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Abstract

Although alot of researchers have pointed out the
significance of functional representation, the gen-
eral relations between function and behavior is
not fully understood yet. We consider the knowl-
edge of each component in a system as consisting
of two elements. One is a necessary and sufficient
concept for simulation of the component which
we call behavior. The other is the interpretation
of the behavior under a desirable state which the
component is expected to achieve, which we call
function. By classification of a primitives neces-
sary for the interpretation of the behavior in var-
ious domains. which we call “domain ontology”,
we can capture and represent the function by se-
lection and combination of the primitives. This
paper proposes the primitives we identified and
the method to use them for representing func-
tion. Also we investigate the relation between
function and behavior based on the primitives.
As the primitives can represent concepts at var-
ious levels of abstraction, they will contribute to
those tasks which rely on the simulations on the
model of the target object, such as diagnosis, de-
sign, explanation. and so on.

Introduction

Model-based simulation has been utilized for solving
various problems, such as diagnosis(Kitamura et al.
1994)(Hirai et al. 1991) (Sembugamoorthy & Chan-
drasekaran 1986)(Abu-Hanna, Benjamins, & Janswei-
jer 1991), design(Vescovi et al.  1993)(Iwasaki et
al.  1993), explanation{Swartout. Paris, & Moore
1991}{Gruber & Gautier 1993) and so on. In order to
promote such model-based problem solving, the con-
cepts of behavior and function have to be understood
in depth, since they provide us with a firm foundation
of the methodology.

The following two reasons support the significance
of the research about the concept of function.
1)Investigation on the concept of function contributes

j:Power Reactor and Nuclear Fuel
Development Corporation,
4002 Narita-Cho,Oarai-Machi,
Ibaraki Pref, 311-13 Japan

to fault diagnosis. The task deals with the concept
of trouble of a component which can be regarded as
a loss of its function. Capturing the concept of trou-
ble and hence function is necessary to achieve efficient
diagnosis.

2)Investigation of function also contributes to explana-
tion of those tasks performed by expert systems. Using
the concept of function, an expert system can reason
how a component’s behavior is significant in the sys-
tem. Furthermore, the system can explain the sys-
tem’s behavior in terms of those concepts familiar to
the users at an appropriate level of abstraction, which
helps them understand the explanation.

Another issue to discuss is clear understanding of the
difference between behavior and function. When we
interpret behavior of a component, we employ certain
viewpoints from which more than one interpretation is
made for a behavior of a component. Necessity of a
specific output of the component is an example of the
viewpoint. For example, suppose a component whose
behavior is to divide an input saline solution into pure
salt and a saline solution. The behavior is interpreted
as producing salt in the system which requires salt. In
the system which requires fresh water, however, the
same behavior is interpreted as desalinization.

A lot of research has been done to date aiming at
a deep understanding of both behavior and function.
J.de Kleer(de Kleer 1984) defines function of a com-
ponent as a combination of behavior and selection of
it from the set of possible behaviors of the component.
Although the information required for the selection can
be one of the candidate factors necessary to interprete
behaviors, it is not enough. Two different interpre-
tations, for example, are possible for one behavior of
a heat exchanger, “shift thermal energy from fluid of
higher temperature side to lower temperature side”.
One is that “the component gets the fluid of the lower
side warmer”, and the other is “the component gets the
fluid of the higher side colder”. de Kleer’s definition of
function does not explain this example.



V.Sembugamoorthy and B.Chandrasekaran{Sem-
bugamoorthy & Chandrasekaran 1986) propose a
framework to represent the function of a system by
combination of function and behavior of each compo-
nent of the system. In their work, declaration of a
desired state and the environment in which the func-
tion of the system appears can be regarded as attached
information. As relations between the attached infor-
mation and the concept of the function are not dis-
cussed so much, proposed framework seems to have
much room to refine.

Anne M.Keuneke(Keuneke 1991) classifies function
into four concepts, such as To Make,To Maintain,To
Prevent,and To Control. We regard them as concepts
at the top level of function hierarchy which should be
refined further from various view points.

The discussion we have made thus far shows there
is no satisfactory theory about behavior and function
in spite of its importance. We classify the knowledge
about each component of a model into three elements.
The first element is required to have necessary and
sufficient information enabling simulation of how the
the system works, by combining all the elements in
the system without referring to the other components
or the whole system. We use the term “behavior” to
refer to this element.

Next, we recognize intended desirable states which
each component is expected to achieve. Such a state
is the second element, and we use term “goal” to refer
to it.

Lastly, we interpret the behavior of each component
under a related goal. We use the term “function” to
refer to the interpretation result (the third element).
Although function of a component cannot be defined
without referring to the whole system, it can be de-
scribed for each component.

According to the above discussion, we come up with
the following definition of function:
function = behavior 4 attached information
in which attached information is some information
which make function different from behavior.

Identification of primitives to represent the attached
information plays a critical role in capturing the con-
cept of function. When the identification is accom-
plished, functional representation of a component is
easily made by selection and combination of the prim-
itives. Furthermore, to make the primitives domain-
independent enhances re-usability of them which con-
stitute a portion of “Domain Ontology”.

One of the bottlenecks in model building is the exis-
tence of a gap between model builder’s concepts about
a component and behavior of the component to be rep-
resented. Identification of the primitives to represent
function helps decrease the gap.

Our long term goal includes to organize the concepts
of function and behavior as reusable building blocks for
qualitative models which facilitates model-based prob-
lem solving. As the first step toward this goal, we

investigate the primitives for describing attached in-
formation and organize them as a portion of domain
ontology. This paper proposes a new method to de-
scribe models of behavior and function of components.
Also we show potential of the method by describing
models on different domains at various levels of ab-
straction.

Primitives to represent the function

To establish a framework to describe a functional
model of components, we investigate several view-
points to capture the behavior and the additional in-
formation to interpret it. In this section, we discuss the
viewpoints and primitives to represent them in order.

Overview of the components description

There are two ways of behavior representation. One is
process-centered way which views how the substances
under consideration are processed. The other is device-
centered way which concentrates on input-output rela-
tions of a component. We employ the latter way and
represent each component as a black box which has
ports for input and output. Some components, e.g. a
tank, have only ports for input and other components,
e.g. a battery, have only ports for output. We call
an input substance “In-Obj” and an output substance
“Out-Obj”. Except the cases in which clear distinction
1s necessary, we use the term “Compo-Obj” to refer to
one of those substances treated by a component. We
treat substances (such as water) and energy (such as
heat) which exhibit functionality of the component as
Compo-Objs. Description of them is based on object-
oriented paradigm.

Description of the behavior

The behavior of a component is represented by its
Compo-Objs and relations among them. This section
describes how to describe them in order.

Description of Compo-Objs Two types of
Compo-Obj are discussed: omne consists of only one
kind of substances or energy referred to as basic
Compo-Obj and the other consists of more than one
kind of substances or energy referred to as mixed
Compo-Obj.

Basic Compo-Objs. The following six viewpoints
are employed to represent basic Compo-Obj.

The Compo-Obj is energy or substance

The location at which the Compo-Obj exists
Super class of the Compo-Obj

Parameters which represent the Compo-Obj
Relations among the parameters

Phase of the Compo-Obj

e e © & & ¢

Mixed Compo-Objs. There are Compo-Objs
which consist of more than one kind of Compo-Objs.
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Figure 1: Mixed Compo-Objs

For example, a saline solution consists of salt and wa-
ter and an alloy consists of metals and metalg. We call
such a Compo-Obj as a Mixed Compo-Obj and each
of those Compo-Objs which together compose a Mixed
Compo-Obj as a Compo-Obj-Composer. As an exam-
ple of saline solution shown in Fig.1, we capture Mixed
Compo-Obj as a Compo-Obj which includes Compo-
Obj-Composers with their special relations. We em-
ployed four kinds of such relations, and represent them
by predicates as follows.

Solute and solvent
One of the two Compo-Obj-Composers dissolves the
other Composer like a saline solution.
Predicate:Dissolve(Objx,Objy)
Objx:solvent,Objy:solute

Carrier and Burden
Although not being in “dissolve” relation, one of the
two Compo-Obj-Composers relies its mobility on the
other Composer like trash in water flow.
Predicate: Carry (Objx,Objy)
Objx:carrier,Objy:burden

Medium and Energy
One of the two Compo-Obj-Composers carries the
energy class of Composer as a medium. Example
hiere is water and heat energy that together compose
boiling water.
Predicate: CarryE(Objx,Objy)
Objx:medium,Objy:energy

Substancea and Substances
Two Compo-Obj-Composers coexist in one Compo-
Obj and give no explicit effect to each other like two
kinds of metals in an alloy.
Predicate: Coexist(Objx,0Objy)
Objx:substancea,Objy:substancep

We represent the, relation between water and salt in
a saline solution, for example, as

Dissolve(water,salt)

In this paper, we use the term Compo-Obj to refer to
both a Compo-Obj consisting of one kind of substances

or energy and a Mixed Compo-Obj unless there is a
necessity to distinguish them.

Relations among parameters. The amount of en-
ergy which a Compo-Obj possesses has a close relation
to parameters representing the Compo-Obj itself.

For example, consider boiling water (water brings
heat energy). The amount of heat energy is in propor-
tion to the temperature and volume of the water which
brings the heat. Explicit description of this relation al-
lows us to reason the transition of the amount of heat
energy by transition of parameters of water.

Format for describing Compo-Objs. According
to the above discussions, we come up with the following
template for Compo-Obj representation (Fig.2):

Ciass Name: Compo-Obj

Attributes:
Name: ID of the Compo-Obj.
ISA: Super class of the Compo-Obj:Sodium,Water,Heat etc.
Params: Parameters to represent physical feature of the Compo-Obj.
E-Flag: If the Compo-Obj is energy then T.
Location: The location where the Compo-Obj exists:Inm,Outjetc.
Para-Relations: Relations among the Params of the Compo-Obj.
Phase: Phase of the Compo-Obj:Solid,Liquid,Gas.
Sub-Objs: The Compo-Obj-Composers of the Compo-Obj.
Sub-Relations: Relations among the Compo-Obj-Composers.

Figure 2: Template for describing a Compo-Obj

Description of relations among Compo-Objs
To represent relations among Compo-Objs in various
levels of abstraction, we employ three viewpoints dis-
cussed below. Fig.3 represents an abstract model of an
ideal turbine without loss of energy. With this exam-
ple, this section describes the viewpoints in order.

MP-Relations:Relations among In-Objs and
Out-Objs. Some Out-Objs are made from specific




In-Objs. For example, we can recognize water pro-
duced by a desalination plant is made from saline so-
lution. We call a set of such relations of a component
as MP-Relation, and the following predicate represents
them.

MP([Out-Objy,...,Out-Objn],[In-Obji,...,In-Objm])

In Fig.3, part of heat energy(Obj2) is converted to
rotation energy(Objs) of the shaft and rest of the heat
energy is out without conversion. Thus the following
predicates together represent MP-Relation of this tur-
bine.

MP ([Objs,0bjs],[Objz])

MP([Obje},[Obj))
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MP-Relations:
MP([Objs,Obje],[Obja]),MP([Obje],[Obia])

SameClass:
Objz.ISA=0bj5.ISA, Obj2.ISA# Objs.ISA ,Objs.ISA=Objs.ISA

QN-Relations:
Objs. Amount=k * Obj2.Amount+C
Objz. Amount= Objs. Amount+Objs.Amount
Obijs. Amount= Objs. Amount
Objs. Velocity = Objz. Velocity

Figure 3: Model of a turbine

SameClass:the sameness of the class. The be-
havior of the turbine in Fig.3 is viewed as to convert
input energy to different kind of energy at an abstract
level. This kind of relation is partially characterized
from the viewpoint of the sameness of the class be-
tween the two Compo-Objs. We describe the sameness
by two operators, = and #. In Fig.3, the following
relations exist.

Obj2.ISA = Objs.ISA

Obj2.ISA # Objs.ISA

Obj3.ISA = Objs.ISA

QN-Relations:Quantitative relations. Relations
among the Params of Compo-Objs are represented by
a set of equations, called QN-Relations.

In Fig.3, Objs.Amount, the amount of rotation en-
ergy to be output, is in proportion to Obj2. Amount,
the amount of heat energy. At the same time, the
summation of the amount of output heat energy and
rotation energy equals to the amount of the input heat
energy according to the assumption of no loss of energy.
The following two equations reflects these relations, re-
spectively.

Objs.Amount = K * Obj2. Amount + C

Objz.Amount = Objs. Amount+Objs. Amount

Description of the attached information

In order to describe the function of components, we in-
vestigated the attached information and obtained the
primitives from four viewpoints: (1)goal of the compo-
nent (2)function type (3)}focus on Compo-Objs (4)ne-
cessity of Compo-Objs. These four items are ex-
plained in this subsection.

Goal of the component We recognize a desirable
state to achieve for each component in a system and the
term “goal” refers to the concept. There are two types
of such states. One is described by the combination of
parameters and desirable values and represents its de-
sirable state absolutely, that is, independently of input.
The other is described by input-output relations and
represents the desirable state relatively to the input of
the component. Example here is the heat exchanger
in Fig.4. A goal description “temperature of the out-
put coolant(Objio) does not exceed five hundred de-
gree centigrade” is an example of the former type of
the goal and “the heat energy of the coolant {Obj;)
is decreased into one tenth by the other input coolant
(Obj4)” is an example of the latter type. We represent
such a desirable state by the predicate G(state).
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Figure 4: Heat exchanger



Function type Anne M.Keuneke classifies concept
of the function into four types, such as To Make,To
Control, To Maintain, and To Prevent(Keuneke 1991).
For our representation, we give informal definition to
them.

To Make: To set a parameter at a desirable value.

To Control: To shift a parameter of desirable value
to another desirable one.

To Maintain: To keep the value of parameters desir-
able for certain period.

To Prevent: Not to make parameters to take special
values which represents no good states of the system.

To Make type function is the basis of all other func-
tions which makes parameters to be in a desirable
range. Function of a cooking stove, for example, is
considered as To Make temperature of a thing put on
it to be more than a cerfain degree. If the aim of the
stove is to boil a kettle of water, then the function
To Make is achieved when the temperature inside the
kettle exceeds one hundred degree centigrade. On the
other hand, the function of an electric water heater
with a sensing device which accurately makes the tem-
perature of the water in it to be ninety five degree
centigrade is To Control.

Function of a component which keeps desired state
by To Control function is To Maintain.

A component whose function is To Prevent watches
and controls parameters not to go undesirable states
for the system. A relief valve attached to a tank To
Prevent explosion of the tank watches pressure caused
by substances inside the tank. The valve switches its
behaviors: not to let the substances pass the valve out
of the tank and to release the substances through the
valve according to the pressure inside the tank.

Combining the description of the goal and the func-
tion type, we obtain an abstract explanation pattern of
the function of a component, such as “function type”
+ “goal state” whose instance is “To Prevent Tem-
perature of Compo-Objn becomes ninety five degree
centigrade”.

Using the goal state and function type concept of
trouble of a component is classified into four types:

ToMake: Trouble if the component does not achieve
any goal.

ToControl: Trouble if the component in a goal does
not shift to another goal.

ToMaintain: Trouble if the component does not keep
on the achieved goal for certain period.

ToPrevent: Trouble if the goal parameter takes spe-
cific value which represents no good state.

Focus on Compo-Objs When we capture the main
function of a component, we focus on a specific Compo-
Obj’s class. We represent such a concept by the pred-
icate Focus(class of Compo-Obj). When we interpret
the behavior of the component in Fig.5 as that of a
resister which lowers potential of input direct current
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Figure 5: Resister

electricity, focus is given to the electric energy and Fo-
cus(Electric energy) represents it. On the other hand,
the same behavior is interpreted as that of an electric
heater when we focus on the heat energy.

Necessity of Compo-Objs Compo-Objs which be-
long to the focused class often exists at different ports
of a component from each other. For example, con-
sider a behavior of the heat exchanger in Fig.4 which
focuses on heat energy existing at the four ports. The
heat exchanger can be interpreted not only as a heater
giving the heat energy to the colder Out-Obj(Objio),
but also as a cooler taking the heat energy of the hotter
In-Obj(Obj2) away.

Difference between the two interpretations is caused
by difference of the necessity of each heat energy at
different port, according to the goal of the compo-
nent. We represent a focused class of Compo-Obj is
necessary at a port by the predicate Need(name of
the port,focused class) and not necessary by the predi-
cate NoNeed(name of the port,focused class). When
we interpret the behavior of the component in Fig.4 as
that of heater, Obji1 is necessary at the port Outs, thus
Need(Outa,Heat)is suitable. Also when we interpret
the same behavior as that of cooler, Objs is not nec-
essary at the port Outi, thus NoNeed(Outy,Heat)is
suitable.

In some cases ports which do not deal with focused
class of Compo-Objs play important roles. Consider
Fig.5 as an abstract model of a resister. Used in an
ordinary circuit, we do not have to care the heat en-
ergy output from the resister. Used in a precise circuit,
however, the heat energy gives a harm to the circuit.
Taking such port and harmful Compo-Obj’s class as
arguments of NoNeed(/2), the side effect of a com-
ponent can be explicitly represented. For example, the



resister’s side effect is represented by

NoNeed(Outz,Heat).

Format to describe components

According to the above discussion, we propose a tem-
plate for describing the behavior and the function of a
component(Fig.6).

Class Name: Component
Attributes:
Ports:
Compo-Objs:
MP-Relations:
SameClass:
inherentParams:
QN-Relations:
Goal:
FuncType:
Focus:
Needs:

Figure 6: Template for describing a component

Evaluation of the representation
method

One of the causes of difficulty in model building is
existence of a gap between conceptual level of model
builder and that of a vocabulary supplied by a sys-
tem for model building. A vocabulary to fill the gap is
required to represent components at various levels of
abstraction. This section evaluates our representation
method from this viewpoint.

Hierarchical classification of the function
and the behavior

In the last section, we defined a format to represent
a component captured from various viewpoints. Us-
ing these viewpoints, we came up with a hierarchical
classification of the concept of the behavior and the
function as shown in Fig.7.

A concept of a component which deals with one In-
Obj and two Out-Objs is represented as the root node.
The concept is classified into five concepts at the first
level of the tree according to the condition of the com-
position of the In-Obj. According to the condition of
composition of the two Out-Objs and their relation to
the In-Obj, each node made by the first division is fur-
ther classified at the second level of the tree.

Classifications at the first and the second level are
based on those viewpoints used for behavior descrip-
tion and is domain- and context-independent.

According to the viewpoint of focus on the class and
necessity of each focused Compo-Obj, concepts repre-
sented at the second level are classified into the third
level concepts. Some of the concepts represented at

the third level can be connected to those verbs we of-
ten use to represent the concept. As is discussed below,
we see there still remain several viewpoints to be inves-
tigated other than we have already done. Identification
of those primitives to represent function from the view-
points will enable us to promote further classification
beyond the third level.

Representation at various levels of
abstraction

Here we show some examples to evaluate the proposed
representation method. The concept of a behavior “an
In-Obj is a solution, one of the Out-Objs is pure solute
derived from the In-Obj, and the other Out-Obj is rest
of In-Obj”, (represented as the node with thick circle
at the second level in Fig.7) which is represented in
Fig.8, is described as follows (Fig.9).

Focus(Ca)

Need(Outy,Ca)—>Extract solute from In-Obj
NoNeed(Outz,Ca)—Dilute In-Obj
Dilute In-Obj + G(Objs.Mass=0)—>Purify In-Obj

Figure 8: divide a solution

‘Now let Ca be a class identifier to which Obj2,0bj4
and Objs belong (Fig.8). Attaching Focus(Ca) and
Need(Out1,Ca) to the above description of the be-
havior changes it into the description of the function
corresponding to “Extract solute from In-Obj”. Re-
placing Need(Out1,Ca) by NoNeed(Outz,Ca) the
last description of the function changes into differ-
ent function, “Dilute In-Obj”. Furthermore, attach-
ing G(Objs.Mass = 0) to the description of “Dilute
In-Obj”, the function changes into another function,
“Purify In-Obj”.

Attaching the following descriptions(Fig.10) to the
function, “Purify In-Obj”, the function of a kidney
as a component of the human to maintain purify-
ing blood by filtering waste dissolved in blood is
represented.(Fig.11)

Replacing some parts of the description of the func-
tion of a kidney by the following descriptions(Fig.12),
desalinization system as a component of the plant to
make saline solution desalt is represented.(Fig.13)
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Objects: . .
Name:Obji;Location:In1;Phase:Liquid; 8b‘]2igﬁ Waste
Params:[Mass, Volume,Calory, Velocity,...]; bjs. : Blood
A A ) ’ R ja. JSA: Waste
Sub-Objects:Obj2,0bjs; Obj,
Sub-Relations:Dissolve(Obj3,0bj2);] Obje.ISA: Waste
Obj7.ISA: Blood
[Name:Objz;Location:Iny; Phase:Solid; QN-Relations: Objs. Amount = Objz2. Amount
Params:[Mass, Volume,Calory,Hardness...| ;] Objs.Amount = Objz. Amount
. Obj7.Amount = Objs.Amount
[Name:Objs;Location:In1;Phase:Liquid; Focus: Focus(Waste)
Params:|Mass,Volume,Calory, Velocity,...];] FuncType: To Maintain
[Name:0Objs; Location:Out1; Phase:Solid;
Params:[Mass,Volume,Calory,Hardness,...};] Figure 10: Additional values for description of Kidney

[Name:Objs; Location:Outs; Phase:Liquid;
Params:[Mass,Volume,Calory, Velocity,...];
Sub-Objects:Objs. Obj7;
Sub-Relations:Dissolve(Obj7,0bjs);]

[Name:Obje; Location:Outz; Phase:Solid;
Params:[Mass, Volume,Calory,Hardness,...[;]

[Name:Objr; Location:Outz; Phase:Liquid;
Params:[Mass,Volume,Calory, Velocity,...];]
MP-Relations:
MP ([Obja,0bjs],[Obj2]),
MP ([Obj7].[Obj3])
SameClass:
Obj4.ISA = Obj2.ISA,
Obje.ISA = Obj2.ISA, .
ObjrISA = ObjsISA Goal:G(Obj6. Mass=0)
FuncType:ToMaintain

Figure 9: description of the concept,“divide a solution

(part)” Figure 11: The function of a kidney



Obj..ISA: Salt

Objs.ISA: Water
ObjsISA: Salt
Objs.ISA: Water
Obj7.ISA: Salt

QN-Relations: Objs.Amount =
Objs.Amount
Obj7.Amount
Focus(Salt)
To Make

Obj2.Amount
Obj2. Amount
Objs.Amount

A

Focus:
FuncType:

Figure 12: Additional values for description of a de-
salinization system

, Obj4
Obit 2 /( Salt ,
Obj2 L MP-Relation Ouh
salt {—i '
solute O

Goal:G(Obj6.Mass=0)
FuncType:ToMake

Figure 13: The function of a desalinization plant

We can describe a model of a component for simula-
tion by attaching detailed relations among its Compo-
Objs and parameters inherent to the component.

As demonstrated in this section, the representation
method shows its potential to describe components of
various domains at various levels of abstraction.

Example of functional modeling(2)

Here we show another example of the representation of
different interpretations of one behavior.

Figure 14 shows a model of behavior of a component
which converts direct current electricity input(Objz)
to increases force(Objs) and reaction(Objs) of a
fluid(Obj7) from another input port.

Suppose Obj7 is air. Focusing the force, represented
by the predicate Focus(Force), behavior of the com-
ponent is interpreted as that of an electric fan which
raises wind. Next, suppose Obj7 is water. Fucusing
the reaction from the water, the same behavior is in-
terpreted as that of a screw to gain driving force of the
component itself. The predicate

Focus(Reaction)
represents 1t.

Example of functional modeling(3)

Figure 15 is a behavior model of a heat exchanger(HX).
Suppose the HX is used in two ways, for cooling system
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Figure 14: Behavior model of an electric fan and a
screw
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Figure 15: Behavior model of a heat exchanger

of an engine and for heating system of a room.

When the HX is used as a cooling system of an en-
gine, its behavior is interpreted as taking away the heat
of the coolant(Obj1) of engine. This interpretation is
based on the idea that the heat energy of the output
coolant, Obj7, is not necessary for the engine, con-
nected to the port Out;. This interpretation is repre-
sented by the predicate,

NoNeed(Outi,Heat Energy).

On the other hand, when the HX is used as a heater
of a room, its behavior is interpreted as heating the
air of the room(Objs). This interpretation is based on
the idea that the heat energy of the output air, Objio
is necessary for the room, connected to the port Outs.
This interpretation is represented by the predicate,

Need(Outz,Heat Energy).

Some coolers achieve their function as air condition-




ers, for example, by maintaining the temperature of
a room, and other coolers achieve their function as
coolant systems which,for example, prevent overheat
of an integrated circuit. Functional model of the for-
mer type of cooler can be represented by attaching the
following two predicates to the functional model of the
cooler.

Goal:G(Obj7.Temp = k)

FuncType:ToMaintain
In the same manner, the latter type of coolers are rep-
resented by attaching the following predicates.

Goal:G(Obj7.Temp < k)

FuncType:ToPrevent

Discussion

In his work(de Kleer 1984), J.de Kleer proposes a
method to use function of a system, which is derived
from function of each component, to decrease ambigu-
ous results of simulation. The method represents a
component having more than one causal relation be-
tween input and output, where function of the compo-
nent is decided by selecting one of the relations.

His work enables us to represent the function to
achieve desirable state, which is also achieved by our
representation method as discussed above. Further-
more, our method can explicitly represent the function
which prevents system from falling into no good state
and side effects which may damage the whole system.

V.Sembugamoorthy and B.Chandrasekaran(Sem-
bugamoorthy & Chandrasekaran 1986) capture behav-
ior as a series of states of the system and function as
to achieve an intended desirable state. The function
is achieved by the behavior and the function of each
component whose role is defined by the function of the
system. Such a framework to represent the function of
large systems hierarchically is important.

In the above functional representation (Sembug-
amoorthy & Chandrasekaran 1986), the function is
described as achieving a desirable state.  Anne
M.Keuneke(Keuneke 1991) classifies the concept of
function into four types according to some conditions,
for example, the method to achieve the function, the
initial condition which raise the function, the length of
the term in which effect of the function is hold, and
so on. She captures function as attachment of implicit
assumptions to a behavior, and employs a policy to
seek for the primitives to represent the assumptions.
Her policy is close to that of us in this sense. Our rep-
resentation includes her classification and applies it to
produce an abstract explanation of the function of a
component and classification of the concepts of trou-
ble.

Her classification of the function is employed in
the work by B.Chandrasekaran, et al.(Chandrasekaran,
Goel, & Iwasaki 1993) in which a functional represen-
tation framework is proposed by extending (Sembug-
amoorthy & Chandrasekaran 1986), which can be ap-

plied to various kinds of tasks especially design and
diagnosis.

Because their representation of the function in
(Chandrasekaran, Goel, & Iwasaki 1993) depends on
the structure of the component of the system, descrip-
tion of the function of two systems differs from each
other if their structure differs from each other. Thus
their representation method seems to be weak inn terms
of re-usability of the description of function. On the
other hand, our representation of the function of a com-
ponent can be applied to wide range of components of
the same input-output relations.

Y. Iwasakiet al.(Vescovi et al. 1993)(Iwasaki et al.
1993) extended the framework for representing func-
tion proposed in (Sembugamoorthy & Chandrasekaran
1986) to represent the intention of designers, and pro-
posed a framework for supporting refinement process
of design through verification between behavior of a
designed artifact and the intention of its designer. The
function they captured is close to our concept. How-
ever, as the basic idea of functional representation
is the same as (Sembugamoorthy & Chandrasekaran
1986), their method also seems to be weak in re-
usability of the described components.

In order to decrease the cost for diagnosis, A.Abu-
Hanna, et al.(Abu-Hanna, Benjamins, & Jansweijer
1991) propose a method to describe functional model
of a system at three levels of abstraction.

We also regard abstraction and conceptualization of
a component have close relations to the function of the
component, since the goal of a component is always
abstract one to enable interpretation of its behavior at
the knowledge level. Thus we have investigated what
primitives contribute to conceptualization of function.
As mentioned in former sections, however, the enumer-
ation of the primitives is not exhaustive.

M.Pegah, et al.(Pegah, Sticklen, & Bond 1993) apply
the functional representation in (Sembugamoorthy &
Chandrasekaran 1986) to F/A-18 aircraft fuel system,
one of the large scale and complex systems, to achieve
causal understanding of the system.

Our interest in application of this work goes to
KC II{Kitamura et ol. 1994), a model-based diag-
nostic shell which currently deals with a heat trans-
portation system including negative feedbacks among
its components whose explanation is difficult.

Conclusion

This paper has proposed a new method and a vocab-
ulary for representing components captured from the
viewpoints of behavior and function. Qur method does
not rely on domain specific terms in representing com-
ponents at a certain level of abstraction. The method
enables model builders to describe a component at var-
ious levels of abstraction. Still we have several prob-
lems to be discussed about the concept of function as
we discussed earlier. They are under discussion and its



result shall be reflected to refine the proposed repre-
sentation method.

The potential of a functional representation method
should be evaluated by not only the number of phe-
nomena the method can describe but also the enhanced
quality of a task by application of the model described
by the method. Currently we aim at applying our
method to the diagnostic shell KC HI(Kitamura et al.
1994) in two ways. One is to support users in model
building, and the other is to help users understand the
process and result of a diagnosis.

W.Swartout, et al.(Swartout, Paris, & Moore 1991)
propose a framework to build Explainable Expert Sys-
tems(EES). They regard three design aspects such as
justifications of the system’s action, explications of
general problem-solving strategies, and descriptions
of the system’s terminology, as important things for
producing good explanation in design activity. EES
provides explanation from these apsects in a dia-
logue style. Another investigation by T.R.Gruber and
P.O.Gautier(Gruber & Gautier 1993) shows a tech-
nique to explain the system’s action and the knowledge
which the system possesses.

Currently our interest goes to what information
should be conveyed by the explanation for the users
of KCIII, and discussion about how can the repre-
sentation method contribute to the explanation is on
progress.
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