the
envisionment and a list of specifications. list-St&Tr stands for
a "list of States and Transitions” of interest.
But a problem appears in pruning the envisionment
from the image-paths. It concerns the previously
evoked problem of impoverishment of information
passing through an information of behaviors to a sub-
envisionment. Here we decided not to propose the
information of the envisionment's image-paths to the
designer as we do for functional specifications. The
reason lies in the wide extension of such information
compared to the generally very small number of
simultaneous functional specifications. Therefore great
care must be taken when interpreting the pruning of an
envisionment.

3.5. QDES Qualitative DESign Toolbox

We were to supply two major features in our toolbox :
(1) an adequate definition of functional specification
and pruning procedures and their significations. All
this work has been carried out and previously detailed;
(2) two features of great interest allowing the complex
world to be understood better [14] :

e reasoning about abstractions leading to global

inferences and building a hierarchical model with

different grain sizes of the problem,

* simplifying the problem in making judicious

assumptions.
We propose to implement abstractions and
assumptions in a phenomenological and conventional
manner. Making assumptions consists in filtering out
some states and transitions and conserving those which
have properties of interest : procedure filter(
<Properties of Qstates>). Making abstractions consists
in aggregating states to have a higher level of analysis.

257

Aggregation consists in building equivalence classes of
the values of a subset of qualitative variables [13]. In
fact we obtain a kind of envisionment of segments
defined by such a subset. The originality of this
aggregation is to be carried out on all or a part of the
states : procedure aggregate(<Properties of Qstates>)
on (<Properties of Qstates>). Obviously, the two unary
operators on graphs : filter and aggregate both run on
the envisionment and the ordering graphs.

We naturally include in our QDES design toolbox
these two unary operators and the two binary
operators : intersection and subtraction between an
envisionment graph and a list of specifications. We will
manage a design history with several history trees,
roots being the envisionment graph and the ordering
graphs of functional specifications (Fig. 17). Each node
of the tree is a resulting graph, but typed as
envisionment or ordering graph. Each path from a root
to a leaf node can be viewed as a specific reasoning.
Often such reasonings are interdependent because of
the binary operations (indirect links in Fig. 17).

.I

DESIGN PROCESS

- = = -

Fig. 17 Example of a design session with multiple reasonings in
parallel
We clearly see that we have a large number of
combinations to carry out reasonings and to handle
information. But the resulting interpretation is always
in the hands of the designer and often the consistency
of its design history too.
Nevertheless, some consistency rules can be found to
prevent the designer from carrying out inconsistent
operations. Let us mention the grain size comsistency
rule. We can consider that an attribute of a tree node is
its grain size, i.e., the subset of variables of interest of
the graph. An aggregation reduces this grain size to the
subset of variables given in first argument whatever the
states concerned in the second argument (unless no
state is consistent). Therefore, a consistency rule during
a binary operation consists in verifying that :

For each specif in list-specif

verify grain-size(specif) c grain-size(env)

end for
Otherwise, we would have a useless loss of information.
What we mean by a property of states (<Properties of
Qstates> which is argument of intersection and
subtraction) remains to be explained. A property is a
combination of elementary properties by the and, or,
not operators. We can characterize an elementary

property by two ways :

* a property intrinsic to states : values, quiescence,

unstable equilibrium, analyticity of some variable.

This last property used in a filter operation

corresponds to a first level time-scale abstraction

like Kuipers does [17].

* a property of behavior characterizing all the states

in such a behavior : behavior passing through

certain states, starting or ending by certain states.
Such properties are surely not exhaustive but the
important point is the flexibility we have in such
expressions. The scenario of a design session and a
language to define an aggregation and a filter were
written in a BNF form. For example, we can imagine a
designer would know the states able to lead, through a
behavior in which y is analytic, to unstable equilibria
such that x is positive. This information can be given to
him after the following filter operation :
filter(Behavior_Ending(Unstable Equil._Qstates

and (x=+))
on (Qstates_with_Analytic_Qvars (y)))

4. Related work

Much work was already carried out in this field with
different approaches. Sacks [20,21] developed methods
to give a qualitative description of a system in a phase
space. These methods are surely the best for
completely specified planar ODEs (or with one
parameter [21]), but they are not applicable in the
general case : non-planar ODEs or partially specified
ODEs (e.g., M+ function) like for a design alternative
(see abstract and introduction).

Spatial reasoning (12,15] was developed to have a
precise idea of kinematics, taking into account limits in
the configuration space of parameters. But these
methods are time consuming, they do not take
dynamics into account and are too detailed to give a
high level of qualitative interpretation.
Others compare the purpose of a design (one unique
ed behavior) to an envisionment of the system
[2]. Other slightly different approaches exist
[4,7,10,11,17]. They consist in posing the following
question : "Assuming several hypotheses on my system,
what are their consequences on the behaviors of the
system and are they consistent ?" Falkenhainer and
Forbus [7] call these hypotheses modelling
assumptions. These assumptions are propagated in the
general model to generate a simplified simulation.
These assumptions are even automatically modelled
through a tutoring system to answer questions about
functional characteristics of the system behavior.
Kuipers [17] deals with time-scale assumptions, totally
ordering processes with regard to their speed of
evolution. In the same manner, Forbus with his ATMI
theory [10 and 11,4), tries to relate an envisionment of a
system to a partial observation of it interpreting data
(sometimes sparse) across time into histories and
segments. The goal is to have global interpretations
and in the best case a unique interpretation of the
observations [10]. These global interpretations allow the
envisionment to be pruned, i.e., to constrain the future
behavior [11]. All these approaches consist in

258

comparing one expected [2] or measured [10] behavior
to an envisionment or to assume this behavior and to
carry out a simplified simulation [7,17]. Our method
consisting in comparing all the expected behaviors to
all the potential behaviors is more adapted to give
relevant qualitative information in a design process.

5. Conclusion

We think we propose a design model which makes the
best use of an envisionment for a QDE model of a
system. We defined a very expressive functional
specification model and procedures to evaluate the
degree of matching between potential behaviors of a
design alternative and expected behaviors. Expected
behaviors may be realized partly as in real life. Often, it
does not cast doubt over the system because
specifications may be in part relaxable. In any case, it
can be a tool to test the relaxation of specifications. Our
design toolbox QDES introduces a rich vocabulary to
question the system in a phenomenological way and
carry out powerful reasonings. Of course, their
interpretations will remain in the hands of the designer.
This is done in a visual manner by the global shapes
and properties of the graphs. Abstractions and
simplifications allow at any time in a reasoning to
modify the grain size or simplify the model. Our
approach uses a standard tool of constraint
propagation technique, and especially arc-consistency
on integers. Moreover it is developed on a
homogeneous and original theory of envisionment.

6. Implementation

The design history part being still under development,
we have not yet dealt with large problems. An
algorithm of graph unfolding was developed to
represent large graphs to the designer in a suitable
manner which is essential for interpretation.

7. Acknowledgements

This research was supported by Dassault Systémes. The
content of this paper benefited from extensive discussions with
Dr. Antoine Missier ! and he gave me the judicious example
[x"] €x"']<fx] (Fig. 89). I also thank Adrian Vasiliu? for his
graph unfolding algorithm, Prof. jean-Claude Booquetz and
Prof. Louise Travé-Massuyes ! for their review of this paper
and Dr. Alan Swan? for reading the English version.

1 LAAS/CNRS, Toulouse, FRANCE.
2 ECP, Laboratoire PL, FRANCE.

8. References

[1] J.F. Allen : "Maintaining Knowledge about Temporal
Intervals”, Communications of the ACM, 1983, 832-843

[2]]. Bradshaw, R M. Young : "Evaluating the behaviour of the
BAe 146 hydraulic system using the Dori system”, ECAI-
92, 739-743

[3] T. Dean, M. Boddy : "Reasoning about Partially Ordered
Events”, Artificial Intelligence 36, 1988, 375-387

[4] D. DeCoste : "Dynamic Acoss-Time Measurement
Interpretation”, Artificial Intelligence 51,1991, 273-341

[5] J. de Kleer, D.G. Bobrow : "Qualitative Reasoning with
Higher-Order Derivatives”, National Conference on Al,
1984

[6]]. de Kleer,].S. Brown : "A Qualitative Physics Based on
Confluences”, Artificial Intelligence 24, 1984, 7-83

[7] B. Falkenhainer, K.D. Forbus : “Setting up Large-Scale
Qualitative Models”, AAAI-88, 301-306

[8] K.D. Forbus : "Qualitative Process Theory”, Artificial
Intelligence 24, 1984, 85-168

[9] K.D. Forbus : "The Qualitative Process Engine”, Technical
report of the University of Illinois Department of
Computer Science, 1986

[10] K.D. Forbus : "Interpreting Observations of Physical
Systems”, IEEE Transactions on Systems, Man, and
Cybernetics 13, 350-359, May /June 1987

[11] K.D. Forbus : "The Logic of Occurrence”, IJCAI-87, 409-415

[12] K.D. Forbus, P. Nielsen, B. Faltings : "Qualitative Spatial
Reasoning : the Clock Project”, Artificial Intelligence 51,
1991, 417-471

[13] P. Fouché : Vers une unification des méthodes de
simulation qualitative, PhD. dissertation, Université
Technologique de Compiégne, France, 1992

[14]]. Hobbs : “Granularity”, IJCAI-85, 432-435

[15] L. Joskowics, E.P. Sacks : "Computational Kinematics”,
Artificial Intelligence 51,1991, 381-416

[16] BJ. Kuipers : "Qualitative Simulation”, Artificial
Intelligence 29, 1986, 289-338

[17] B.J. Kuipers : "Abstraction by Time-Scale in Qualitative
Simulation”, AAAI-87, 621-625

[18] B.J. Kuipers, C. Chiu, D.T. Dalle Molle, D.R. Throop
:"Higher-Order Derivative Constraints in Qualitative
Simulation”, Artificial Intelligence 51,1991, 343-379

[19] A. Missier : Structures Mathématiques pour le Calcul
Qualitatif, Contribution & la Simulation Qualitative,
PhD. dissertation, LAAS/CNRS, Toulouse, France, 1991

[20] E.P. Sacks : "Piecewise Linear Reasoning”, AAAI-87, 655-
659

[21] E.P. Sacks : "Automatic Analysis of One-Parameter Planar
Ordinary Differential ations by Intelligent Numeric
Simulation”, Artificial Intelligence 48, 1991, 27-56

[22] R. Simmons : "Commonsense Arithmetic Reasoning”,
AAAI-86,118-124

[23] D.S. Weld,]. de Kleer : Readings in Qualitative Reasoning
about Physical Systems, Morgan Kaufmann Publishers,
1990

[24] B.C. Williams : "The Use of Continuity in a Qualitative
Physics", National Conference on Al, 1984

[25] B.C. Williams : "Qualitative Analysis of MOS Circuits",
Artificial Intelligence 24,1984, 281-346

[26] B.C. Williams : "Doing Time : Putting Qualitative
Reasoning on Firmer Ground”, AAAI-86, 1984, 105-112

259

