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Abstract

This paper presents work on modelling the qual-
itative behaviour of physical systems of spatially
distributed parameters. The distribution of each
parameter is given as a set of observation points.
A metric diagram is constructed by defining a con-
nectivity structure on the point set. The metric
diagram is used to construct a topological map
that represents the distribution of the parame-
ter as a pattern of contiguous regions. The re-
gions represent values in the parameter’s quantity
space, which is a discretization of its value domain.
Topological combinations of parameter distribu-
tions are used to infer the distributions of non-
observed parameters according to models of pa-
rameter correspondences, e.g. qualitative versions
of equations. The spatial evolution of the sys-
tem is inferred by matching the scenario’s param-
eter patterns against modelled patterns of physical
processes. The approach is suitable for modelling
common-sense reasoning in the natural sciences,
e.g. meteorology, agriculture, climate studies and
natural resource management.

1 Introduction

Qualitative models of physical systems often focus on
describing how various parameters will evolve in time.
The work described in this paper is also concerned with
how parameters evolve in space. We present work on
modelling the qualitative behaviour of physical systems
of interacting spatially distributed parameters.

A distributed parameter is one that takes on different
values at different points in space as well as in time.
Many parameters describing the physical world can be
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modelled as distributed, e.g. temperature, colour, veg-
etation type, etc.

The human part of modern weather prediction is a
good example of the kind of common-sense reasoning
about spatially distributed physical systems we want
to model. The role of the meteorologist is to analyze,
understand and, if possible, predict the behaviour of
the spatially distributed parameters of the atmosphere.
The tools are a mixture of quantitative and qualitative
methods. We will briefly outline some important steps:

e Data collection: Some key parameters in the at-
mosphere, e.g. temperature, air pressure and rain
fall, are regularly and simultaneously measured at a
number of observing stations.

e Objective analysis: The collected data is fed into
a central computer where a numerical model is used
to calculate a prediction for a large geographical re-
gion, in general for the next 24-72 hours. The nu-
merical model uses some key physical laws in the
form of differential equations, but contains many
simplifications in order to make it tractable.

e Subjective analysis: The collected and predicted
data is plotted on separate weather maps that are
analyzed by hand by the meteorologist.

e Prediction: The meteorologist makes a prediction
based on both the subjective and objective analy-
ses. Most predictions concern short time periods
and limited geographical regions that are not specif-
ically catered for in the objective analysis, e.g. the
area around an airport in the next hour.

From this description, we see that the computer-
supported number-crunching of the objective analysis
is only one part of the weather prediction process. We
are interested in modelling the common-sense reason-
ing that takes place in the last two phases, i.e. subjec-
tive analysis and prediction.

Good weather predictions are based on a thorough
understanding of the on-going physical processes in




the atmosphere. The subjective analysis is time-
consuming but necessary in order to build a mental
model of these processes. This model is called "the in-
ner weather picture” in [Perby, 1988], where the mental
processes underlying weather prediction are discussed
in more detail.

The subjective analysis starts with a study of the
spatial distribution of each observed parameter. The
observed values are indicated as points on a weather
map. The meteorologist analyzes one parameter at
a time by indicating regions of similar values on the
map, e.g. isobars, isotherms, regions of precipitation,
fog, cloudiness, etc. The analyzed map is used as a
means of communication between meteorologists, and
enables them to detect significant patterns of regions
that indicate which underlying physical processes are
at work. This process-based understanding creates an
expectation of how the situation will develop, which is
compared with the prediction of the objective analy-
sis. The final prediction is based on the meteorologist’s
total understanding of the situation, which has been
created from various sources: knowledge of physics,
previous experience, collected data, objective predic-
tion.

This kind of reasoning is interesting to artificial in-
telligence research as it involves at least four different
research areas:

e Model-based reasoning: The reasoning is based
on underlying models of physical phenomena.

e Spatial reasoning: The location where a parame-
ter is observed is as important as the measured value.

¢ Qualitative reasoning: Due to the sparseness of
observed data, assumptions and simplifications of a
qualitative nature are necessary.

e Diagrammatic reasoning: Diagrams are exten-
sively used to understand complex situations and to
communicate this understanding.

We believe that the working methods of meteorolo-
gists are representative of many other scientific areas
where physical systems of spatially distributed param-
eters are studied. Some examples are natural resource
management, agriculture, ecological modelling, ocean
studies, etc. We propose to model this reasoning pro-
cess as follows:

e Interpretation phase: Building a scenario of the
situation through analysis of the spatial distribution
of individual parameters given as sets of observation
points and a model of the physical properties of each
parameter.

e Simulation phase: Simulation of the evolution of
the situation through application of physical models
to the scenario. The simulation phase consists of a
static and a dynamic part:

— Static inference: Inference of non-observed pa-
rameters through combinations of observed pa-
rameter values.

— Dynamic inference: Inference of the spatial
evolution of parameters in terms of modifications
to their spatial distributions.

The rest of this paper describes each of the above
phases in turn, followed by a discussion where we put
this work into perspective by comparing it to other
approaches. We also discuss the utility of this approach
and outline the current state of research and directions
for future work.

2 Interpretation Phase

The goal of the interpretation phase is to build a sce-
nario of the situation that can be used to detect which
physical processes are causing the situation and sim-
ulate their evolution. In accordance with our study
of meteorological practices, we propose to model the
distributed parameters individually and use combina-
tions of distributions to reason about the evolution of
the system.

A physical system of spatially distributed parame-
ters occupies a region of space, where each point can
be assigned a value for each parameter. The values
of each parameter are distributed in a specific pat-
tern within the region. A gqualilative description of
this pattern is obtained by a double discretization: on
the value domain of the parameter and on the space
it describes. The value domain, e.g. the set of real
numbers R, is discretized into qualitative categories,
e.g. intervals. An analogous spatial discretization is
carried out on the points in the described space by
grouping neighbouring points with equal values into
larger spatial units, i.e. regions. The spatial distribu-
tion of the parameter is described qualitatively as a
patchwork-like pattern of contiguous regions.

Figure 1 illustrates an example of the kind of phys-
ical system we want to model with this method.

The illustrated physical system is a cross-section of
a part of the Earth-Atmosphere system, which can be
described by different physical parameters, e.g. tem-
perature, relative humidity, etc. In this scenario, the
parameter {emperature divides the space of the physical
system into a pattern of three regions, corresponding
to a discretization of the value domain R into the sym-
bolic values {cool warm hat }. The parameter relalive-
humidity, on the other hand, divides the same space
into a different pattern of only two regions, correspond-
ing to its proper value domain discretization: {dry hu-
mid }.

The initial information on the distribution of a pa-
rameter is quantitative/metric and limited to the co-
ordinates of the observation points and the values that
have been observed at those points. Inferring the rest
of the distribution from this sparse data requires a
number of assumptions, which means that the result-
ing description will be qualitative in nature.
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Figure 1: A physical system of spatially distributed
parameters.

In order to distinguish between known quantita-
tive/metric data and approximated/simplified qualita-
tive data, we divide the description of the distribution
of a parameter into two parts: a metric diagram and a
place vocabulary. This division was proposed as a gen-
eral model for qualitative spatial reasoning in [Forbus
et al., 1987]:

e The meiric diagram describes the metric and quanti-
tative properties of the world to be reasoned about.
It is used for those queries that cannot be answered
by purely qualitative reasoning.

e The place vocabulary describes the same world in
qualitative terms.

Since the metric diagram and the place vocabulary
describe the same world, although in different ways,
they should be compatible. This is accomplished by
using the quantitative information in the metric dia-
gram to calculate the qualitative representation of the
place vocabulary.

In this approach, the metric diagram consists of the
set of observation points and a suitable connectivity
structure. The place vocabulary is a topological map
of the regions derived from the metric diagram. The
construction of these two structures is supported by
a model of the specific physical properties of the pa-
rameter. In the following sections, we will describe the
construction and purpose of each of these components.

2.1 Metric Diagram: Connected Point Set

The goal of the analysis of the observation point set
is to describe the spatial distribution of the param-
eter as a pattern of contiguous regions. This is ac-
complished by comparing the values observed at neigh-
bouring points. If the same value is observed at two
neighbouring points, then they can be considered qual-
itatively equal and grouped into a larger spatial unit,

i.e. aregion. If the observed values are not the same,
then the two neighbouring points lie on the boundaries
of two different regions.

Space is a continuous medium and consists of an
infinite number of points. Between two points, there
will thus always be an intermediate point, making the
concept of neighbour very relative. Two points are only
neighbours with respect to some level of approximation
where all intermediate points are disregarded.

In the case of observation point sets, it is not always
obvious which points are neighbours, since they can be
spread out in an irregular pattern. Figure 2 shows a set
of observation points for the parameter lemperafure.
The observed values have been categorized into the
qualitative values {cool warm hot}. The observation
points can be in two or three dimensions, depending
on which physical system is being modelled.
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Figure 2: A set of observation points for the parameter
temperature.

In order to know which points are neighbours and
can be compared, a connectivity structure must be de-
fined on the observation point set, i.e. a graph struc-
ture that indicates neighbourhood relations. A trian-
gulation provides a natural connectivity structure for
this kind of point set. A point set can be triangulated
in many different ways. For the purpose of comparing
observed values at neighbouring points, a triangulation
that minimizes the distance between connected points
is the most suitable. In [Preparata and Shamos, 1985],
several algorithms are given for constructing various
connectivity structures on point sets.

Figure 3 shows a triangulation of the point set in
figure 2, where two points are neighbours only when
the straight line connecting them does not intersect
any shorter line connecting two points.

The metric diagram of our representation is the ob-
servation point set and a chosen connectivity struc-
ture. It is used to construct the place vocabulary, as
described in the next section.

2.2 Place Vocabulary: Topological Map

The place vocabulary describes the qualitative, non-
metric properties of the metric diagram. Whereas the
metric diagram describes the spatial distribution of the
parameter as a network of observation points, the place




Figure 3: Metric diagram: triangulation of the point
set in figure 2

vocabulary will describe the same distribution as a pat-
tern of contiguous regions.

The place vocabulary is constructed by comparing
neighbouring points in the metric diagram, accord-
ing to the chosen connectivity structure, and grouping
points with equal values into larger regions. Figure 4
shows how to detect regions in the metric diagram in
figure 3.

Figure 4: Regions detected in the metric diagram in
figure 3.

The connectivity structure of the detected regions
can be represented as a topological map. A topolog-
ical map is an abstract illustration of the neighbour-
hood relations between regions, and does not convey
any information on size or shape. Figure 5 shows the
topological map of the regions in figure 4.

This particular topological map indicates the regions
that can be detected by a straightforward analysis of
the metric diagram. The next section describes how
the topological map can be refined through the use of
a model of the parameter’s physical properties.

2.3 Parameter Model

During the interpretation phase, when representations
of individual parameter distributions are being con-
structed, a model of the physical properties of a param-
eter enhances the information in the metric diagram
and can lead to the inference of additional regions in
the topological map or to a refinement of it.

Figure 5: Place vocabulary: topological map of the
regions in figure 4.

A parameter is defined by its name, unit and value
domain, which can be finite or infinite. By dividing the
value domain into different quantily spaces, i.e. sets of
qualitative values, the distribution of the parameter
can be described at varying levels of detail. Examples
of quantity spaces are sets of intervals or symbolic val-
ues. The quantity spaces define alternative views of
the value domain. The parameter model provides in-
formation on how to map between different quantity
spaces and the value domain.

The value domain of a parameter is modelled as be-
ing either spatially ordered or unordered. This mod-
elling choice depends on which properties of the phys-
ical system one wants to convey.

Spatially ordered value domains indicate that the
spatial transition from one value to another must follow
the order given in the quantity space and that there can
be no discontinuities. This is a convenient property
since it enables us to infer more information from the
metric diagram than has actually been observed.

The topological map in figure 5 indicates that the
two value regions cool and hot are neighbours. If the
value domain of the parameter, in this case fempera-
lure, is defined as spatially ordered with the quantity
space {cool warm hot}, then we can infer the existence
of an intermediate warm region, although this value
has not been observed. Figure 6 shows the resulting
topological map.
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Figure 6: A refined version of the topological map in
figure 5.

Parameters with spatially unordered value domains
are equally common and have the property that any



two values in the quantity space can correspond to
neighbouring regions in the topological map. One ex-
ample is the parameter weather-lype which is an im-
portant observation in meteorology. An example of
a quantity space for this parameter is {rain thunder
cloudy fog fine}. Any two regions can be neighbours,
thus it is not possible to infer any other regions than
those detected in the metric diagram.

The metric diagrams and topological maps con-
structed for the distribution of each parameter make
up a scenario describing the situation in a conceptual
way. This scenario will be used during the simulation
phase.

3 Simulation Phase

During the simulation phase, the constructed scenario
is used to reason about the spatial properties and evo-
lution of the physical system.

The scenario is a conceptual model of the situation,
where the spatial distribution of each observed parame-
ter is described by a metric diagram and a topological
map. By modelling physical processes as topological
maps and matching these against the topological pat-
terns in the scenario, alternative descriptions of the
physical system can be inferred and its evolution sim-
ulated.

The drawn inferences can be characterized as either
static or dynamic as follows:

e Static inference: The scenario is used to infer the
distributions of non-observed parameters through
combinations of observed parameter values. This in-
ference is static since it leads to alternative views of
the physical system in the form of new parameter
distributions, but existing parameter distributions
are not modified.

e Dynamic inference: The scenario is used to infer
the spatial evolution of existing parameter distribu-
tions, either observed or inferred. This inference is
dynamic since it will modify the representation of
existing parameter distributions. This may trigger
further static or dynamic inferences.

The following sections will describe how to model
static and dynamic inference respectively.

3.1 Static Inference

Reasoning about physical systems often means combin-
ing values of parameters in order to infer the value of
some other parameter. A combination model describes
which parameters are involved and how to calculate the
result as a function of the parameters’ values.

The combination model can be an equation or some
other relevant computable function of several parame-
ters. It can be expressed either as a qualitative version
of an equation, e.g. using interval arithmetic, or as a
matrix of value correspondences. Several versions of a
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combination model are possible to cater for all possi-
ble combinations of quantity spaces for the same value
domain, i.e. different levels of granularity.

In the case of spatially distributed parameters, the
values to combine must coincide in space as well as in
time. As an example, consider the meteorological form
of the equation of state:

P = pRT

P is pressure, p is density, R is the specific gas con-
stant and T is temperature. P, T and p are distributed
parameters with spatially ordered value domains, that
can be discretized into intervals or symbolic values.
R, the gas constant, also has a spatial distribution in
the sense that it is applicable at all points where the
specific gas has a distribution. P and T are readily
observable parameters, whereas direct observation of p
requires quite complicated equipment. It is thus con-
venient to infer the distribution of p from the given
equation and the observed parameter distributions.

P and T are alternative views of the same region in
space. By superimposing the spatial distributions of P
and T, a new description of the same space emerges as
a pattern of regions where the values of both P and T
are constant. This pattern is the spatial distribution
of p. The value of p in each region is calculated by
applying the equation, or a qualitative version of it, to
the values of P and T in these regions.

In the following sections, we will describe how to con-
struct the spatial combination of two parameter distri-
butions. We will also discuss how to handle the spatial
ambiguity that may arise due to sparse data.

3.1.1 Combined Topological Maps

In order to infer the distribution of a parameter ex-
pressed as a function of other parameters, we must
know which value regions intersect in space. For this
purpose, a combined topological map is constructed for
the involved parameters.

A topological map describes the connectivity struc-
ture, i.e. neighbourhood relations, of the regions within
a single parameter distribution. Analogously, a com-
bined topological map describes the topological rela-
tions belween parameter distributions, i.e. where dif-
ferent regions intersect in space. The term for this
topological relation is overlap. Two regions overlap if
they have at least one point in common.

The metric diagram does not allow any inference of
the exact shape of the different value regions. It is thus
impossible to say exactly where and how two regions
overlap. What can be inferred is whether two regions
are certain to overlap, whether they may overlap or
whether they are certain not to overlap. This amounts
to finding out whether two regions have at least one
point in common, do not have a point in common or it
cannot be decided if they have a point in common.

The combined topological map is constructed by
combining the metric diagrams of the parameters. In



doing this, we want to infer which values could have
been observed for the second parameter at the obser-
vation points of the first parameter, and vice versa.

In many practical applications, the parameters will
have been observed at the same points, i.e. their metric
diagrams will be spatially equal, only the observed val-
ues will be different. E.g. in the case of meteorology,
most parameters are observed at the same observing
stations. If two observation points are identical, then
we know that the two regions, one for each parameter,
that were inferred by means of that observation point
are certain to overlap, since they have at least that
point in common.

However, in the general case, two parameters need
not have identical metric diagrams. By adding the ob-
servation points of the second parameter to the metric
diagram of the first, we see that each new point falls
within exactly one triangle in the metric diagram, as
defined by the chosen connectivity structure. The val-
ues observed at the points connected by the triangle
are the values that could have been observed at the
newly inserted point.

Figure 7 shows an example of this situation. A point
has been added to the metric diagram of the parameter
weather-1ype, which has the spatially unordered quan-
tity space {rain thunder cloudy fog fine}. The inserted
point falls within a triangle connecting three obser-
vation points, where the values rain, fine and thun-
der have been observed. According to our assumption
that value transitions take place between neighbouring
points according to the chosen connectivity structure,
exactly one of these values must have been observed at
the inserted point.

Inserted point

Figure 7: Inference of values that could have been ob-
served at an inserted point.

This is an ambiguous situation with one, two or three
alternatives, depending on how many different values
have been observed at the three points connected by
the triangle. The metric diagram does not allow us
to decide which of the three regions the inserted point
belongs to. However, it does allow us to decide whether
a spatial intersection between regions in two different
distributions is possible or not.

Figure 8 shows the different situations that can arise,
assuming that the inserted point belongs to the met-
ric diagram of the parameter temperature and the ob-

served value is cool. The situations correspond to the
following rules:

e Certain overlap: If two regions have at least one
observation point in common then they are cerfain
to overlap.

e Possible overlap: If two regions do not have any
observation point in common, but some point falls
within a triangle that has led to the inference of the
region in the other distribution, then the two regions
may overlap.

e No overlap: If the above rules do not apply, then
the two reglons are certain to be disjoint, i.e. they
do not overlap.

No overlap with fine region:
No common points
No point within trianyle

Thunder
Possible overlap:
Point within triangle

Certain overlap:
Common obser—

vation point \

Figure 8: Inference of overlapping regions: the three
situations deciding whether two regions are certain to
overlap, may overlap or are certain nof to overlap.

The combined topological map is constructed by
comparing each pair of regions in the two topological
maps according to the rules mentioned above. In case
of ambiguity, the result is a set of combined topological
maps, each indicating a possible overlap situation.

Figure 9 shows an example of two topological maps,
for the parameters lemperalure and weather-iype, and
one possible combined topological map given the over-
lap structure indicated in table 1.

In the next section we discuss how to reduce the
occurrence of spatially ambiguous situations.

One possible combination

Temperature Weather—rype
Hot Thunder Thunder/Cool
Warm +| Cloudy | Rain = | CloudylCool | RainiCool
Cloudy/Warm| RainilWarm
Cool Fine
Fine/Hot

Figure 9: Topological maps for the parameters fem-
perature and weather-lype and one possible combined
topological map given the overlap structure in table 1.



r | Cool | Warm | Hot |
Fine Disjoint | Disjoint | Certain
Cloudy Certain | Possible | Disjoint
Rain Certain | Certain | Possible
Thunder || Certain | Certain | Possible

Table 1: Overlap structure for the topological maps in
figure 9.

3.1.2 Controlling Spatial Ambiguity

In the previous section, we saw that combinations
of topological maps sometimes contain ambiguous re-
gions, where it cannot be decided whether two regions
in the original distributions overlap or not. This am-
biguity is due to the sparseness of data in the metric
diagram. Human experts, e.g. meteorologists, use do-
main knowledge to disambiguate in this kind of situ-
ation. The following methods can be used to handle
spatially ambiguous situations:

e Treat the ambiguous region locally: The am-
biguity only concerns a pair of regions and is thus
local. Tt does not influence the rest of the combined
topological map, provided all other regions can be
combined without ambiguity. Reasoning can thus
continue unambiguously for a large part of the space
of the physical system. The ambiguous region can be
treated locally, either by indicating its value as un-
known or by branching into multiple representations
of that region.

e Use proximity information to solve the ambi-
guity: In some applications, proximity information
can be used to disambiguate. A plausible model is
to let an inserted point belong to the region of the
observation point it is closest to. Figure 10 shows
an example of this situation.

Inserted point

Figure 10: Disambiguation through proximity: the in-
serted point is inferred to belong to the shaded region
since it lies closest to that observation point.

e Use hierarchical parameter models to avoid
unnecessary ambiguity: Many parameters are
physically relevant only in conjunction with some
other parameter. By including this domain knowl-
edge in the model, many potentially ambiguous sit-

uations can be avoided. Figure 11 shows an exam-
ple of such a case. Again, the example is taken
from climate modelling and illustrates a part of the
Earth-Atmosphere system. The system is described
by two parameters: atmospheric-layer and soil-lype.
The parameter almospheric-layer divides space into
regions according to the simplified quantity space
{stratosphere iroposphere ground }. The parameter
soil-type, with the quantity space {sand clay peat
}, can only describe points within regions described
by the value ground for the parameter atmospheric-
layer. Regions in the topological map of the pa-
rameter soil-type can thus only overlap with regions
characterized as ground in the topological map of the
parameter aimospheric-layer, and no further combi-
nations need be considered in the construction of the
combined topological map.

Physical system
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Figure 11: Hierarchical parameter models reduce the
occurrence of spatial ambiguity.

3.2 Dynamic Inference

Dynamic inference differs from static inference in that
it modifies the distributions of existing parameters in-
stead of inferring new parameter distributions. In
physics, dynamic evolution is usually modelled by dif-
ferential equations. In qualitative physics, the tem-
poral evolution of a parameter is usally modelled as
transitions between subsequent landmark values in the
quantity space of the parameter’s value domain.
Analogously, in qualitative spatial simulation, the
transitions will reflect significant changes to the spa-
tial distributions of the parameters, or more precisely
changes to their topological maps. Significant changes
can take place either within a distribution, by rear-
ranging the neighbourhood structure of the regions, or
between distributions, in which case the overlap struc-




ture between regions is modified.

Physical processes are modelled as topological pat-
terns of parameter regions that are matched against
the scenario constructed during the interpretation
phase.. The spatial evolution of the system is given
as a sequence of subsequent topological modifications
to the parameter distributions.

Spatially distributed parameters
often evolve through flow processes. We will outline a
model of radiative flow from the sun through the layers
of the atmosphere. Figure 12 illustrates the situation,
which is, again, a part of the Earth—Atmosphere sys-
tem, this time described by the parameters emissivity,
{ransmissivity and irradiation.

Physical system
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Figure 12: Topological maps for some key parameters
in a model of radiative flow.

The parameter emissivity describes sources of short-
wave radiation. Figure 12a shows the topological map
of the parameter emissivily in this situation, using the
quantity space {high none }. There is only one region
of high emissivity, namely the sun.

The parameter transmissivily indicates how much of
the radiation received by a region will be transmit-
ted to more distant regions. The radiation that is
not transmitted is either reflected or absorbed, which
will increase the temperature of the region. How-
ever, those processes are not modelled in this exam-
ple, which focuses on radiative flow. The topological
map of the transmissivity regions in this situation is
given in figure 12b. Its quantity space in this exam-
ple is {{ransparent almost-transparent semi-transparent
almost-opaque opagque }. There are four different trans-
missivity regions in the scenario, corresponding to the
semi-transparenl ozone layer, which filters a lot of
the radiation coming into the atmosphere, the almost-
{ransparent cloudless atmosphere, a semi-transparent
cloud, and finally the opague ground, which absorbs

or reflects all radiation it receives and transmits none.
The transmissivity of the sun is not relevant to this
model, so we leave the corresponding region unspeci-
fied.

The parameter irradialion indicates regions that re-
ceive radiation. The initial distribution of this param-
eter in figure 12¢ indicates no irradiated regions. The
model will describe the spatial evolution of the distri-
bution of this parameter. The final distribution will
indicate which regions in space receive more radiation
than others.

In this model, we want to reason about how some
regions are shadowed by others, and thus receive less
radiation. In order to do this, it is necessary to in-
clude the notion of flow direction in the model. Di-
rection is a spatially distributed parameter that di-
vides the space of the physical system into qualitative
vector fields with respect to some region. Figure 13a
shows the distribution of the parameter direction with
respect to the sun, i.e. the high emissivity region in
figure 12a. Figure 13b shows another distribution of
direclion, this time with respect to the ozone layer,
i.e. the upper semi-transparent transmissivity region
in figure 12b. Finally, figure 13¢ shows the distribu-
tion of direclion with respect to the cloud, i.e. the
smaller semi-transparent transmissivity region in fig-
ure 12b. The value domain has been discretized into
the categories {inside beneath above left right } which
are convenient to this model.

Physical system
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Figure 13: Topological map of the metric parameter
direction with respect to different regions.

The simulation of radiative flow proceeds in the fol-
lowing steps:

¢ Regions of high emissivity match the pattern re-
quired for the physical process radiative-flow. There
is only one region that matches this description in



the topological map of the parameter emissivity (fig-
ure 12a), namely the sun. The region of high emis-
sivity becomes the source region of this instance of
the flow process.

Once a source of radiative flow has been found, the
regions that it will flow into must be detected. Flow
follows a spatial order, so the receiving regions will
be neighbours of the source region. The source re-
gion has only one neighbour in its topological map
(figure 12a), which is indicated by the value none.
This becomes the sink region for the flow.

Once there is a source region and a sink region, the
direction of the flow can be determined. Figure 13a
shows the distribution of the parameter direction
with respect to the source region, i.e. the sun. The
overlap structure between this topological map and
that of the parameter emissivily indicates that the
sink region is totally contained within the beneath
region. This value becomes the direction of the flow.

The overlap structure between the topological maps
emissivity and {ransmissivily indicates that the
space occupied by the designated sink region con-
tains several different regions of transmissivity. The
flow will proceed gradually through these regions.

The first step is the region of semi-transparent trans-
missivity that lies closest to the source, i.e. the ozone
layer. That region will receive all the radiation sent
from the emitting region, i.e. 100%. This is indi-
cated in the model as a modification to the topo-
logical map of the parameter irradiation. A region
that corresponds to the ozone layer is introduced
into the irradiation distribution and given the value
100%, see figure 14a. For the sake of this example,
we will not bother with defining a quantity space for
the parameter irradiation, but simply indicate the
irradiation with approximative percentages.

The flow will pass through the irradiated region ac-
cording to the inferred flow direction. However, only
a part of the received radiation is transmitted, as
some of it is absorbed or reflected. Consultation of
the overlap structure between the parameters irradi-
alion and lransmissivily indicates how much radia-
tion will be transmitted. In this case, the irradiated
region corresponds to a region of semi-iransparent
transmissivity, so we presume that 50% of the radia-
tion passes through it. In the real model, a suitable
qualitative equation would be used.

The flow from the current irradiated region, i.e.
the ozone layer, proceeds into neighbouring regions
of constant transmissivity. The flow parameter
indicates that these regions must also lie beneath
the initially irradiated region. This is the case
for the cloudless atmosphere, indicated by almost-
transparen! in figure 12b.

However, the flow model also requires that the re-
ceiving region have no holes. The topological map

in figure 12b indicates that the almosi-transparent
cloudless atmosphere contains a region of lower
transmissivity, namely a cloud. The correct region
to irradiate is constructed by removing the cloud and
the area beneath it, according to the flow parameter,
from the cloudless atmosphere. The resulting irra-
diated region is shown in figure 14b. Its value is
indicated as 50%, reflecting that some of the radi-
ation was absorbed by the preceding region in the
flow.

e The radiation continues to flow through the atmo-

sphere, reaching the cloud, the shadowed region be-
neath the cloud and the ground. The final distri-
bution of the parameter irradiation is shown in fig-
ure l4c.
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Figure 14: Steps in the inference of the irradiation
distribution.

In this model, the existence of a cloud resulted in
non-uniform radiation of the ground. The received
radiation will be absorbed and transformed to heat
according to the distribution of e.g. the parameter
heat-capacity, thus creating a pattern for the parame-
ter temperature. Differences in temperature often trig-
ger other physical processes, e.g. sea breezes, cloud
formation, plant growth, etc. These are just a few ex-
amples of physical processes that can be modelled with
spatially distributed parameters.

4 Discussion

This paper has described work on modelling the qual-
itative behaviour of physical systems of spatially dis-
tributed parameters. We will put this work into per-
spective by comparing it to some other approaches.
In qualitative physics research, physical systems are
often modelled as sets of spatially discrete objects.




The parameters are seen as attributes that describe
the objects they are associated with. The model de-
scribes how the objects interact through their parame-
ters. Object-oriented models are appropriate for many
applications. see e.g. the thermodynamics model in
[Collins and Forbus, 1991].

However, in applications like meteorology, it is not
evident which objects the model should be built on.
The system is more appropriately described by the
spatial distribution of the individual parameters. The
traditional approach in physics is to model a physical
system as a set of differential equations, each describ-
ing how the value of a parameter varies as a function
of some spatial axis. By combining different dimen-
sions as needed, a full description of the parameter
is obtained. Work on using differential equations in
spatial qualitative resoning has been presented e.g. in
[Throop, 1989] and [Nishida, 1993].

A third approach, based on topology, is given in [Cui
et al.,, 1992] where the process of phagocytosis, i.e.
amoeba ingesting food, is modelled as a sequence of
topological relations between discrete regions in space.

Modelling a physical system in terms of objects is
attractive, since it gives the model a tangible touch.
It is appropriate both for device- and process-oriented
qualitative simulation and the envisioned situations
can easily be illustrated diagrammatically. However,
these models fail to convey the notion of continuous
spatial distribution, which is readily modelled by dif-
ferential equations. Models based on explicit differen-
tial equations are, however, not as readily understood
by non-experts and are also not available for all kinds
of physical systems.

The work presented in this paper can be seen as a
combination of these two modelling approaches, where
the spatial distributions of parameters are divided into
patterns of discrete regions that can be manipulated as
objects.

The utility of qualitative models of spatially dis-
tributed physical processes is manifold. Such models
would provide a reasoning component for Geographic
Information Systems (GIS) and programs for scientific
visualization. They would provide a means of commu-
nication between professionals, e.g. meteorologists, by
making 1t easier to hand over analyses of spatial sit-
uations to the next person on the shift. Their utility
for pedagogical purposes is obvious. In fact, most of
the examples in this paper have been taken from text-
books on meteorology and climate modelling, which,
although their main purpose is usually to convey a
quantitative understanding of the atmosphere, often
devote a substantial part of each chapter to qualita-
tive and diagrammatic descriptions of atmospheric pro-
cesses. ¢

Work on this approach continues actively. The next
step will be to refine and implement the methods de-
scribed in this paper. Models of basic atmospheric pro-
cesses, such as radiation, conduction, convection and

advection, are being developed, and will be integrated
in a model of a fairly complex atmospheric process:
the life-cycle of a sea breeze. We are also investigating
applications in agriculture and natural resource man-
agement.
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