Spatial Reasoning for Intelligent Control
of Numerical Simulators

Ke-Thia Yao
Computer Science Department
Rutgers University
New Brunswick, NJ 08903, USA
kyao@cs.rutgers.edu
(908) 932-5263

Abstract

Computational simulation is an important tool for
predicting the behavior of physical systems. Many
powerful simulation programs exist today. How-
ever, using these programs to reliably analyze a
physical situation requires considerable human ef-
fort and expertise to set up a simulation by trans-
forming a description of a physical system into
a representation the simulation program can suc-
cessfully process. Automating this process is not
only of considerable practical importance but also
raises significant spatial reasoning issues. The par-
ticular aspect of spatial reasoning we consider is
the discretization of the spatial domain of a phys-
ical system. The discretization should be suitable
as input to a partial differential equation solver.
The method we use is able use geometrical and
physical properties of the system, as well as nu-
merical properties of the simulator to generate an
appropriate discretization. The application do-
main described in this paper is the design of racing
yachts.

Introduction

Computational simulation is an important tool for pre-
dicting the behavior of physical systems. Many pow-
erful simulation programs exist today. However, using
these programs to reliably analyze a physical situation
requires considerable human effort and expertise. As a
result, these simulation programs can’t be reliably in-
voked by other programs. For example, human design-
ers of complex objects like ships and airplanes typically
run sophisticated simulation programs to analyze the
object’s physical behavior, but an automated system
for designing complex objects could not easily include
such a computational simulation as part the process it
uses to evaluate new designs.

Artificial intelligence techniques seem essential in or-
der to automate the simulation setup process. How-
ever, simple application of known AI technology ap-
pears inadequate for the task of automating this pro-
cess. Basic spatial reasoning research is needed, par-

Andrew Gelsey
Computer Science Department
Rutgers University
New Brunswick, NJ 08903, USA
gelsey@cs.rutgers.edu
(908) 932-4869

Figure 1: Stars € Siripes, winner of the 1987 America’s
Cup competition

ticularly in the interaction of geometry and physics.

Yachts

The Design Associate (DA) [Ellman et al., 1992] is an
automated design system for racing yachts like the one
in Figure 1. In the process of designing a yacht, the DA
must repeatedly evaluate candidate yacht designs. A
large number of these evaluations are required, so the
capability to automatically evaluate the performance
of a candidate yacht design without human interven-
tion is crucial for the success of the DA.

Part of the process of evaluating a yacht’s perfor-
mance involves computing the efficiency of the yacht’s
keel. Reliable computation of keel efficiency requires
solving Laplace’s differential equation for potential
flows. For this purpose we use a computational fluid
dynamics program called PMARC, a product of NASA
Ames Research Center. However, the PMARC target

260

Human Expert

s 4 B e

— | (Iridder | =

CAD-CAM Gridder

PMARC

Figure 2: PMARC target environment

environment (Figure 2) is not compatible with auto-
mated use.

The input PMARC requires is a panelization — a
discretization of a yacht’s surface as a grid of surface
patches, where each surface patch is an array of pla-
nar panels. There exist several types of algorithmic
gridding approaches, such as algebraic formulae, con-
formal transformations, and partial differential equa-
tion based methods, each with its own strengths and
weaknesses. Applying these methods to a particular
CAD/CAM model requires considerable human exper-
tise. Moreover, for complex geometries and complex
physical situations these methods alone may not pro-
duce adequate grids for PMARC to give good results.
Typically in these situations human expert using an
interactive gridding program is needed to create the
panelization. This interactive process usually requires
several iterations of a loop in which the human expert
looks at PMARC output, decides it is unacceptable,
and uses the interactive gridding program to modify
the grid to improve the PMARC output. In order for
the Design Associate to evaluate candidate yacht de-
signs without human intervention, PMARC must be
invoked by an automated intelligent controller which
can use spatial reasoning to form appropriate grids,
etc. for input so that PMARC can run reliably with-
out the supervision of a human expert.

The success of the human expert in gridding difficult
geometries is in part due to the ability of expert to take
advantage of the physical flow solutions to guide the
gridding, which the typical gridding program is not
able to do. If an automated intelligent controller is
to replace the human expert, it must also be able to
reason about the flow solutions.

Evaluation criteria

Through our discussion with hydrodynamicists we
have formulated a list of grid evaluation criteria and
constraints. On the basis of the geometric properties
of the grid, these evaluation criteria attempt to pre-
dict the soundness of PMARC’s output. We divide
this list into four levels, ranging from constraints that
absolutely must be satisfied to heuristic advice based
on experience of our experts.

1. Simple connectedness constraint: surface patches
must be simply connected, i.e., no holes.

2. Coverage constraint: patches must not overlap or
leave gaps.

3. Planarity criterion: panels must be approximately
planar.

4. Heuristic criteria:

¢ following streamlines: grid lines should follow the
streamlines of the fluid flowing over the body rep-
resented by the grid.

e orthogonality: grid lines should intersect at right
angles.

e expansion ratio: the area of the adjacent panels
should not increase by more than a fixed ratio.

The level one, simple connectedness constraint is ac-
tually a statement about the geometric representation
used by PMARC. PMARC represents surface patches
as a matrix of adjacent panels. This type of representa-
tion does not allow for holes between panels. Paneliza-
tion of surfaces with holes must be done with multiple
patches.

The level two, coverage constraint can be consider as
a problem independent statement regarding the cor-
rectness of a grid. If a grid is to be correct for any
physical situation at all, the adjacent surface patches
of the grid must meet along a curve. They cannot
overlap nor leave gaps.

A problem dependent statement of the correctness
of grids states that grids must be a faithful discretiza-
tion of the actual surface. One implication of problem
dependent correctness is the planarity criterion. Each
panel is represented by the points at its four corners,
which may or may not be coplanar. If the corner points
are not coplanar they cannot completely represent a
body’s actual surface.

The reasoning behind the level four criteria can be
traced back to numerical properties of PMARC. For
example, the need for orthogonal grids can be derived
as follows. PMARC associates a constant number, ve-
locity potential, with each panel in the grid. In order
to compute the velocity vector PMARC needs to take
the gradient of these velocity potentials. For each panel
PMARC calculates its gradient by applying numerical
differentiation using its four adjacent panels. Numeri-
cal error tends to be minimized if the adjacent panels
are orthogonal with respect to each other.

These evaluation criteria in their present, qualitative
form cannot easily be used to form actual grids. We
have quantified these criteria and incorporated them
into our program. Given a grid the program is able to
judge how well the grid satisfies the evaluation criteria.

Streamline-based approach

Finding a grid that performs well against all the crite-
ria is difficult, because some of these criteria are con-
tradictory. For example, for an elliptic-shaped hull the
streamlines start from a single point on the bow of the
hull, travel along the hull, and leave from a single on

261

Figure 3: Frontal view of the automatically generated
panelization of an ellipsoid hull and the Stars & Strips
keel.

the stern of the hull. A gridder that gives precedence
to the follow streamlines criterion will create triangu-
lar panels at the bow and the stern of the hull, see
Figure 3. This of course violates the orthogonality cri-
terion. Such a gridder that constructs grid lines from
streamlines may be called a streamline-based gridder.

Despite its shortcomings the streamline-based ap-
proach has been successfully used by other researchers
to form grids once the patch boundaries have been
given. However, their streamline-based approach, as
well as all existing automated gridding approaches, are
good at forming grids on surface patches, but they are
not capable of finding an appropriate set of patches to
grid. In the streamline-based reasoning section of this
paper we show how to use streamlines in a novel way to
recognize natural patch boundaries of 3D geometries.

The success of the streamline-based approach is
probably due to two reasons. One reason is that follow-
ing stream criterion greatly limits the space of possible
grids. The other reason is that while all other criteria
are evaluated solely based on the geometry of the grid,
the follow streamlines criterion is the only one that re-
lates the geometry of the grid with the geometry of the
physical solution — streamlines.

Example

Figure 3 depicts graphically a grid of a yacht, consist-
ing of an elliptic hull and the keel of the Star & Strips.
This grid was generated automatically by our gridding
program. The grid is taken from a series of runs de-
signed to measure the efficiency of the Star & Strips
keel. Since hulls have negligible effect on keel efficiency,
the Star € Strips hull is replaced with a simpler ellip-
tic one. This gridder uses a subset of ECSG (extended
constructive solid geometry, [Gelsey, 1992]). ECSG is

a solid modeling language that is capable of modeling
objects with free-form surfaces (as in Boundary Surface
Representation), and yet retains the clear semantics of
set operations of CSG. The only set operation allowed
in this subset implementation of ECSG is the union
operator.

Surfaces in ECSG are represented as black bozes.
In this example there are two black boxes, one rep-
resenting the hull surface and the other representing
the keel surface. A black box can be thought of as
a mapping from a unit square onto a surface patch.
That is it takes a parametric coordinate, (u,v) =
([o,...,1},[0,...,1]), as input and outputs the corre-
sponding 3-D Cartesian coordinate, (z,y, z).

The grid produced by the gridder also is expressed
in terms of these black boxes. While difficult to see
from Figure 3, the gridder actually divides the yacht
surface into four patches: left-hull, right-hull, left-keel,
right-keel. Each one of these patches is represented as
a black box. Streamlines of the flow are simply lines
to which a black box assigns constant u coordinates —
they run lengthwise along the yacht. The v coordinates
trace out lines roughly orthogonal to the streamlines.

Using this black box representation provides two ad-
vantages. One advantage is that it provides greater
flexibility by hiding the implementation details of the
surfaces. In this example, the hull black box is a set of
simple algebraic equations, while the keel black box is
a B-spline surface. The other advantage is that it gives
the gridder more control in determining how densely
to lay down grid lines. Using this representation the
expansion ratio criterion is trivial to satisfy.

Algorithm

Given an ECSG object defined as the union of several
components, the gridder performs the following four
steps:

1. For each component

e Determine what areas of its surface need
to be gridded. Because of the union operation,
some surface areas may be hidden. These hidden
areas cannot be gridded according to the cover-
age constraint. In the yacht example, parts of the
keel surface that protrude into the hull should be
pruned, and a hole needs to be cut away from the
hull to accommodate the keel.

e Use streamline-based classification to de-
termine if the component is a source/sink
object or a line-source/line-sink object. The
definitions of these two types of objects are given
in a later section. Here we shall only say that
the hull is a source/sink object while the keel is a
line-source/line-sink object.

2. Determine the surface patch boundaries by
using the following heuristics:

(a) Grid a source/sink object using one patch.

262

(b) Grid a line-source/line-sink object using two
patches.

(c) Ifa patch contains a hole, then partition the
patch along a streamline into two patches.

The reasoning for the first two heuristics is again
given later. The third heuristic is derived from the
simply connectedness constraint. In the case of the
yacht example, since the keel is a source-line/sink-
line object, it is partitioned into two patches. As for
the hull even through it is a source/sink object, it
is partitioned into two patches because of the third
heuristic.

3. Grid each patch using streamline-based grid-
ding. This step reparametrizes the surface patches,
such that constant u values approximately trace out

streamlines.

4. Check the integrity of the grid generated.
This gridder invokes many numerical subroutines,
which may produce unexpected results. This step
makes sure that at least the coverage constraint is
satisfied.

The following subsections explain in detail about
various aspects of the algorithm.

ECSG

The surfaces given as input to the gridder usually de-
scribe false surface areas that should not be gridded.
The interactive gridding programs that exist today,
such as I3G, are unable to distinguish between real
and false surface areas, since they are not even aware
of the semantics of a union operator. The human ex-
pert using the gridding programs is expected to make
the appropriate semantic interpretation. Our gridder
is able to correctly deal with these semantic interpre-
tation problems by using ECSG.

Beside providing a semantically clear representa-
tion, ECSG also provides surface manipulation rou-
tines, such as intersection of objects, surface partition-
ing, and surface reparametrization. In implementing
these routines, we have found it helpful to be able to
reason with approximate geometric objects.

The bounding boz of a object is defined to be the
smallest box containing that object. The bounding
box approximation enables the gridder to quickly de-
termine if a particular point is not inside the object
that the box bounds. This is useful in an efficient
implementation of the intersection operation. By in-
tersecting two bounding boxes the gridder can easily
check if the two objects do indeed intersect. Then, by
intersecting the surface of one object with the bound-
ing box of the other object, the gridder is able to derive
a good initial guess to ECSG’s Newton’s-method-based
surface intersection algorithm. Although the bounding
box seems to be a very coarse approximation of an ob-
ject, we have found it to be adequate in dealing with
sailing yachts in which a single keel is the only ap-
pendage attached to the hull. As we encounter more

complex geometries, we can replace the boxes with con-
vex hulls or unions of convex hulls.

Streamline-based reasoning

As it turns out the solution to Laplace’s equation de-
pends neither on the current state of the flow nor on
time, the geometry of the object dominates the solu-
tion. And, since streamlines are key characteristics of
the solution, analyzing how streamlines interact with
geometry provides key insights to qualitative behaviors
of Laplace’s equations. These insights enable us to de-
termine the topology of streamlines. In turn this topol-
ogy provides natural boundaries for patches in grids.

The most immediate reasoning problem we en-
counter in streamline-based reasoning is how to get
the initial set of streamlines, since we have not yet run
PMARC to generate the solution from which stream-
lines are extracted. We have experimented with var-
ious methods of predicting the streamlines a priori.
However, we have found the simple projection of the
free stream vector onto the body surface to be a good
approximation of the true streamlines. The free stream
vector is the direction the fluid would have traveled if
no object were in the water.

Surface point classification We first reason about
how streamlines interact with individual surface
points. Each surface point can be classified into the
following qualitative categories.

} { ' t {
} ! ‘ { ‘ ' }
Source Sink Unitlow Flowing Flowing
Source Sink

Figure 5: Node Classification

e Source node. A stagnation point where all the neigh-
boring streamlines move away from it. This node
type is one of two types of nodes which signals the
divergence of streamlines around a body. For ex-
ample, the point where the free stream first hits an
elliptic hull is a source node.

e Sink node. A stagnation point where all the neigh-
boring streamlines move toward it. This node type
is one of two types of nodes which signals where
the streamlines converge around a body. The point
where streamlines leave the elliptic hull is a sink
node.

e Uniflow node. A point where all the neighboring
streamlines move in approximately the same direc-
tion. Most surface points are of this type. Also,
notice streamlines can be derived by connecting uni-
flow nodes.

263

600 panels

min aspect ratio 1.01751 at panel 410, max aspect ratio 101.385 at panel 509

min orthogonality 16.6544 degrees at panel 500, max orthogonality 89.9987 degrees at panel 290
min noncoplanarity 0.237388 degrees between panel 483 and neighbor 484(2)

max noncoplanarity 166.694 degrees between panel 410 and neighbor 600(2)

max expansion ratio 9.05028 between panel 593 and neighbor 10(3)

condition number = 16.2

min pressure coefficient -0.660658 at panel 593, max pressure coefficient 0.80108 at panel 40

0 hulll

min chordwise doublet jump 2.22832e-05 between panel 120 and neighbor 320(2)
max chordwise doublet jump 0.141155 between panel 9 and neighbor 10(2)

min spanwise doublet jump 4.2132e-07 between panel 2 and neighbor 382(1)
max spanwise doublet jump 0.0199002 between panel 9 and neighbor 29(3)

min streamline angle difference 0.0 at panel 2
max streamline angle difference 3.44 at panel 28

Figure 4: Output

e Flowing-source node. A point that looks like a source
node in one direction and an uniflow node in the
other. This is the second type of divergent nodes,
which usually can be found on the leading edges of
keels and wings.

e Flowing-sink node. A point that looks like a sink
node in one direction and an uniflow node in the
other. This is type of convergent node usually can
be found on the trailing edges of keels and wings.

Using this classification scheme and the fact that
streamlines can only split/merge at source/sink nodes,
we define the following two class of geometric objects.

Single source node and single sink node ob jects
The surface of all the objects in this class consists of
a single source node, a single sink node, and the rest
unifiow nodes. Spheres, ellipsoids and other simple
bodies of revolution are objects of this class.

If a surface only contain one source node and one
sink node, then we can conclude that all the stream-
lines emanate from the source node and converge at
the sink node. Here it is natural to define just one
patch to cover this surface.

Single source line and a single sink line objects
Flowing-source nodes tend form a line on the geomet-
ric object. This line corresponds to the location where
streamlines split into two halves to go around a body.
For instance, the leading edge of a keel is one such
line. We call these lines source lines, because collaps-
ing source lines into points produce source nodes. Sink
lines are defined similarly. The surface of all the ob-
jects in this class consists of a single source line, a single
sink line, and the rest unifiow nodes. These source and
sink lines provide natural places to divide the surface
into two patches.

Using only these two object class, one can already
construct complex, geometric objects, for example a

yacht consisting of a hull, a keel, and winglets on the
keel. We can define other classes as the need arises.

Surface Integrity Checking

During the panelization process, the original surface
definitions are transformed many times by the sur-
face partitioning operators as well as by the surface
reparametrizing operators. Accumulation of numer-
ical errors, non-convergence of solvers, inappropriate
parameters, or simply programming bugs may cause
these transformations to fail. If this gridder is to be
used in an automated environment, we need to ensure
robustness. Due to the nature of numerical analysis
methods it seems difficult to write codes that always
are guaranteed to work. However, it is much easier to
verify the result against expectation, and then mod-
ify the result if necessary. For example, the surface
reparametrization operators works as follows:

1. State the expected numerical result. In this case
the boundaries of original surface must match the
boundaries of the reparametrized surface.

2. Perform the numerical operation. Trace streamlines
over the original surface. Let these streamlines be
grid lines in the constant u direction. Define grid
lines in the constant v direction to be perpendicular
to streamlines.

3. Verify the result of the operation against the pro-
posed result. Streamline tracing on an irregularly-
shaped surface may generate streamlines that do not
cover that surface.

4. Upon failure, try to fix result or redo operation with
alternative parameters. In this case stretch the new
surface to cover original surface.

Implementation

The current implementation of the gridder is limited
to geometries constructible from unions of two bodies.

This gridder has been tested on several examples, in-
cluding Figure 3. Figure 4 is a partial output of the
program showing the grid performance with respect to
the evaluation criteria.

Future Work

The most immediate plan is to extend the gridder to
handle more complex geometries, including the union
and intersection of several bodies. Another direction
is to make the gridder adaptive. That is to enable the
gridder to feedback on the type of local information in
Figure 4 to make local improvements to the grid. This
is easy to accomplish with streamline-based gridding.
For example, if feedback discovers a very skewed panel,
it may be possible to locally reposition the streamlines
to make it more orthogonal. Finally, we plan to add
the wake geometry reasoning capabilities. One way
to improve the predictive power of potential flow is to
attaches vortex sheets to bodies to simulate wakes. Ex-
pert reasoning is needed to determine where to attach
these vortex sheets and to determine the geometry of
these sheets.

Related Work

[Jambunathan et al., 1991] and [Andrews, 1988] dis-
cuss the use of expert systems technology to aug-
ment more traditional computational fluid dynam-
ics programs. [Chao and Liu, 1991] successfully ap-
ply streamline-based gridding to 2D flow prob-
lems consisting of a single patch. Also, in 2D
[John F. Dannenhoffer, 1992] has implemented a rule-
based gridder capable of recognizing surface patch
boundaries. Finally, [Santhanam et al., 1992] identi-
fies several key parameters in the grid feedback pro-
cess.

Acknowledgments

The research on automated use of PMARC was done in
consultation with Rutgers Computer Science Dept. fac-
ulty member Gerard Richter. We worked with hydro-
dynamicists Martin Fritts and Nils Salvesen of Science
Applications International Corp., and John Letcher of
Aero-Hydro Inc. Our research is part of the CAP
(AI and Design) project, and benefited significantly
from interaction with other members of the project.
The CAP project is supported by the Defense Ad-
vanced Research Projects Agency and the National
Aeronautics and Space Administration under NASA
grant NAG2-645. The National Science Foundation
provided additional support for this research though
grant CCR-9209793.

References

Alison E. Andrews. Progress and challenges in the
application of artificial intelligence to computational
fluid dynamics. ATAA Journal, 26(1):40-46, January
1988.

265

Y. C. Chao and S. S. Liu. Streamline adaptive grid
method for complex flow computation. Numerical
Heat Transfer, Part B, 20:145-168, 1991.

T. Ellman, J. Keane, and M. Schwabacher. The Rut-
gers CAP Project Design Associate. Technical Re-
port CAP-TR-7, Department of Computer Science,
Rutgers University, August 1992.

Andrew Gelsey. Modeling and simulation for auto-
mated yacht design. In AAATI Fall Symposium on
Design from Physical Principles, pages 44-49, 1992.

K. Jambunathan, E. Lai, S. L. Hartle, and B. L. But-
ton. Development of an intelligent front-end for a
computational fluid dynamics package. Artificial In-
telligence in Engineering, 6(1):27-35, 1991.

III John F. Dannenhoffer. Automatic block-
structured grid generation — progress and challenge.
In Elaine Kant, Richard Keller, and Stanly Steinberg,
editors, AAAI Fall Symposium Series: Intelligent Sci-
entific Computation, pages 28-32, 1992.

Tharini Santhanam, J.C. Browne, J. Kallinderis, and
D. Miranker. A knowledge based approach to mesh
optimization in CFD domain: 1D Euler code exam-
ple. In Elaine Kant, Richard Keller, and Stanly Stein-
berg, editors, AAAI Fall Symposium Series: Intelli-
gent Scientific Computation, pages 115-118, 1992,

