Compositional Modeling for Complex Spatial Reasoning Tasks*

Kyungsook Han

kshan@es.rutgers.edu

and Andrew Gelsey

gelsey@ces.rutgers.edu

Department of Computer Science
Rutgers University
New Brunswick, NJ 08903
U.S. Al

Abstract

Reasoning about a complex physical system generally
requires the creation and execution of a model of the
system, the creation of which in turn depends on the
types of knowledge available for the physical system
and their representation. Such a model is normally
created by the person studying the system. Despite
the considerable time and effort spent, a hand-crafted
model is often error-prone. Modifying a hand-crafted
model to solve a similar problem about other physi-
cal systems is also difficult, and may take more time
than building a new model for the systems. We de-
scribe a method which uses first principles to auto-
matically create models and simulators for spatially
complex motions. This method solves several prob-
lems with existing Al modeling work on motion by:
(1) explicit handling of vector quantities and frames
of reference; (2) simultaneous handling of multiple
equations (algebraic or differential, linear or nonlin-
ear); and (3) declarative, algorithm-neutral represen-
tation of physics knowledge. The method has been im-
plemented in a working program called ORACLE and
tested in the domains of mechanical devices and sail-
boats. Experimental results show that ORACLE is ca-
pable of generating correct models of several different
types of physical systems if enough domain knowledge
is available.

Introduction

Spatial reasoning problems are considered in a variety
of areas, but different areas have different spatial rea-
soning tasks. In computer vision, for example, recog-
nition of familiar objects can be the main spatial rea-
soning task. Our focus in this paper is on modeling
physical systems for reasoning about spatially complex
motion of the systems. By spatially complex motion
we mean the motion of multiple moving objects in ar-
bitrary configurations in three dimension. Motion in
three dimension is much more difficult to understand

*This research was partially supported by the Advanced
Research Projects Agency (ARPA) and National Aeronau-
tics and Space Administration under NASA grant NAG2-
645 and by the National Science Foundation through grant

CCR-9209793.

and deal with than the motion in one or two dimension
because modeling such a motion involves reasoning in
vector space.

There are several works on modeling motion, but
spatially complex motions did not get much attention.
Some qualitative physics approaches have been used to
model motion. But they focus on developing represen-
tations for physical systems and reasoning about the
systems within the representations, and their capabil-
ity of reasoning about motion is limited to simple mo-
tions only. Consider, for example, a spring with one
end attached to a fixed point and the other end at-
tached to a block. What happens if the block is pulled
and rotated from its equilibrium position and released,
as illustrated in Figure 1a? This spring-block system
is different from a linear harmonic oscillator, which is
a common textbook example often used in qualitative
physics research. It is well known that the harmonic
oscillator has one degree of freedom, i.e., displace-
ment of the block from its equilibrium pesition, and
its motion is oscillatory on a straight line. However,
predicting the behavior of the spring-block system in
Figure la is not as simple as the harmonic oscillator.
Many qualitative physics approaches which can model
the harmonic oscillator (Forbus 1984; Kuipers 1986;
Struss 1988; Weld 1988; Williams 1986) cannot han-
dle this spring-block system. The primary reason for
this difficulty can be attributed to the fact that qual-
itative values are not adequate for spatially complex
problems and that they lack the ability to reason ex-
plicitly about vector quantities and moving frames of
reference. Some research in spatial reasoning or com-
mercial mechanics simulators have powerful algorithms
to model motion, but they incorporate knowledge of
physical phenomena directly into algorithms and diffi-
cult to reuse or extend them to solve similar problems
about other physical systems.

The work of this paper is motivated by two goals.
The first goal is to automate the model formulation
and simulation process for complex motion. The sec-
ond goal is to make the modeling process as general
as possible so that common domain theories can be
shared and reused instead of being duplicated. As we

(a) (b)

Figure 1: (a)l block attached to a spring. The block is pulled and rotated from its equilibrium position and
released. (b) 2 blocks connected by 1 spring. Both blocks are pulled in opposite directions and released. (c¢) 3
blocks connected by 2 springs. The middle block is pulled directly to the side and released.

Figure 2: Stars & Stripes, winner of the 1987 America’s
Cup competition.

will show later, we handle explicitly vector quantities
and reference frames, and construct a model from a
set of model fragments. The model fragments repre-
sent the fundamental physics knowledge in a declara-
tive and algorithm-independent way, and are reused in
building models of different types of physical systems.

The remainder of this paper discusses a framework
for automatically creating and simulating behavioral
models of moving physical systems, and illustrates the
framework using the single spring-block system in Fig-
ure la as a running example. We also discuss the
epistemological adequacy of the framework for broader
class of physical systems, and address related issues
such as: Can the modeling system of the single spring-
block system be used to predict the behavior of more
general spring-block systems such as Figure 1b and
Figure lc, or different types of physical systems such
as a sailboat shown in Figure 27 Do we need a sep-
arate modeling system for every physical system? Or
the same modeling system just with more knowledge
will suffice to model them?

Framework for Model Building and
Simulation

In this section we describe the framework of our model-
ing system called ORACLE, implemented in the math-
ematical manipulation language Maple (Char et ol

1991).

Ontology and Representation

The principal elements of ORACLE’s ontology are en-
tities, phenomena, model fragments, and models, each
represented in a frame (Minsky 1975). An entity is a
physical object which either constitutes a physical sys-
tem by itself (i.e., primitive object) or is a part of a
physical system (i.e., composite object). The proper-
tles of an entity are expressed as variables in equations.
The block entity, for example, has properties such as
position and velocity. An entity is represented in a
frame with slots for the properties. Facets allowed in
a slot are value, form, range, if_needed, and if_added.
The value facet is initially set to null but will be as-
signed a vector, scalar, string, set, or any other expres-
sion as it becomes known. The form facet distinguishes
the slot type (e.g., scalar or vector) and is consulted
when the system creates a new Maple variable name
during the problem solving process. For example, if
the system is asked to compute the position of a block
bl, a set of new variables {blx(t), bly(t), blz(t)} will
be created for the position vector and used in equa-
tions. The range facet specifies a valid range of the
property value if it is known. The if_needed facet or
if.added facet holds the procedure call, invoked when
a slot value is needed or added. The if-needed proce-
dure of the velocity slot in the example below says that
velocity is derivable from position.
block=[AKO=rigid_body,

position(t)=[value=null, form=[x(t),y(t),z(£)1],

velocity(t)=[value=null, form=[u(t),v(%),w(t)],

if _needed=[derive_velocity, position(t)]],
(other slots not shown)]

A phenomenon is a process which changes one or
more properties of an entity in a physical system. Force
from a spring, for example, is a phenomenon which
can change the position and/or orientation of an entity
which is attached to the spring.

A model fragment is a characterization of a physical
phenomenon by a set of entities, variables, assump-
tions, and equations. There may be more than one
model fragments for a single phenomenon, each with
different assumption or approximation. The equations
of a model fragment are applicable when the corre-

sponding phenomenon occurs. The spring force, for
example, exerted on an object attached to end2 of a
linear spring with linear damping is represented as fol-
lows (syntax slightly modified for readability):

Springforce2=[phenomenon=‘spring force at end2‘,
entities=[s=1inear,damped_spring],
variables=[k=s[force_const],

b=s[damping_coeff],

el1(t)=slendi1(t)], e2(t)=slend2(t)],

1=s{rest_lengthl, f(t)=s[force2(t)]],
equations=[f(t)=-k*(|]e2(t)~e1(t)||-1)*

(e2(t)-01(t))/|le2(t)-e1(t) ||~

brdiff((]le2(t)-e1(t)|1-1)*(e2(t)-01(t))/

[le2(t)-e1(t)1],t)1]

It says that s is a linear damped spring, k is a force
constant of the spring, b is a damping coefficient, el(t)
and e2(t) are the position vectors of endl and end2, |
is the rest length, and f(t) is the spring force at end2.
|| e2(t) — el(t) || is the vector norm representing the
length of the spring at time t, || e2(t) —el(t) || =1 is
the signed length change from the rest length, and
(e2(t) —el(t))/ | e2(t) — el(t) || is a unit vector with
direction from endl to end?2.

A model is a composition of model fragments appli-
cable to a physical system in a particular situation.
Simulation is the execution of a model.

The motion of an entity at any instant can be de-
scribed by a set of ordinary differential equations in
the twelve components of four vectors: position, orien-
tation, velocity, and angular velocity.’ The differential
equations are usually nonlinear and do not have a solu-
tion in closed form, so they must be solved by numeric
integration. For a moving entity, ORACLE constructs a
model with the twelve components of the four vectors
(position, orientation, velocity, and angular velocity)
as state variables, which take numeric values during
simulation.

The state variables of each subpart of an entity are
initially defined in the local reference frame, which is
assumed to be fixed to the entity. Then each subpart
defined in its local reference frame is translated and
rotated by having its reference frame redefined in a
common inertial reference frame. The system chooses
the common inertial reference frame from local refer-
ence frames which are not accelerated. If there is no
such reference frame (i.e., all the local reference frames
are noninertial), it introduces a new inertial reference
frame. If there are several inertial reference frames,
the choice is arbitrary.

"The degrees of freedom of a moving entity are six in-
stead of twelve because the velocity function and the an-
gular velocity function are derivable by differentiating the
position and orientation functions, respectively. The mo-
tion of a physical system with n subparts can be charac-
terized by maximum 12n state variables with 6n degrees of
freedom.

Algorithm

ORACLE takes as input a description of a physical sys-
tem in terms of the entities of the system, any con-
straints to be satisfied, and the properties of the enti-
ties (i.e., variables) whose values are going to be com-
puted by modeling and simulation. As output, it pro-
duces a model of the motion of the system and the vari-
able values obtained by solving the model. The algo-
rithm of ORACLE consists of three phases: (1) problem
analysis, (2) model creation, and (3) model execution.
In the first phase, ORACLE represents each entity of a
problem statement in a frame by copying a class frame
and filling in slots for property values specified in the

Algorithm 1 ORACLE’s top-level algorithm

Problem Analysis Analyze a problem statement.

1. Analyze entities, and create frames of the entities
and a set INIT of initial-value conditions.

2. For each constraint, determine its type and represent
them in equations.

3. Analyze variables and generate a set DRVD of dif-
ferential equations.

Model Creation Search for relevant model fragments
and compose a behavioral model with them.

1. For each entity E of the problem statement

For each model fragment MF indexed by the
“mf” slot of E
If MF has not been instantiated for E
AND every variable of MF either
corresponds to an entity property or variable
of the input or can be derived from them
AND the assumption (if any) of MF does
not violate any entity property or constraint
of the input
Put MF in a list MFS.

2. model M = DRVD
3. #equations = Fequations(M)
4. retry: For each model fragment MF in MFS
(a) Instantiate MF for the problem.
(b) M = M U {MF}
(¢) fFequations = Fequations(M)
{d) If #equations = fvariables, do model execu-
tion.

5. Print the dead-end situation, and quit.

Model Execution Solve the model M either analyt-
ically or by numeric simulation.

1. Determine the types of equations of the model and
solve them with INIT for the variables.

2. If a valid solution is obtained, print the model and
solutions, and quit.

3. If a valid solution is not obtained, retract the most
recent MF from the model and go to retry.

problem statement. It also transforms vector quanti-
ties expressed in the local reference frames into those
in the inertial reference frame, formulates initial condi-
tions, and executes if_added procedures in the slots. A
model fragment specifying forces on a component of a
composite object is instantiated by if.added procedures
in the this phase. After constraints are analyzed, vari-
ables are examined to determine if their values are al-
ready known in their slot values or derivable from other
variables. In the second phase, additional model frag-
ments which have not been instantiated are retrieved
and a model is constructed from them. In the final
phase, the constructed model is solved for the prob-
lem. If ORACLE runs out of potentially relevant model
fragments before it finds a valid solution, it prints the
situation, asks more information, and quits. The top-
level algorithm of ORACLE is outlined in Algorithm 1.

Example

We illustrate how ORACLE works with the spring-block
system of Figure la. Suppose the following problem
description is given as an input. There is no particular
constraint in this problem and the system is asked to
compute the four vector variables (twelve variables in
component form) of the block.

entities=[bi=[block, mass=1,
principal _moments_of_inertia=[1/6,1/6,1/6],
position(0)=[3,0,0],
orientation(0)=[Pi/4,Pi/2,0],
velocity(0)=[0,0,0],
ang_velocity(0)=[0,0,0]],
s1=[spring, force_const=10,
damping_coeff=1/10, rest_length=3/2,
end1(t)=[0,0,0], end2(t)=b1[-1/2,0,011,
sb=[composite_object, parts={bi,s1}]];
constraints=[];
variables=[bl[position(t)], bilorientation(t)],
bilvelocity(t)], bilang velocity(t)1];

For each entity bl, sl, and sb, a frame is created
and the given properties of the entities are recorded in
their slot values. The if_added procedure in the end?2
slot of s1 computes the spring force acting on bl using
a model fragment Springforce2 and records the value
in the force slot of bl. The position of end2 in the
inertial reference frame is computed from a translation
and a rotation of the local reference frame of bl. The
initial conditions of the block are also formulated. Here
are the Maple variable names ORACLE assigns for this
example.

INIT =

{b1x(0)=3, b1y(0)=0, b1z(0)=0,

blphi(0)=0, bltheta(0)=Pi/2, b1psi(0)=0,
biu(0)=0, biv(0)=0, biw(0)=0,

blomegal(0)=0, blomega2(0)=0, blomega3(0)=0}

None of the four state variables of bl can be as-
signed a value simply by looking at slot values of bl,
but the velocity and the angular velocity functions
can be derived by differentiating the position and the

orientation functions, respectively, according to their
if_needed facets. The system generates trivial differen-
tial equations for the velocity and angular velocity by
the procedures attached to the ifneeded facets.

DRVD =
{blu(t)=diff (bix(t),t),
biv(t)=diff(bly(t).t),
blw(t)=diff(biz(t),t),
blomegal(t)=diff(bitheta(t),t)*cos(blphi(t))+
diff(blpsi(t),t)*sin(bltheta(t))*sin(biphi(t)),
blomega2(t)=diff(bitheta(t),t)*sin(biphi(t))-
diff(bipsi(t),t)*sin(bltheta(t))*cos(biphi(t)),
blomega3(t)=diff(biphi(t),t)+
diff (bipsi(t),t)*cos(bltheta(t))}

Now ORACLE focuses on finding equations for the
position and the orientation. The equations for them
cannot be derived from other variables since they are
basic variables, so ORACLE looks for relevant model
fragments. It examines model fragments, indexed by
the mf slot of the block. ORACLE decides that Newton2
and Euler are potentially relevant because the entities
(solid and rigid body, respectively) of the model frag-
ments are superclass of a block and the equations of
the model fragments contain at least one variable of
the problem. Model fragments of Newton2 and Euler
are as follows.

Newton2=[phenomenon=‘Newton’s second law
of motion®,
entities=[r=s0lid],
variables=[f{(t)=r[net_force(t)],
p(t)=r[momentum(t)]],
assumptions=[],
equations=[£(t)=diff(p(t), t)1]

Euler=[phenomenon=‘time-dependency of
ang_velocity®,

entities=[b=rigid_body],

variables=[Omega(t)=b[ang_velocity(t)],
M(t)=b[ang_momentum(t)],
T(t)=b[net_torque(t)]],

assumptions=[],

equations=[add(diff (M(t), t),
crossprod(Omega(t),
M(£)))=T(¢)]

The entity and variable names of the model frag-
ments are instantiated as those of the problem and
they are substituted in the equations of the model frag-
ments. The angular momentum is derived from prin-
cipal moments of inertia and angular velocity by the
if needed procedure in the ang_ momentum slot. Like-
wise, the net torque is derived from force and position
vector of the point at which the force acts.

L (1)
M(t) = (L (t)) T(t)=Y rx f(t)
I3Q5(1)

The principal moments of inertia (I, I, I3) and the
position vector (r) of the spring-attached point can be
assigned from the information of the problem descrip-
tion. The angular velocity is one of the state variables

|
) \\//\ N
YA " L, M

: : |

Z. b .. w.

T
b
N

Figure 3: Plots of the 12 state variables of the block bl as functions of time. The first column shows the position

vector, the second column the orientation vector, the third column the velocity, and the last column the angular
velocity.

25

KE PE

o 7 8] 0 o 1

[v a . 5 8 7 [10

Figure 5: The kinetic, potential, and total energy of the single spring-block system as functions of time during the
simulation.

asked by the problem, and its functions are derived in
DRVD. The value of force f(t), which has computed
using a model fragment Springforce2 (shown earlier in
section), is available in the force slot of bl, and sub-
stituted in the equations of Newton2 and Euler.

The system has now total 12 equations in component
forms (6 from the model fragments and 6 from DRVD)
plus 12 initial conditions for 12 unknowns. Several of
the differential equations are nonlinear, and when ORr-
ACLE attempts to solve the model analytically, it does
not find a solution in closed form. ORACLE then solves
the differential equations by numeric simulation. OrA-
cLE displays the simulation result by showing the state
variables as functions of time using gnuplot (Figure 3).
Animation of the moving block is shown (Figure 4) us-
ing PADL-2 solid modeling system (Hartquist 1983).
Figure 4 contains several animation scenes superim-
posed. Note that the motion of the block is much more
complex than that of the linear harmonic oscillator.
The kinetic energy, potential energy, and total energy
of the system are also displayed as part of validation
criteria of the results (Figure 5). The total energy in
Figure b decreases over time due to the nonzero damp-
ing coeflicient of the spring of the problem statement.

Extension to Broader Class of Physical
Systems

Multiple Spring-block Systems

The previous section showed how ORACLE predicts the
behavior of the single spring-block system. Can the
modeling system of the single spring-block system be
used to predict the behavior of the multiple spring-
block systems such as Figure 1b and Figure l¢? The
answer is “yes”. The multiple spring-block systems
have additional entities and phenomena, but they are
simply the multiple occurrences of the same types as
the single spring-block system. Having already enough
knowledge represented in general form to handle the
single spring-block system, ORACLE can handle the
multiple spring-block systems with no change. The
way it solves the problem is the same. 1t computes the
positions of ends of each spring in the inertial refer-
ence frame by transforming the local reference frame
of its associated block, and derives differential equa-
tions for the velocity and angular velocity of the blocks
from the procedures attached to the if needed facets.
Tt then instantiates model fragments of Spring force,
Newton2 and Euler, and composes a model. Notice
that model fragment sharing occurs within the models
because each of those model fragments is instantiated
more than once for different entities. The result of the
execution of the models indicate that although none
of the blocks are initially rotated, both blocks of Fig-
ure 1b and the end blocks of Figure lc rotate as well as
translate due to spring forces which are not parallel to
the radius vectors of the points to which the springs are
attached. If the spring damping is ignored (i.e., damp-

ing.coeff = 0), the middle block of Figure lc shows
translational motion only, but it shows both transla-
tional and rotational motions if the spring damping is
considered (damping._coeff # 0). Figure 6 shows part of
animation scenes for the case when the spring damp-
ing is considered. In fact ORACLE is able to handle
multiple rigid bodies connected by springs in arbitrary
positions and orientations because the way of identify-
ing relevant model fragments and composing them is
not restricted by the number of entities or their con-
nections.

Sailboat in Fluid

A sailboat is a composite object whose driving force
comes from the differential motion of air over water.
Before we model the sailboat, we can ask the same
question as before. Can we use the modeling system of
the spring-block systems to predict the behavior of a
sailboat in Hluids? The answer is “yes”, provided that
the modeling system has enough domain knowledge
to handle the problem. We do not need to build a
different modeling system. A modeling system with
the same algorithm and the same model fragments plus
additional model fragments and entities can predict the
behavior of the sailboat.

New classes of entities added to the knowledge base
are fluids (water and air) and lifting surfaces (hull
and sail). The sailboat, water, and air entity have
their own reference frames, which move as their enti-
ties move. New phenomena include hydrodynamic and
aerodynamic forces, each with two components (lift
and drag), and skin friction. A single model fragment
is used to represent both hydrodynamic and aerody-
namic frictional drag forces, and later instantiated for
them. Likewise, a single model is used to represent
both hydrodynamic and acrodynamic lift forces.

FDrag=[phenomenon=‘frictional drag force on

an object in fluid®,

entities=[s=physical_object, f=fluid],

variables=[FD=s[fdrag(t}],
=s{rel_fluid_speed(t)],
fd=s[rel_fluid_direction(t)],
Pa=g[parasitic_areal,
rho=f[densityl],

assumptions=[],

equations=[FD=1/2*Pa*rho*v"2*fd]]

Lift=[phenomenon=‘1ift and 1ift induced force on
an object in fluid®,
entities=[s=physical_object, f=fluid],
variables=[LF=g[1ift(t)],
=s{1ift_magnitude(t)],
v=s[rel_fluid_speed(t)],
fd=s[rel_fluid_direction(t)],
pd=s[perpendicular_rel_fluid_dir(t)],
Ca=s[effective_capture_area],
rho=f [densityl],
assumptions=[s[rel_fluid_speed(t)] > 0],
equations=[LF=L¥pd+L~2/(2*Ca*rho*v~2)*fd]]

For the hull, the rel fluid_speed is the speed of the
boat relative to water. For the sail, the rel fluid_speed

Figure 6: Motion of the multiple spring-block systems in Figure 1b and Figure lc. Springs not shown.

hull lift

hull drag

Figure 7: Directions of force components on a sailboat,
adapted from (Letcher, 1976)

is the speed of the boat relative to air. The magnitude
and direction of the hydrodynamic forces acting on the
hull depend on the rel.fluid_speed of the hull, and the
aerodynamic forces depend on the rel_fluid_speed of the
sail. relfluid.direction is an angle between the direc-
tion of fluid and the direction of an object, represented
in angle. Drag forces acting on the hull have compo-
nents opposite to the direction of its rel_fluid-speed.
Lift forces on the hull are perpendicular to the direc-
tion of its rel_fluid_speed. Similarly, drag forces on
the sail have components opposite to the direction of
its rel.fluid_speed, and lift forces on the sail are per-
pendicular to the direction of its rel fluid.speed. Lift
forces on the hull and sail of a sailboat are horizontal,
not vertical.

The directions of the force components are summa-
rized in Figure 7. In the figure, water is assumed to be
at rest (i.e., speed = 0) and V;, V;, and A4 denote the
wind speed, sailboat speed, and course angle from the
wind direction, respectively.

Notice that the model fragment Lift has a nonempty
assumption slot, sdying that the relative fluid speed
must be positive. When both the fluid and the ob-
ject are at rest or the fluid has the same speed as the
object in the same direction, the relative fluid speed
becomes zero and the equations of the model fragment

cannot be defined due to zero denominator. Thus we
have another model fragment of lift with a different
assumption slot; it says that lift force is zero when the
relative fluid speed is zero.
Lift_at_zero_speed=[
phenomenon=‘1lift and lift induced
force on an object in fluid®,
entities=[s=physical_object, f=fluid],
variables=[L=s[1ift(t)],
sv=s[rel_fluid_speed(t)]],
assumptions=[s[rel_fluid_speed(t)] = 0],
equations=[L[1]=0,
L[2]=0,
L[31=0]]

During problem solving, ORACLE automatically
chooses between the two model fragments of lift by
checking their assumptions. At present, the kinds of
assumptions ORACLE can process are confined to the
algebraic properties of entities, such as numeric ranges
or arithmetic expressions.

After the entities and model fragments are added,
ORACLE can solve several types of problems on a sail-
boat, but we will focus on one type of problem in this
section. Suppose that a sailboat is heading in the an-
gle of 49 degrees from the direction of wind at uniform
speed 16.9 ft/sec and that water is at rest. The sys-
tem is asked to compute the sailboat speed which will
balance all the forces involved.

ORACLE first infers all the forces on the sailboat
from the forces acting on its components, hull and sail.
It instantiates the model fragments FDrag and Lift for
each of them and records the summation of them in
the net_force slot of the sailboat.

F= Y (FDrag + Lift;)
i€ {hull, sail}

It then searches for a model fragment which relates
forces with speed, and finds the model fragment of
Newton2. It substitutes the equations of the forces
in the equation of Newton2, F(t) = d(p(t))/dt. Since
the problem states that all the forces are balanced, the
net force on the sailboat must be zero, implying the
momentum p(t) is constant. The right hand side of
the equation becomes zero from the constant momen-
tum, resulting in an algebraic equation. However, the

speed (ft/sec)

A

0 20 40 60 80 100
time (sec)

Figure 8: The sailboat speed as a function of time.

problem is under constrained in the sense that total
number of equations in component form is 2 (Fx=0,
Fy=0, Fz becomes a trivial equation 0=0) but the to-
tal number of unknowns in the equations is 3 (hoat
speed, sail lift magnitude, and hull lift magnitude).
ORACLE prints the situation, asking for further in-
formation. The user provides an additional equation,
O(Fx)/d(sail dift_magnitude) = 0, by making a simpli-
fying assumption that the sail is controlled as to max-
imize the sailboat force in the direction of boat head-
ing. The equations are solved algebraically, producing
a solution, boat speed = 15.7 ft/sec. The solution is
checked against the range facet of the speed slot of the
boat, which says that value of the boat speed must be
in the range of [0 .. infinity]. Since the solution of 15.8
is included in the range, it is returned to the user as a
valid solution. However, if there are several solutions,
only those within the values specified by the range facet
(if any) are selected as valid solutions. When the in-
formation in the range facet is not sufficient to choose
a correct solution from multiple solutions, additional
or alternative procedure for filtering correct solutions
1s to use the result of the numeric simulation of its
corresponding differential model, as we will show be-
low. A correct solution of an algebraic model describ-
ing a behavior in a steady state must agree with the
numeric simulation result of its corresponding differen-
tial model. This procedure of validating the solution of
an algebraic model against the numeric simulation of a
differential model has not been automated in the cur-
rent implementation of ORACLE, and the user should
try both models to compare their results.

The previous example showed how ORACLE com-
poses a model to compute the sailboat speed in the
equilibrium state of forces. If we are interested not only
in such a speed but also in how the boat arrives at the
speed, starting from zero speed, the boat speed must be
computed as a function of time. Relevant model frag-
ments are retrieved and instantiated in a similar way.
In this case, however, the net force on the sailboat is
not necessarily zero all the time because the boat ac-

celerates until it reaches the equilibrium state of forces.
Therefore, the right hand side of the equation of New-
ton2 does not become zero, but stays as d(p(t))/dt.
Since p(t) = d{m - v(t))/dt, ORACLE solves the differ-
ential equation, F(t) = d{m - v{t))/dt for v(t) by nu-
meric simulation. A plot of the simulation result in
Figure 8 shows that the sailboat ultimately accelerates
to the same speed as the one predicted by the alge-
braic method, thus confirming the algebraic solution.
Also notice that the model fragment Newton2 used for
modeling the spring-block systems is reused for mod-
cling the sailboat and that model fragments Lift and
FDrag are shared by hull and sail.

Issues in Scaling Up

There are several problems raised in scaling up ORA-
CLE not only to broaden the types of physical systems
to be modeled but also to model a physical system
with a large number of components and phenomena
involved.

First, the size of a model generated by the current
version of ORACLE can restrict scaling up either be-
cause of practical limitations of solving a huge model
or because solving a huge model takes too much time
to be useful. Table 1 shows the sizes of the models and
the times for formulating and solving the models for
the examples shown in this paper. The model sizes of
spring-block systems with different configurations from
the examples in Table 1 are about the same as those
of the spring-block systems with the same number of
blocks and springs in Table 1, that is, the model sizes
of spring-block systems are independent of their config-
urations. As we can see in Table 1, the size of a model
is not directly proportional to the number of model
fragments instantiated. Rather it is proportional to
the number of variables specified in the problem state-
ment, or to the number of unknowns in the equations of
the model (Funknowns includes #variables and newly
generated variables in the equations).

As described earlier, a model contains a set of vari-
ables, a set of assumptions, a set of names of model
fragments, and a list of equations. The equations of a
model are composition of the equations of the model
fragments instantiated to construct the model. Al-
though the equations of most model fragments exist in
a very short, simple form before instantiation, they may
become very long and complex after they are instanti-
ated for the particular entities and physical phenomena
in the problem. This explains the large variations in
the sizes of models with similar number of model frag-
ments; the big size of a model is attributed to the long
equations of instantiated model fragments. Even for
a same model fragment, the equations after instantia-
tion can be very different in their sizes depending on
for which variables they are to be solved and which
variables of the equations are known.

Figure 9 shows the growth rate of the model size and
the growth rate of the time for modeling and simula-

example F#variables Funknowns #model fragments #lines of model
model fragments (#instantiation)
model_gen time modelsol time display.save time total time
algebraic 1 3 5 30
model FDrag (2), Lift (2), Newton2 (1)
of boat 4.900 4.616 4.917 14.333
differential | 1 3 6 31
model Newton2 (1), FDrag (2), Lift (2), Lift_at_zero_speed (1)
of boat 4.700 18.700 4.716 28.116
one 12 12 3 206
block Newton2 (1), Euler (1), Springforce2 (1)
system 14.583 19.800 14.833 49.216
two 24 24 6 2010
block Newton2 (2), Euler (2), Springforcel (1), Springforce2 (1)
system 108.533 118.283 110.433 337.249
three 36 36 10 5330
block Newton2 (3), Euler (3), Springforcel (2), Springforce2 (2)
system 339.350 264.616 344.767 948.733

Table 1: Size of a model and time for formulating and solving it for each of the ORACLE examples. #variables is the
number of variables in component form, specified in the problem statement; #unknowns includes #variables and
newly generated variables in the equations; #model fragments is the total number of model fragments instantiated
for the model; #lines of model is a count of lines of the model; model_gen time 1s CPU time for generating a model;
model_sol time is CPU time for solving the equations of a model; display_save time is CPU time for displaying the
result of solving the model and saving all the results; the units of the CPU times are in seconds.

6000 v ¥ v ¥ : T :
“line_count_model” —
"total_time_model" , —o—
5000 R
4000 | E
3000 | E
2000 h
1000 - // 1
0 1 1 H | 1
0 5 10 1S5 20 25 30 35 40

#unknowns of the equations of a model

Figure 9: The size of a model and the time for formu-
lating and executing the model. For the count of lines
and times of a model with 3 unknowns, the average val-
ues of the 2 models with 3 unknowns (algebraic model
of boat, differential model of boat) are used. The units
of the model sizes are in the line counts of models and
the units of the times are in seconds.

tion as a function of the number of unknowns of the
a model. The size of a model is measured in terms of
the number of lines of the model. When the number
of unknowns increases from 3 to 12, the model size in-
creases from 30.05 lines to 206 lines, which is almost
7 times. This is because the spring-block example in-
volves much more complex computation which results
in long equations. It is also notable that when the num-
ber of unknowns increases from 12 to 24, the model size
increases from 206 lines to 2010 lines, about 10 times,
and that when the number of unknowns increases from
24 to 36, the model size increases from 2010 lines to
5330 lines. Given limited data, the growth rate of a
model is roughly quadratic in the number of unknowns.
The total time for generating a model and solving it
is also proportional to the number of unknowns of the
model, but the growth rate of time is not as fast as
that of the model size, as shown in Figure 9.

Some of the large models have long equations which
cannot be simplified further in their nature unless we
decide to produce approximate models instead. How-
ever, some models may be simplified without losing ac-
curacy of their predictions by doing additional process-
ing on the equations instead of applying Maple-builtin
simplification functions. Reformulating the model gen-
eration and solving process of ORACLE is another di-
rection to consider in order to efficiently construct and
solve a large model. Restricting ORACLE to a cer-
tain type of physical system is another way to scale
up the modeling system to handle a complex physi-
cal system with a large number of components and

phenomena involved. For example, if we want a spe-
cial purpose modeling system for spring-block systems
only, we can make the modeling system generate a sin-
gle model that works for any number of blocks. As
the number of blocks increases, the model would need
more data storage but the model itself does not become
larger. This kind of approach to scaling up a model-
ing system has advantage of being able to model and
simulate a complex physical system without the size
problem of a generated model, but has disadvantage of
losing the breadth of physical systems covered by the
modeling system.

Second, selecting relevant model fragments would
become a more important isstue in scaling up. Includ-
ing additional properties of an object, such as electrical
or thermal properties, in the description of an entity
as slots does not cause a problem in selecting model
fragments because when ORACLE determines the rele-
vance of a model fragment to a given problem it checks
whether each variable of the model fragment is men-
tioned as an entity property or variable of the problem
statement or derivable from them. The difficulty is in
selecting a model fragment among multiple model frag-
ments with same or similar variables but with different
assumptions. In the current implementation, model
fragments are indexed by the mf slots of entities, with
more frequently relevant ones first, and therefore the
search process is sensitive to the order of the model
fragments. We may want a more efficient method for
organizing model fragments which will facilitate iden-
tifying and retrieving relevant model fragments.

The third problem in scaling up is related to the
size of a generated model. As a model gets bigger, it
would become more difficult to understand the model
or to validate its solution. Having ORACLE provide
an explanation of its solution, or checking the solution
against that of an approximate model or experimental
data will help understand or validate the model.

Related Work

Falkenhainer and Forbus (1991) describe a form of
compositional modeling where a device model is au-
tomatically formulated by composing a set of relevant
model fragments which are initially obtained by match-
ing the terms of a query to a domain theory and then
elaborated later. There are several differences between
our work and theirs. In ORACLE we distinguish model
fragments from entities; model fragments are used for
describing physical phenomena and entities for objects
(both composite and primitive); model fragments are
indexed by the “mf” slot of an entity. In Falkenhainer
and Forbus’ approach, model fragments are used for
describing all the phenomena, objects, and devices,
and are organized into mutually exclusive sets called
assumption classes. When the class condition holds,
one and only one of the assumptions associated with
the class must hold and the model fragment containing
that assumption must be included in a model. Once

the model fragments with appropriate assumptions are
selected, the process of instantiating the model frag-
ments and assembling them is straightforward. While
a composite object in ORACLE can consist of any het-
erogeneous parts, a unique minimal covering of parts
taken from a single part-of hierarchy is required to ex-
ist in their approach to generate a simplest possible
model. They do not have a capability of handling
detailed structural relations among parts and choos-
ing appropriate reference frames for parts, and there-
fore cannot handle complex motions such as motion
of multiple objects. For behavior generation Falken-
hainer and Forbus use either qualitative simulation by
QPE (Forbus 1990) or quantitative simulation by nu-
meric simulation, whereas we use numeric simulation
or analytic method.

In (Nayak 1992), Nayak describes a method to con-
struct a device model by selecting an appropriate
model for each component of the device using struc-
tural, behavioral, and expected behavioral constraints.
In his system, a model is formulated by composing a
set of model fragments, as in ours. However, the uses of
the models produced by the two systems are different.
While ORACLE constructs a model to predict motions
of physical systems, his system builds a model to ex-
plain causal relations between parameters of a device.
Another difference is that he uses order of magnitude
reasoning for behavior generation while we use numeric
simulation. His order of magnitude reasoning method
is restricted to generating the behavior at a fixed point
in time, but we can predict the behavior changing with
time as well as the behavior at a fixed point in time.

The SIGMA system developed at NASA Ames Re-
search Center {(Keller and Rimon 1992) is a tool which
aids a scientist-user in building a model. After the in-
teraction with the user, it produces a model specified
in data flow graph and executes the model to compute
a unknown quantity. Like ORACLE, SIGMA organizes
and represents domain knowledge in frame structures.
However, it is a user-assistant system rather than an
autonomous model-building system, and has several re-
strictions in constructing and executing a model, which
ORACLE does not have. For example, multiple quanti-
ties cannot be computed at the same time because it
cannot solve more than one equations simultaneously,
and the types of equations are restricted to algebraic
equations or first-order ordinary differential equations;
model fragments cannot be put together in an arbitrary
order due to the strict backchaining control strategy of
its model building process. It converts the input val-
ues into a comnon, consistent set of scientific units,
but does not have a provision to transform a vector
quantity measured in one reference frame to another,
which is necessary in dealing with moving objects.

The MSG system developed by Ling et al. (1993)
generates mathematical models for analyzing heat
transfer behavior. The approach of the MSG system
to building a model is similar to that of ORACLE in the

sense that it is compositional. However, there are sev-
eral differences. While ORACLE focuses on modeling
physical systems involving motion, MSG models phys-
ical systems involving heat flow. Therefore, the domain
knowledge the two systems use are different. A second
difference is that ORACLE represents the knowledge ex-
plicitly in general, declarative form, but much of the
knowledge that the MSG system uses is emmbedded in
the system as part of its algorithm. A third difference is
that, while ORACLE generates a model and then solves
the equations of the model to predict the behavior of
a given physical system, MSG presently does not solve
the equations of its generated model.

Another relevant line of work concerns model selec-
tion (Addanki et al. 1991; Weld 1992), or model sim-
plification (Yip 1993; Falkenhainer 1993), rather than
model] generation.

Yet another related works concern simulation gener-
ation instead of model generation. The SIMLAB system
(Palmer and Cremer 1991) produces a simulator from
a user-provided physics model. Given a mathemati-
cal model of a physical phenomenon and instructions
for solving the resulting equations, SIMLAB transforms
the model into an executable simulation code to ana-
lyze the phenomenon. However, the user still has the
burden of creating the mathematical model. The pro-
gram built by Berkooz et al. (1992) is similar to SIM-
LaB. It is basically a compiler for translating differ-
ential equations expressed in mathematical and pro-
gramming constructs into an executable code. The
SINAPSE system (Kant 1992) also automatically trans-
forms a given model into a program in desired lan-
guage, though again the human user must create the
input model.

A number of mechanical device simulators are com-
mercially available, such as ApaMs {Dawson 1985), and
DaDS (Haug 1989). These programs, like most simula-
tors, incorporate physics knowledge such as Newton’s
laws of motion directly into algorithms rather than rep-
resenting them explicitly. The simulators include pow-
erful algorithms for forming and solving the equations
of motions for a wide variety of mechanisms, but lack
the flexibility that ORACLE has to explicitly instantiate
general model fragments in particular situations.

Previous Al research in spatial reasoning about me-
chanical devices (Faltings 1987; Gelsey 1989; 1994;
Joskowicz and Sacks 1991) has devoted considerable
attention to reasoning about contacts between solid
bodies, a problem ORACLE does not presently address.
Like the commercial simulators, these programs incor-
porate knowledge of physical phenomena directly into
algorithms rather than attempting to explicitly instan-
tiate general model fragments in particular situations,
as ORACLE does.

Future Work

There are several directions in which the work de-
scribed in this paper can be extended. In the cur-

rent implementation of ORACLE, there are only cer-
tain classes of entities and model fragments available
in the knowledge base. Adding more model fragments
and entities would expand the types of physical sys-
tems covered by ORACLE. It would also be a valuable
test for the extensibility of the system.

Problems which do not involve new physical phe-
nomena, but require model fragments with differ-
ent assumptions or representations will involve minor
changes. For example, the two model fragments for
spring forces presently assume a linear spring with lin-
ear damping. To model nonlinear springs, we need to
add a new model fragment with different equations and
assumptions. The types of springs should be consid-
ered when an if.added procedure chooses between the
two model fragments of spring forces.

Some spatial reasoning problems can be solved by
qualitative interpretation of the quantitative models
produced by OracLE. For example, qualitative de-
scription of motions (such as translational, rotational,
oscillatory, or tumbling) can be easily obtained by
postprocessing the simulation results of the models.
Coverage of space of a moving object, any regularity
of the coverage over time (such as monotonically de-
creasing coverage of a damped spring), or possible con-
tact/collision with other moving objects (intersection
of the coverages during same time intervals) can also
be produced by postprocessing the simulation results.

When something goes wrong during problem solving
(e.g., a model cannot be solved due to fewer equations
than unknowns), ORACLE currently prints the dead-
end situation, asks for further information, and quits.
The user has to figure out the cause of the problem
and rerun the program with new information. In order
for ORACLE to suggest possible directions to fix the
problem, it must have a capability of reasoning about
equations and unknowns.

Conclusion

The model of general motion in three dimension is dif-
ficult to formulate by hand but important because of
its relevance to many practical applications, includ-
ing computer graphics, robotics, and design. We have
made important progress in automating the model-
building process for physical systems with multiple
moving objects in arbitrary configurations by devel-
oping a new method which uses basic domain knowl-
edge. The method has been implemented in a work-
ing program called ORACLE and tested in the domains
of mechanical devices and sailboats. Given a descrip-
tion of a problem involving a moving physical system,
ORACLE automatically identifies relevant model frag-
ments, instantiates them for the particular entities and
physical phenomena in the problem, composes the in-
stantiated fragments to form a model, and simulates
the model to solve the problem. Knowledge of physical
phenomena is represented with model fragments which
can be shared and reused by many models. Most of

the knowledge is just the same fundamental equations
that appear in any standard mechanics textbook, with
their implied semantics of vectors and frames of refer-
ences. Starting with the most basic, simple concepts
in the domain of mechanics, ORACLE can still gener-
ate a powerful model for complex motions. This is a
new method which solves several problems with exist-
ing Al modeling work on motion by: (1) explicit han-
dling of vector quantities and frames of reference; (2)
simultaneous handling of multiple equations (algebraic
or differential, linear or nonlinear); and (3) declarative,
algorithm-neutral representation of physics knowledge.

As discussed earlier, there are many programs devel-
oped for reasoning about motion of mechanical devices.
However, the programs do not solve problems in a gen-
eral method from basic physics principles, but rely on
specific methods specialized for certain classes of prob-
lems. Letcher (1976), for example, uses a numerical
procedure adapted from Newton-Raphson iteration to
find the optimum sailboat velocity with the maximum
component in the wind direction, or the sailboat ve-
locity which will balance all the forces. ORACLE solves
the same sailboat problems without requiring special-
purpose problem solving methods, as it does for other
mechanical devices.

References

S. Addanki, R. Cremonini, and J. 8. Penberty. Graphs
of Models. Artificial Intelligence, 51:145-177, 1991.

G. Berkooz, P. Chew, J. Cremer, R. Palmer, and
R. Zippel. Generating spectral method solvers for
partial differential equations. Technical Report 92-
1308, Cornell University, 1992.

B. W. Char, K. O. Geddes, G. H. Gonnet, B. L.
Leong, M. B. Monagan, and S. M. Watt. MapleV

Language Reference Manual. Springer-Verlag, New
York, 1991.

G. Dawson. The Dynamic Duo: Dram and Adams.
Computers in Mechanical Engineering, March 1985.

B. Falkenhainer and K. D. Forbus. Compositional
modeling: finding the right model for the job. Artifi-
cial Intelligence, 51:95-143, 1991.

B. Falkenhainer. Ideal physical systems. In Proc.
of the 11th National Conference on Artificial Intelli-
gence, pages 600-605, 1993.

B. Faltings. Qualitative Place Vocabularies For Mech-
anisms tn Configuration Space. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, July 1987.

K. D. Forbus. Qualitative Process Theory. Artificial
Intelligence, 24:85-168, 1984.

K. D. Forbus. The Qualitative Process Engine. In
D. S. Weld and J. de Kleer, editors, Readings in Qual-
itative Reasoning about Physical Systems, pages 220
- 235. Morgan Kaufmann, 1990.

A. Gelsey. Automated Physical Modeling. In Proc. of
the 11th International Joint Conference on Artificial
Intelligence, pages 1225-1230, 1989.

A. Gelsey. Automated reasoning about machines. Ar-
tificial Intelligence, 1994. to appear.

G. Hartquist. Public PADL-2. [EEE Computer

Graphics and Applications, pages 30-31, October
1983.

E. J. Haug. Computer Aided Kinematics and Dynam-
ics of Mechanical Systems, Volume 1: Basic Methods.
Allyn and Bacon, Boston, etc., 1989.

L. Joskowicz and E. P. Sacks. Computational Kine-
matics. Ariificial Intelligence, 51:381 — 416, 1991.

E. Kant. Code synthesis for mathematical modeling.
In Working Notes of AAAI Fell Symposium on Intel-
ligent Scientific Computation, pages 54-59, 1992,

R. M. Keller and M. Rimon. A Knowledge-based Soft-
ware Development Environment for Scient ific Model-
Building. In Proc. of the 7th Knowledge-Based Soft-
ware Engineering Conference, 1992.

B. Kuipers. Qualitative Simulation. Artificial Intelli-
gence, 29:289-388, 1986.

J. 8. Letcher, Jr. Optimum windward performance
of sailing craft. Journal of Hydronautics, 10:140-144,
1976.

S. R. Ling, L. Steinberg, and Y. Jaluria. MSG:
A Computer System for Automated Modeling of
Heat Transfer. Artificial Intelligence for Engineer-
ing Design, Analysis and manufacturing, 7(4):287-
300, 1993.

M. Minsky. A Framework for Representing Knowl-
edge. In The Psychology of Computer Vision, pages
211 - 277. McGraw-Hill, New York, 1975.

P. P. Nayak. Automated Modeling of Physical Sys-
tems. PhD thesis, Stanford University, 1992. STAN-
(CS-92-1443.

R. S. Palmer and J. F. Cremer. SIMLAB: Automati-
cally creating physical systems. Technical Report 91-
1246, Cornell University, 1991.

P. Struss. Global Filters for Qualitative Behaviors.
In Proc. of the Tth National Conference on Artificial
Intelligence, pages 275 — 279, 1988.

D. S. Weld. Comparative Analysis. Artificial Intelli-
gence, 36:333-374, 1988.

D. S. Weld. Reasoning about model accuracy. Artifi-
ctal Intelligence, 56:255-300, 1992.

B. C. Williams. Doing Time: Putting Qualitative
Reasoning on Firmer Ground. In Proc. of the §th

National Conference on Artificial Intelligence, pages
105 -~ 112, 1986.

K. M. Yip. Model Simplification by Asymptotic Order
of Magnitude Reasoning. In Proc. of the 11th National
Conference on Artificial Intelligence, pages 634-640,
1993.

