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Abstract

Determining the possible positions and motions of ob-
jects based on their geometry is fundamental to rea-
soning about the physical world, for example in robot
planning or mechanical design. Existing techniques
are based on the geometry of object boundaries and
limited in the degrees of freedom they allow, or in the
object shapes that can be considered.

In this paper, I present a technique which is based
on the topology of objects and space, and does not
require a closed-form representation of object bound-
aries. The technique is simpler, more efficient and
more robust than techniques based on geometry.
However, it is limited to objects which can be rep-
resented as the union of convex subparts.

1 Introduction

Spatial reasoning about possible motion and kine-
matics of physical objects is fundamental for reason-
ing about the physical world. Figure 1 shows an ex-
ample of 5 different positions of a designated moving
object in the free space left by a set of obstacles. The
spatial reasoning task I address in this paper is to
determine a complete vocabulary of all legal quali-
tative positions of the moving object, called places
([3]), and the connectivity between these positions.
Using the place vocabulary, it is for example possible
to classify positions A, B, C and D as belonging to
different places, and to show that positions D and F
are connected, but A and C are not. For example,

a place vocabulary can be used to solve the piano- 1

Figure 1: Five qualitatively different positions of an
object in a space of obstacles. My technique predicts
the ezistance as well as the connectivity of the posi-
tions on the basis of the geomelry of the obstacles and
the moving object.



movers problem, which has been extensively studied
in the literature (10, 6]).

Existing techniques for computing place vocabu-
laries (among many others, [9, 3]) first model the
object surfaces using equations, transfer these into
constraints in a configuration space ([11]), and then
obtain a region structure by algebraic methods. How-
ever, complexity imposes limitations on the allowable
object shapes and their freedom of motion. Thus, no
algorithm has been known which can compute place
vocabularies for curved objects as shown in Figure 1.
Furthermore, modeling object geometry using alge-
braic constraints poses several problems:

e fitting: shapes are observed as bitmaps and their
automatic modeling with algebraic curves is not
solved in a reliable manner.

e brittleness: small numerical errors can result in
grossly incorrect topologies. Furthermore, errors
propagate even to parts of the place vocabulary
which were otherwise computed correctly.

e adaptability: solutions for similar situations can-
not be reused.

An alternative to modelling objects algebraically
by their boundaries is to model their topology as a set
of regions. In this paper, I present a novel method for
computing place vocabularies based on such an ob-
ject model and principles of algebraic topology. Simi-
larly to the work of Cui, Cohn and Rendell ([2]), rea-
soning is based on overlaps between regions. How-
ever, our work is different in that it takes into ac-
count the shapes and dimensions of rigid objects and
applies algebraic topology to infer additional infor-
mation. I will first define the method for the case
of two-dimensional objects with two degrees of free-
dom, and then show how it generalizes to rotations. I
have not yet investigated the generalization to three
dimensions.

2 Object and constraint repre-
sentation

Objects are modelled as the union of convex parts,
and one of the objects is identified as a moving ob-
ject. A configuration is a particular position and ori-
entation of the moving object and can be defined as a

point in a configuration space ([11]), which is spanned
by these parameters. Configuration space consists
of blocked configurations where the moving object
would overlap others, called blocked space, and its
complement of legal positions, called free space. Each
possible overlap between parts of the moving object
and a fixed object defines a configuration space region
(c-region) of illegal configurations, called an obstacle.
Blocked space is the union of all obstacles.

In order to be able to refer to positions of the mov-
ing object within free space, we define a set of con-
vex regions called cavities which completely cover the
empty space left by the fixed objects. The choice of
these regions is arbitrary: they can be understood as
defining a quantity space of positions of the moving
object. For example, the situation of Figure 1 can be
represented by the regions shown in Figure 2. The
possible overlaps between a part of the moving ob-
ject and a cavity defines a c-region which we call a
bubble. Note that in contrast to blocked space, free
space is only a subset of the union of all bubbles.

When the moving object is placed in an arbitrary
configuration C, it overlaps some parts and cavities.
In configuration space, this means that the config-
uration falls within a certain combination of corre-
sponding obstacles and cavities, and we call such a
combination an environment:

Definition 1 An environment is a combination of c-
regions, and denotes the set of configurations where
the moving object exhibits at least the overlaps corre-
sponding to them (and possibly others as well).

The environments corresponding to two sample con-
figurations are shown in Figure 2.

Properties of c-regions Because they represent
configurations of overlap between convex regions, c-
regions have the following properties which will be
important for computing the topology of a combina-
tion of c-regions. Note that in this section, we con-
sider only translations. Rotations will be discussed
later in the paper.

Theorem 1 Every c-region formed by two convez
pieces or cavities A and B is o simply connected re-
giom.



Configuration A Configuration B

Figure 2: Input representation of a situation. Pieces, shown in grey, and cavities, shown in while, are labelled
by a combination of two numbers which number the c-regions of overlap with the two pieces z /y of the moving
object, shown in grey. The shown legal configuration falls within the environment E1 = {8,9,22,23}. The
configuration shown as an outline falls within the environment E; = {1,10,14,18,23}. E; contains only
bubbles and is thus legal, whereas E3 contains several obstacles and is illegal.




Configuration 1

Configuration 2

Figure 3: We identify points P1 and P2 as selected overlapping points in the two shown configurations of
overlap between A and B, and denote their positions on A and B by subscripts. The two configurations can
be transformed tnto each other by moving object A in o straight line as shown. In any intermediate position,
there is an overlap between a point on A which falls on P14P24 and a point on B which lies on PlpP2p.
Consequently, the path where A moves in a straight line with respect to B lies completely within the c-region.

Proof: Consider an arbitrary pair of configurations
1 and 2. Figure 3 shows a proof that there always ex-
ists a path entirely within the c-region which connects
the two configurations, and thus the c-region is con-
nected. Now consider a cycle of configurations within
the c-region. The cycle can be approximated as a se-
quence of configurations which can be transformed
into each other using the transformation shown in
Figure 3. On each part, the sequence of transfor-
mations of the selected point forms a polygon whose
edges all fall within the part. By shortening each
translation by the same proportion ¢, the correspond-
ing sides of the polygon are also shortened by the
same fraction and we obtain a similar polygon which
is smaller by a factor of €. By repeated and con-
tinuous application of this contraction operation, the
polygon and thus the cycle of transformations can be
contracted into a single point. Since any closed path
within it can be transformed into a single point, the
c-region is simply connected.

QED

Computing the topology of a set of regions requires
consideration of their intersection. For this, the fol-
lowing property is important:

Theorem 2 Every
of k c-regions ¢y, ¢q, ..
gion.

intersection
. €k 15 a stmply connected re-

Proof: In both configurations A and B, let there be
an overlap between the k pairs of pieces which define
the c-regions. The proof of Theorem 1 shows that the
straight line translation between A and B maintains
each of the overlaps and thus falls within the inter-
section of the k c-regions. By the same reasoning as
before, this intersection is thus a simply connected
region.

QED

3 Environments, and

Places

Cliques

Recall that an environment is a combination of ob-
stacles and bubbles. An environment E is feastble if
there actually exists a configuration which falls only
within E, and in particular does not intersect any
other c-regions outside of E. A feasible environment
thus represents a set of configurations where the mov-
ing object overlaps exactly the pieces and cavities
designated by E. An environment is called mazi-
mal if there is no feasible environment that F is a
proper subset of, and minimal if there is no feasible
environment which is a proper subset of E. Environ-
ments which are feasible and contain only bubbles are
regions of legal configurations of the moving object,
and make up the places in the place vocabulary.
The principle underlying the method I present is




the following:

A place P = {By, By, ..., B} is part of the
place vocabulary only if

¢ it is an environment consisting only of

bubbles, and

® removing the in-
tersection of {Bi, By, ..., Br} leaves a
“hole” in the configuration space.

which is true because if there is a configuration which
falls only in P, removing P will remove the point
from the configuration space, thus creating the hole.
This principle allows using the topological notions of
connectedness for computing place vocabularies.

An environment is the intersection of a set of c-
regions and thus by Theorem 2 simply connected. A
place represents a set of feasible positions of the mov-
ing object, i.e. positions where it does not overlap any
obstacles. Thus, we define:

Definition 2 A place is a feasible environment
which contains only bubbles.

The method for computing topologies is based on
a theorem which allows to decide the existence of re-
gions where any number of parts overlap from knowl-
edge of the existence of all regions where only d + 1
parts overlap, where d is the dimensionality of the
configuration space. More specifically, we define:

Definition 3 The nth-order region graph G,(R) of
a set of c-regions R ts the hypergraph whose nodes are
the c-regions in R and whose arcs are all intersections
of up to n c-regions in R.

and

Definition 4 An n-clique of a hypergraph G is a set
N = {n1,ny,...,nr} of nodes such that any subset of
n nodes € N is an arc of G.

and have the theorem:

Theorem 3 Let G be the (n+1)-th order region
graph of a set R of c-regions in an n-dimensional
configuration space. The environment E consisting
of an overlap of the set of c-regions N ezists if and
only if N is an (n+1)-cligue of G.

Proof: The ”only if” direction is obvious, since an
intersection of all regions in N automatically implies
an intersection of all subsets of N. The »if” direc-
tion is proven inductively in following way. Obvi-
ously the theorem is true for |N| = n 4+ 1. Assume
that it holds for some |N| = I > (n + 1), and let
N = {n1,n3,...,ni+1}. Then all intersections of sub-
sets of ! regions exist, so all the Céch-cohomology
groups of N up to degree [—1 are identical to those of
an intersection of [+ 1 identical unit balls in R™. But
as a consequence of the Alexander duality, all Céch-
cohomology groups of degree > n are identically zero.
Thus, Céch-cohomology of the N is entirely the same
as that of an intersection of [ + 1 unit balls, and the
intersection of all regions is non-empty.

QED

More details about Céch-cohomology can be found
in textbooks on algebraic topology, for example [8]
or [7]. Theorem 3 is a generalized version of Helly’s
theorem ([1]), which states the same relation but for
convex sets only.

For two dimensional configuration spaces, Theo-
rem 3 implies that the set of environments formed by
the c-regions is given by the 3-cliques of the region
graph G. The region graph can be obtained by ex-
haustive testing of all possible intersections between
triples of obstacles and bubbles: in the example of
Figure 2, the region graph contains 26 nodes and 469
hyperarcs linking sets of three nodes.

Because the region graph is a type of intersection
graph, and each 3-clique corresponds to an actual re-
gion of space, their number is limited to grow only
polynomially in the number of nodes. Thus, the set
of mazimal 3-cliques of G can be determined by ex-
haustive search without extensive complexity; in the
example we find a total of 34 maximal cliques. All
these maximal cliques are feasible: configurations in
them cannot be part of any other regions as otherwise
the clique would not be maximal. However, most are

not places since they are not composed exclusively of
bubbles.

Computing feasible environments Many feasi-
ble environments are non-maximal cliques, i.e. sub-
sets of maximal cliques, but not all subsets of maxi-
mal cliques are feasible. In order to decide whether
a given non-maximal clique is feasible, we make
use of the criterion mentioned in the introduction,




Figure 4: An ezample of an environment: E 1is
formed by the intersection of c-regions R1 through
R4.

namely that an environment is feasible if removing
its c-regions changes the connectivity of configuration
space.

More precisely, a set of c-regions F is an environ-
ment if and only if it is a subset of a maximal clique.
An environment is an intersection of c-regions and
by Theorem 2, its topology is always that of a simply
connected region. Figure 4 shows an example of an
environment formed by the intersection of c-regions
R1 through R4.

We now consider the set of c-regions O(F) over-
lapping E, called the overlap set of E, is the union of
maximal cliques containing E, restricted to the points

within E:
oE)=(J 9E

s€S(E)

where S(E) = {s|s is a maximal clique ands > F}.

In a two-dimensional configuration space, the over-
lap set of a set E can have the following topologies,
illustrated by Figure 5:

a) simply connected: c-regions R5 and R6 cover
all configurations in the environment, conse-
quently removal will not create a hole, and the
environment is not feasible.

a)

b)

Figure 6: Two indistinguishable situations with dif-
ferent environments.

b) simply connected: c-region R5 covers some of
the configurations in the environment, removal

will create a hole, and the environment is feasi-
ble.

multiply connected: c-regions R5-R8 form a
cycle which leaves an opening when the environ-
ment is removed, and thus the environment is
feasible.

d) not connected: c-regions R5 and R6 are not
connected, removal of the environment leaves an

opening, and thus it is feasible.

The topology of the overlap can be computed us-
ing a decomposition into elementary spaces, as de-
scribed later. The method for computing the feasible
non-maximal environments is based on the following
theorem:

Theorem 4 If the topology of the overlap set O(E)
is different from that of the environment F itself, E
is feastble.

Proof: since O(F) has a different topology from E,
and O(F) C E, E must contain points which are not
in O(E). Thus, there are some points in E which are
not in any other c-region, and thus E is feasible.

QED

This theorem leaves ambiguous the case where an
environment and its overlap set have identical topolo-
gies, in this case simply connected. In fact, the formu-
lation of region intersections does not contain enough
information to distinguish whether or not such an en-
vironment is feasible. Consider the example shown



a) b) c) d)

Figure 5: Let E be the environment consisting of the intersection of the 4 c-regions R1-R4, shown in grey.
Depending on the topology of the c-regions overlapping E, it may (b, ¢ and d) or may not be (a) feasible.
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Figure 7: E is formed by the intersection of R1,
R2 and R3 and overlapped by R4. O(FE) is sim-
ply connected, but does not completely cover E. Any
path through E may then be transformed into a path
through subset environments, in this case {R1, R3},
{R3}, {R2, R3}. Thus, omitting E from the place vo-
cabulary does not cause any change in connectivity.

in Figure 6. Cases a) and b) both have the same
two maximal 3-cliques: {R1, R2, R3} and {R3, R4}
and are thus indistinguishable in the input informa-
tion given to my algorithm. However, in case a) the
environment {R2, R3} is feasible and the environ-
ment {R1, R3} is not, whereas in case b) the oppo-
site is true. Note, however, that all environments in
question are subsets of the single environment { R3},
which is feasible by the criterion given above (over-
lap set not connected). Thus, both situations are
correctly modelled by the single place {R3}, and the
ambiguous environments can be ignored.

It remains to show that ignoring these environ-
ments does not result in incorrect connectivity of the
space. To do this, we show that any path through an
environment whose overlap set is simply connected
can be transformed into an equivalent path through
one of its subsets, as shown in Figure 7. We begin by
showing the following lemma:

Lemma 1 Let E, O(E) be simply connected and E —
O(F) consist of the components cq,cg,.... Then each
¢ N Bnd(E), where Bnd(E) is the boundary of E, is
connected.

Proof: assume there was a component intersecting
Bnd(E) in two disjoint pieces. Then the boundaries
of E — O(FE) connecting the endpoints of the pieces
delimit two disjoint pieces of O(FE) , and thus O(E)
is not simply connected.

QED

As a consequence, we have the following theorem:

Theorem 5 Let E be an environment such that both
E and its overlap set O(E) are simply connected.
Then any legal path through E — O(E), the part of
E not covered by O(E), can be continuously irans-
formed into a legal path through subsets of E.

Proof: Let ¢ be a component of E — O(F). A path
through c must cross the boundary of E Bnd(FE) an
even number of times. Since both ¢ and ¢ N Bnd(E)
are simply connected, the crossings can all be con-
tinuously contracted into a single point and the path
thus removed from c.

QED

Thus, it is correct to consider as feasible only those
environments which are either maximal or whose
overlap sets are not simply connected, and this is the
rule my algorithm uses.

Computing the place vocabulary Those feasi-
ble environments which do not contain any obstacles,
i.e. are made up purely of bubbles, are environments
in which there is no overlap between moving object
and fixed pieces and make up the places in the place
vocabulary. In the example given earlier, there are
81 environments which are feasible by the topology
of their overlap set or by being maximal, of which 9
do not contain any obstacles and thus make up the
places. They are shown in Figure 8.

Transitions between places are possible at bound-
aries of c-regions. In particular, a transition from P1
to P2 can correspond to either entering or leaving a
c-region which distinguishes P1 from P2. Thus, P1
is adjacent to P2 whenever P1 is a proper subset of
P2, or P2 is a proper subset of P1. This generates
the adjacency relations shown in Figure 8.




{2310}

{22,218}

{23,22,10,9)

{23,22,21,9,8} {23,22,9}

Figure 8: Place vocabulary for the ezample. The
numbering of the regions refers to Figure 2, the letters
to configurations in Figure 1.

4 Compositional computation
of topology

For deciding whether an environment is feasible or
not, it is necessary to compute the topology of its
overlap set. The algorithm I use is based on con-
structing a decomposition of the space into subspaces
of known topology. One basis for this computation
is the theorem of Seifert & Van Kampen ([7]), which
states that

Theorem 6 Two simply connected regions A and B,
overlapping in a stmply connected region C, form a
stmply connected region.

Proof:
see [7].
The other important basis is the following:

Theorem 7 Two simply connected regions A and
B, overlapping in several disjoint regions Cq,Cy, ...
form a multiply connected region.

H

Proof: A path through 4 — C; - B — Cy — A
cannot be contracted into single point.
QED

The algorithm, shown as function topology in Fig-
ure 9, works by searching for a decomposition of the
set of c-regions into subregions such that the connect-
edness can be unambiguously determined using the 2

function topology(O,E)
1. C « maximal cliques within O.
2. forallc€ C do

(a) e «— O\e, if e is return

simply-connected

empty
(b) o «— overlap(c,e, E), if o is empty return
not-connected.

(c) tr « topology(e, E), to « topology(o, F)

if tr = simply-connected and to =

simply-connected return
simply-connected

if tr = simply-connected and to =

not-connected return
multiply-connected
(f) f tr = not-comnected and to =

simply-connected return not-connected

3.if no result has been found: return

multiply-connected

function overlap(X,Y,E)
return a list of all c-regions z € X, y € Y such that
{z,y} UFE is a clique.

Figure 9: Algorithm for computing the topology of the
overlap set O of an environment E.

theorems above. When no such decomposition ex-
ists, the result must be multiply connected, as this is
the only case where the decomposition can fail. The
complexity of this procedure is significantly reduced
by considering cliques of c-regions - which are known
to be simply connected - as the elementary units of
decomposition. In order to accurately determine the
topology of the part which overlaps the initial envi-
ronment F, it is important that the algorithm must
only consider those connections which fall within E.
This is achieved by the function overlap, which only
returns the overlapping c-regions within E. Note that
all operations can be implemented by subset tests on
the maximal cliques of the region graph.




5 Rotations

When the moving object is allowed to rotate, four
important differences appear:

e the topology of c-regions includes the doubly
connected rotation group S*, and thus c-regions
are doubly connected.

e intersections of c-regions can be multiply con-
nected or consist of multiple subregions.

e The three-dimensional configuration space ad-
mits S? as another subgroup.

e Theorem 3 must now be applied to the 4-th order
region graph (rather than 3-rd order).

These differences imply a number of complications
to the algorithm, which however do not change its
principal properties. The details of the modifications
are more involved and beyond the scope of this pa-
per. Implementation of the technique for the case of
rotations is currently under way.

6 Implementation

I have implemented the techniques for two-
dimensional objects. The input to the program
is given in the form of three collections of convex
bitmaps, representing the parts of the fixed objects,
the moving object, and the cavities. A preprocessor
uses these bitmaps to compute the region graph for
the configuration space by exhaustively searching for
simultaneous overlaps. This is by far the slowest op-
eration since it performs iterative approximations on
bitmaps. The preprocessor defines the set of obsta-
cles and bubbles, and a graphical interface permits
visualizing sample configurations in each.

Because arcs in the region graph represent inter-
sections between regions which are present in a set of
configurations, there is a high probability of finding
them by random generation. Computation of the re-
gion graph can be made much more efficient by first
generating a number of random configurations, and
noting the part overlaps they exhibit. Only simul-
taneous overlaps which have not been ruled out and
which have not been found by this procedure need to
be searched for explicitly.

Figure 10: Environment E (and consequently place
P ) models two disjoint regions, thus leading to incor-
rect connectivity between A and B.

The implementation shows that it is indeed pos-
sible to perform spatial reasoning on the basis of
bitmaps only. In practical applications, computations
could first be carried out on polygonal approxima-
tions of objects, and representations of the precise
shapes need only be used in case of ambiguities.

7 Discussion

Resolution limits of cavities The resolution of
the free space representation is limited by the cavi-
ties covering it. In particular, a single environment ¥
of bubbles, and thus a single place P, may cover sev-
eral disjoint regions r1, 7y, ... of free space. The main
problem caused by this phenomenon is that the con-
nectivity of free space computed by the program may
be incorrect by predicting a path from 4 « P «— B
when the existing connections are in fact 4 <
and B « r, with no connection between r; and »;
(Figure 10).

Insufficient resolution can be detected in the topo-
logical computation by the fact the the overlap set of
E will be more than doubly connected, i.e. contain
several “holes”. This can be detected by modifying
the topology computation algorithm described ear-
lier so that it can return a different default solution
if the best decomposition found is one which implies
several holes. This problem can only be solved by in-
creasing the resolution of the cavities whenever it is




insufficient. In our current implementation, we only
signal the problem; increasing the resolution is up to
the user.

Using prior knowledge If a place vocabulary has
already been computed for a scenario involving some
of the same objects, the corresponding parts of the
region graph can be reused to solve a new problem.
For example:

e when an obstacle is moved between two sce-
narios, the new region graph can be found by
only recomputing those arcs which involved the
moved obstacle. Only parts of the place vocabu-
lary which depend on the newly created cliques
need to be recomputed.

e the region graph for a situation could be com-
posed of prototypes. A pattern recognition pro-
cedure could serve to identify the right proto-
types to model each combination of obstacles.

The possibility of using prior knowledge makes it pos-
sible to envisage algorithms for computing place vo-
cabularies for complex situations in real time.

Extension to qualitative kinematics Besides
predicting the possible regions and their connectivity,
it is often important to reason about the kinematics
of contacts between surfaces. To do this, it would be
useful to know the contact relationships which can be
reached from a given place without passing through
any other one. The region-based object represen-
tation is not detailed enough to represent contacts
themselves, but only combinations of object pieces
which could come into contact; these are represented
as obstacles. For each place P, the overlap set of its
underlying environment gives directly the set of ob-
stacles which are adjacent to it, and might have to
be considered for kinematic analysis.

Three dimensions The work presented in this pa-
per is restricted to two dimensions, primarily to sim-
plify graphical representation. For the case of pure
translation, Theorems 2 and 3 generalize without
modification since they only refer to the convexity
of sets. I have not investigated the problem of three-
dimensional rotations yet.

Robustness An important problem with all geo-
metrical computation ([4]), and especially computa-
tion involving configuration spaces, is that small er-
rors in the numerical computations can cause grossly
erroneous results. For example, an algorithm which
computes configuration spaces by tracing out its
boundaries will give an entirely incorrect topology
even if only one connection of the boundaries is com-
puted incorrectly.

The topology-based computation is very robust
against such errors. When a numerical errors re-
sults in predicting a single non-existant overlap, this
normally creates an additional clique containing only
that overlap. Since the clique will be very small, it
will most likely not be a superset of any interesting
environment, and thus have no influence on the place
vocabulary. When an overlap is missing, this can re-
sult in a clique being broken into two smaller subsets.
In the case where this overlap is indeed the only one
ruling out a place, this will cause a spurious place to
appear, but not affect the rest of the place vocabu-
lary.

Complexity Since each maximal clique models a
feasible region of configuration space, its number does
not grow more than O(n?), where n is the number of
c-regions and d is the dimensionality of the config-
uration space. Since in a search algorithm all leaf
nodes are maximal cliques with one more c-region
added, the complexity of finding them is no greater
than O(nd+1).

The second important part of the algorithm is to
compute the topology of region overlaps. This in-
volves a search which is in fact of exponential com-
plexity, but the number of c-regions which can over-
lap any environment is limited by the fact that the
moving object cannot overlap parts which are farther
apart than its size would allow. Thus, as the number
of c-regions gets large, the complexity of determining
the overlap topology of an environment is about con-
stant. The number of overlap region computations is
bounded by the number of environments which are
examined. There are not more environments than
feasible regions of configuration space, and thus their
number again does not grow by more than O(n?).

Thus, the total complexity of the algorithm can be
estimated to be about O(n?*!). In practice, the com-
putation is very fast: for the example of Figure 1, it




takes less than 1 second to compute the place vocab-
ulary on the basis of the maximal cliques.

8 Conclusions

The novelty of the spatial reasoning technique pre-
sented in this paper lies in two aspects: using a
region-based object representation, and using topo-
logical rather than geometrical properties for com-
puting a place vocabulary.

Because the method is based on topology, it com-
pletely avoids the problems associated with algebraic
surface models:

e object representations as unions of convex parts
have long been postulated in vision research
([5]), and there are reliable methods for comput-
ing them.

e the methods are robust: inaccuracies in the pos-
sible overlaps have only local influence on the
place vocabulary. Furthermore, since any over-
lap of c-regions always consists of a set of points,
the numerical analysis required to find them is
simpler than in cases where precise configura-
tions must be detected.

e information about simultaneous overlaps ob-
tained from previously solved subproblems can
be directly reused in other contexts. Further-
more, it is possible to use abstractions: groups of
parts can be approximated by their convex hull
until a more precise representation is needed.

However, the technique requires that objects can be
represented as unions of convex parts and thus cannot
deal with concave surfaces. Furthermore, it requires
a method for deciding the existence of configurations
where certain combinations of small sets of parts and
cavities can simultaneously overlap.

Further development of the methods for three-
dimensional problems, rotations and multiple moving
objects are currently under way. I expect it to yield
much simpler methods for spatial reasoning than were
possible with geometric boundary-based methods.
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